1
|
Hai TQ, Huong NT, Son NT. The medicinal plant Peucedanum japonicum Thunberg: A review of traditional use, phytochemistry, and pharmacology. Fitoterapia 2024; 179:106270. [PMID: 39442677 DOI: 10.1016/j.fitote.2024.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Peucedanum japonicum (the family Umbelliferae) is a perennial herbaceous plant with various crucial traditional values for coughs, colds, headaches, and inflammatory responses. For drug developments, the current research aims to offer an overview of the previous results in the three main aspects of traditional use, phytochemistry, pharmacological values, and molecular mechanisms regarding this medicinal species. By chromatographic analysis and separation, more than 120 isolated compounds have been obtained. Khellactone-type coumarins and phenolic compounds are the primary phytochemical classes with some coumarins, such as calipteryxin, praerutorin A, and pteryxin, being the main metabolites. Pharmacological activities of P. japonicum constituents included anticancer, antioxidative, antimicrobial, antiviral, antiplatelet, and tyrosine inhibitory activities, especially anti-inflammation and anti-obesity. It is worth mentioning that the obtained constituents joined to protect the neurons, bone, and urine systems, and exerted vasorelaxant. In general, the underlying mechanism of anti-inflammatory action can be explained by mitogen-activated protein kinase/nuclear factor-kappa B (MAPK/NF-κB) signaling pathway, whereas anti-obesity activity is deduced from regulating lipid metabolism-related genes. It also noted that pteryxin is the most active compound, but the clinical studies and synthesis of new derivatives containing enhanced medicinal values have been still limited, which should be improved.
Collapse
Affiliation(s)
- Tran Quang Hai
- Faculty of Chemical Technology, Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Hanoi, Viet Nam
| | - Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, 298 Cau Dien, Bac Tu Liem, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam; Department of Chemistry, Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
2
|
Uy NP, Kim JT, Lee S, Yang TJ, Lee S. Comprehensive Determination of the Phenolic Compound Contents and Antioxidant Potentials of Leaves and Roots of Peucedanum japonicum Harvested from Different Accessions and Growth Periods. ACS OMEGA 2024; 9:41616-41628. [PMID: 39398175 PMCID: PMC11466306 DOI: 10.1021/acsomega.4c05561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Peucedanum japonicum Thunberg, a medicinal plant, remains understudied despite its potential therapeutic benefits. This study aimed to determine the phytochemical profiles and antioxidant capacities in the extracts of different accessions of P. japonicum by measuring the total polyphenol and flavonoid content of the P. japonicum extracts coupled with DPPH and ABTS+ assays. In addition, phytochemical screening via LC-MS/MS and high-performance liquid chromatography analysis quantified nine compounds wherein chlorogenic acid (CA) was found to be the most abundant in all compounds while hyperoside and peucedanol were the least. Results showed variation in these compounds' content among accessions (2.01-21.31 mg/g CA) and plant parts (0.34-19.57 mg/g CA), with leaves generally showing higher antioxidant activity. The abundance of these compounds These integrated analyses provide insights into the phytochemical composition and antioxidant activity of this understudied plant, contributing to advances in natural product chemistry and potential therapeutic applications.
