1
|
Jin X, Wang H, Tian H, Hu Y, Peng N, Zhao S. Caproiciproducens converts lactic acid into caproic acid during Chinese strong-flavor Baijiu brewing. Int J Food Microbiol 2025; 426:110931. [PMID: 39405797 DOI: 10.1016/j.ijfoodmicro.2024.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Strong-flavor Baijiu, a type of Chinese liquor, is produced through anaerobic solid-state fermentation in a sealed mud pit. Ethyl caproate, the characteristic flavor compound of strong-flavor Baijiu, is influenced by caproic acid-producing bacteria in the pit mud. To better understand the formation of caproic acid, this study investigated the microbial composition and physicochemical parameters of pit mud from different layers (top, middle, and bottom) in Hubei and Sichuan provinces, China. The results revealed that Caproiciproducens plays a key role in caproic acid production by using lactic acid as a substrate, with its abundance increasing with the depth of the pit mud. A strain Caproiciproducens sp. R1, isolated from the pit mud, was shown to produce caproic acid from lactic acid within an initial pH range of 5.5-9.0 and lactic acid concentrations of 1 %-5 % (m/v). In addition, inoculation of strain R1 into Huangshui (a lactic acid-rich liquid from Baijiu production) resulted in 40.72 mM caproic acid production. This study demonstrates that Caproiciproducens plays a crucial role in caproic acid production from lactic acid during the fermentation process of strong-flavor Baijiu.
Collapse
Affiliation(s)
- Xiangyi Jin
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Wang
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huixue Tian
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongmei Hu
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Xie G, Huang D, Duan X, Liu J, Yuan S, Tao Y. Mechanisms for the Enhancement of Caproic Acid and H 2 Production in Ruminococcaceae Bacterium CPB6 by Fe(II) and Mg(II): Growth and Gene Transcription Analyses. Appl Biochem Biotechnol 2024; 196:8156-8167. [PMID: 38696095 DOI: 10.1007/s12010-024-04920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 12/14/2024]
Abstract
The production of caproic acid (CA) and hydrogen gas (H2) from organic wastewater is economically attractive. The Ruminococcaceae bacterium CPB6 has demonstrated potential for CA production from lactate-containing wastewater. However, our understanding of the effects of Fe2+ and Mg2+ on the growth and metabolism of strain CPB6 remains limited. Therefore, this study aims to investigate the impact of Fe2+ and Mg2+ on CA and H2 production, as well as on the expression of key genes involved in CA and H2 biosynthesis pathway. The results indicate that Fe2+ positively affects cell proliferation and H2 production while minimally impacting CA production. The highest levels of H2 production were achieved with the addition of 200 mg/L Fe2+. Conversely, Mg2+ significantly enhances CA and H2 production, with the optimal yield observed in a medium enriched with 300 mg/L Mg2+. Reverse transcription quantitative PCR (RT-qPCR) analysis reveals that Fe2+ promotes the expression of the hydrogenase gene, whereas Mg2+ has a negligible effect on hydrogenase expression. Notably, Fe2+ and Mg2+ inhibit the expression of key genes involved in CA synthesis. These findings suggest that Fe2+ enhances H2 production by boosting cell biomass and the expression of the hydrogenase gene, whereas Mg2+ improves CA and H2 production primarily by increasing cell biomass rather than influencing the expression of functional genes involved in CA biosynthesis.
Collapse
Affiliation(s)
- Guihong Xie
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Duo Huang
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Xuemei Duan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jun Liu
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Siqi Yuan
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, School of Biological Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China.
| | - Yong Tao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Jiannanchun Group Co. Ltd, Mianzhu, 618200, China.