Collapse
Affiliation(s)
- Neil Patrick Uy
- Department
of Plant Science and Technology, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Jin-Tae Kim
- Interdisciplinary
Program in Agricultural Genomics, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Sullim Lee
- Department
of Life Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Tae-Jin Yang
- Department
of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding
Institute, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
- Crop
Biotechnology Institute, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Sanghyun Lee
- Department
of Plant Science and Technology, Chung-Ang
University, Anseong 17546, Republic of Korea
- Natural
Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| |
Collapse
|
3
|
Uy NP, Kim H, Ku J, Lee S. Regional Variations in Peucedanum japonicum Antioxidants and Phytochemicals. PLANTS (BASEL, SWITZERLAND) 2024; 13:377. [PMID: 38337910 PMCID: PMC10857489 DOI: 10.3390/plants13030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Peucedanum japonicum has long been a staple in East Asian cuisine. In the context of traditional medicine, various members of the Peucedanum genus have been investigated for potential medicinal properties. In laboratory settings, some compounds derived from this plant have shown antioxidant and anti-inflammatory properties-characteristics often associated with potential medicinal applications. This study aimed to determine which part of the P. japonicum plants cultivated on two Korean islands contains the most antioxidant compounds. This determination was made through assessments of total polyphenol content and total flavonoid content, coupled with evaluation of antioxidant activity via DPPH and ABTS assays. The results showed that the aerial parts contain a richer array of bioactive compounds and demonstrate superior antioxidant activity compared to their root counterparts in the plants from both islands. To characterize the phytochemicals underpinning this bioactivity, LC-MS/MS and HPLC analyses were carried out. These methods detected varying amounts of chlorogenic acid, peucedanol 7-O-glucoside, rutin, and peucedanol, with good separation and retention times. This study addresses the lack of research on the antioxidant activity of different parts of P. japonicum. The findings hold significance for traditional medicine, dietary supplements, and the development of functional foods. Understanding antioxidant distribution aids in the development of medicinal and nutritional applications, influences agricultural practices, and contributes to regional biodiversity-conservation efforts. The study's geographical scope provides insights into how location impacts the concentration of bioactive compounds in plants. Overall, the results contribute valuable data for future research in plant biology, biochemistry, and related fields.
Collapse
Affiliation(s)
- Neil Patrick Uy
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Jajung Ku
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
- Natural Product Institute of Science and Technology, Anseong 17546, Republic of Korea
| |
Collapse
|
4
|
Song YN, Lee JW, Ryu HW, Lee JK, Oh ES, Kim DY, Ro H, Yoon D, Park JY, Hong ST, Kim MO, Lee SU, Lee DY. Black Ginseng Extract Exerts Potentially Anti-Asthmatic Activity by Inhibiting the Protein Kinase Cθ-Mediated IL-4/STAT6 Signaling Pathway. Int J Mol Sci 2023; 24:11970. [PMID: 37569348 PMCID: PMC10418634 DOI: 10.3390/ijms241511970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.
Collapse
Affiliation(s)
- Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Republic of Korea;
| | - Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea;
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (Y.N.S.); (J.-W.L.); (H.W.R.); (E.S.O.); (D.-Y.K.); (J.-Y.P.); (M.-O.K.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea;
| |
Collapse
|
5
|
Park J, Paudel SB, Jin CH, Lee G, Choi HI, Ryoo GH, Kil YS, Nam JW, Jung CH, Kim BR, Na MK, Han AR. Comparative Analysis of Coumarin Profiles in Different Parts of Peucedanum japonicum and Their Aldo-Keto Reductase Inhibitory Activities. Molecules 2022; 27:7391. [PMID: 36364218 PMCID: PMC9657185 DOI: 10.3390/molecules27217391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 03/13/2024] Open
Abstract
Peucedanum japonicum (Umbelliferae) is widely distributed throughout Southeast Asian countries. The root of this plant is used in traditional medicine to treat colds and pain, whereas the young leaves are considered an edible vegetable. In this study, the differences in coumarin profiles for different parts of P. japonicum including the flowers, roots, leaves, and stems were compared using ultra-performance liquid chromatography time-of-flight mass spectrometry. Twenty-eight compounds were tentatively identified, including three compounds found in the genus Peucedanum for the first time. Principal component analysis using the data set of the measured mass values and intensities of the compounds exhibited distinct clustering of the flower, leaf, stem, and root samples. In addition, their anticancer activities were screened using an Aldo-keto reductase (AKR)1C1 assay on A549 human non-small-cell lung cancer cells and the flower extract inhibited AKR1C1 activity. Based on these results, seven compounds were selected as potential markers to distinguish between the flower part versus the root, stem, and leaf parts using an orthogonal partial least-squares discriminant analysis. This study is the first to provide information on the comparison of coumarin profiles from different parts of P. japonicum as well as their AKR1C1 inhibitory activities. Taken together, the flowers of P. japonicum offer a new use related to the efficacy of overcoming anticancer drug resistance, and may be a promising source for the isolation of active lead compounds.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sunil Babu Paudel
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Gileung Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsangbuk-do, Gyeongsan-si 38541, Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeollabuk-do, Jeonju-si 54810, Korea
| | - Bo-Ram Kim
- Natural Product Research Division, Honam National Institute of Biological Resources, Jeollanam-do, Mokpo-si 58762, Korea
| | - Min Kyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Jeongeup-si 56212, Korea
| |
Collapse
|
6
|
Kanazawa R, Morimoto R, Horio Y, Sumitani H, Isegawa Y. Inhibition of influenza virus replication by Apiaceae plants, with special reference to Peucedanum japonicum (Sacna) constituents. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115243. [PMID: 35358620 DOI: 10.1016/j.jep.2022.115243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Apiaceae plants possess various pharmacological properties, such as antimicrobial, antioxidant, hypoglycemic, hypolipidemic, anxiolytic, analgesic, anti-inflammatory, anti-convulsant, and anti-cancer activities; however, data on their antiviral activity are limited. Peucedanum japonicum, also known as Sacna, is a plant used as food and as a traditional folk medicine for treating coughs. However, the active components in the leaves of this plant are yet unexplored. AIM OF THE STUDY To assess Apiaceae plants, especially Peucedanum japonicum, with anti-viral activity, and the function and antiviral potential of Sacna constituents, considering the emergence of influenza virus strains resistant to the currently available drugs. MATERIALS AND METHODS We prepared grinds of the freeze-dried leaves and roots of the Apiaceae family and the hot water extracts. The antiviral activities of the extracts were determined by focus formation reduction assay. In the time-of-addition assay, the test medium containing Sacna extract at 2 mg/mL was added at -1 to 0 h (adsorption) or from 0 to 4, 4 to 8, or 0 to 8 h (replication). The Sacna extract was separated by reversed-phase flash column chromatography using an Isolera Spektra system. The antiviral activity of each fraction was then determined using the focus formation reduction assay. The active fraction was analyzed using an LC20ADXR high performance liquid chromatography system equipped with a microTOF-QII quadrupole time-of-flight tandem mass spectrometer. RESULTS All examined extracts of Apiaceae plants showed anti-influenza activity. Sacna extract most strongly inhibited the replication of influenza viruses. Individual components of Sacna possess antiviral activities against the influenza A/PR/8/34 virus. Sacna was found to inhibit the multiplication of A (H1N1 and H3N2) types and B types of influenza viruses, including amantadine-resistant and oseltamivir-resistant viruses. Sacna also inhibited influenza infection during viral replication. However, Sacna did not inhibit influenza infection during cell adsorption and did not suppress hemagglutination inhibition or cell fusion. Further, our findings suggest that the antiviral compounds in Sacna include flavonoids (quercetin and luteolin) and other polyphenols (caffeic acid, hymecromone, and umbelliferone). Although several effective compounds in Sacna inhibit multiple steps of viral replication, caffeic acid, which was increased by heat treatment at the time of extraction, significantly inhibited only the late period of viral growth, similar to the Sacna extract, indicating that it is the major component responsible for the antiviral activity of Sacna. CONCLUSIONS Apiaceae plants possess antiviral activity. Caffeic acid is the major component responsible for the antiviral activity of Sacna. To our knowledge, this is the first report regarding the anti-influenza virus activity of Sacna. Overall, these results indicate that Sacna has potential as a novel treatment against influenza A and B viruses.
Collapse
Affiliation(s)
- Ryoko Kanazawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan
| | - Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan
| | - Yuka Horio
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan
| | - Hidenobu Sumitani
- Toyo Institute of Food Technology, Kawanishi, Hyogo, 666-0026, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|