| |
Collapse
|
3
|
Ouyang P, Kang D, You W, Shen X, Mo X, Liu Y. Pogostemon cablin essential oil affects anxiety- and depressive-like behaviors and the gut microbiota in chronic unpredictable mild stress model rats. Front Nutr 2024; 11:1303002. [PMID: 38419848 PMCID: PMC10899464 DOI: 10.3389/fnut.2024.1303002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The gut microbiota is thought to be an important factor that influences brain processes and behaviors through the gut-brain axis. Pogostemon cablin is used in traditional Chinese medicine (TCM) to treat gastrointestinal symptoms. Patchouli essential oil (PCO), the main active agent in P. cablin, is used in aromatherapy for stress relief. The aim of our study was to investigate the effects of orally administered PCO on anxiety- and depressive-like behaviors and the gut microbiota. We constructed a rat model of chronic unpredictable mild stress (CUMS) and explored the anxiolytic- and antidepressant-like effects of PCO using the open field test (OFT) and forced swim test (FST). Changes in the abundance of the gut microbiota, short-chain fatty acids (SCFAs), and other related molecules were assessed to determine the role of the gut microbiota. Our results showed that CUMS induced an anxiety-like phenotype in the OFT, which was reversed by PCO, and that PCO also significantly mitigated the depression-like behaviors caused by CUMS in the FST. Furthermore, we found that PCO increased the relative abundances of several probiotics, including Bacteroides and Blautia, and decreased the relative abundances of Ruminococcus_1 and Ruminococcus_2, which were increased by CUMS. Regarding SCFAs, the metabolites of the gut microbiota, PCO increased the concentration of propionic acid and decreased that of caproic acid. Finally, PCO restored the serotonin (5-hydroxytryptamine, 5-HT) level in the hippocampus, which had been decreased by CUMS. The results of this study suggested that PCO can improve stress-related anxiety- and depression-like behaviors and might exert its effects on the central nervous system through interactions with the gut microbiota.
Collapse
Affiliation(s)
- Puyue Ouyang
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Dali Kang
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
- College of Medical Technology, Ningbo College of Health Sciences, Ningbo, China
| | - Weijing You
- College of Medical Technology, Ningbo College of Health Sciences, Ningbo, China
| | - Xiaozhong Shen
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Xiaolu Mo
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| | - Yao Liu
- College of Chinese Materia Medica, Guangdong Food and Drug Vocational College, Guangzhou, China
| |
Collapse
|
4
|
Zhu H, Yu J, Fu Y, Mao X, Yang H. Two-Omics Probe on the Potential of Pseudomonas sp. GDMCC 1.1703 Under Phenol Stress. Curr Microbiol 2023; 81:21. [PMID: 38012331 DOI: 10.1007/s00284-023-03534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023]
Abstract
Pseudomonas sp. harbors genetic diversity and readily adapts to environmental challenges, conferring upon it the ability to remediate. It is important to genetically determine the effects of bacterial application. The two-omics integration approach may shed more light on Pseudomonas isolates, filling the knowledge gap between genetic potential and dynamic function. In the present study, a strain from the Xi River was isolated using benzene-selective enrichment medium and phylogenetically identified as Pseudomonas sp. GDMCC 1.1703 by 16S rRNA gene sequencing. Its phenol degradability was optimally assessed at a rate of 45.7% (by statistics P < 0.05) in 12 h with a 200 mg/L concentration. Genomics and transcriptomics analyses were successively used to identify the genes and pathways responsible for phenol degradation. At least 42 genes were genomically identified to be involved in xenobiotic biodegradation. The degradative genes clustered into operons were hypothesized to have evolved through horizontal gene transfer. On the basis of genomic authentication, transcriptome analysis dynamically revealed that phenol degradation and responsive mechanisms were both upregulated as defense between the Ctrl (control) and PS (phenol-stressed) groups. Quantitative reverse transcription-PCR not only validated the key genes identified via RNA sequencing but also consistently confirmed the realistic intracellular expression. The approach of omics integration, which is effective in exploring the potential of isolates, will hopefully become an established method for determining the remediation potential of a candidate for development.
Collapse
Affiliation(s)
- Hongfei Zhu
- College of Environmental Science and Engineering of Liaoning Technical University, 47 Zhonghua Road, Fuxin, 123000, Liaoning, China.
| | - Jiashuai Yu
- College of Environmental Science and Engineering of Liaoning Technical University, 47 Zhonghua Road, Fuxin, 123000, Liaoning, China
| | - Yuting Fu
- College of Environmental Science and Engineering of Liaoning Technical University, 47 Zhonghua Road, Fuxin, 123000, Liaoning, China
| | - Xiaoshuang Mao
- College of Environmental Science and Engineering of Liaoning Technical University, 47 Zhonghua Road, Fuxin, 123000, Liaoning, China
| | - Haimei Yang
- College of Environmental Science and Engineering of Liaoning Technical University, 47 Zhonghua Road, Fuxin, 123000, Liaoning, China
| |
Collapse
|
5
|
Such N, Schermann K, Pál L, Menyhárt L, Farkas V, Csitári G, Kiss B, Tewelde KG, Dublecz K. The Hatching Time of Broiler Chickens Modifies Not Only the Production Traits but Also the Early Bacteriota Development of the Ceca. Animals (Basel) 2023; 13:2712. [PMID: 37684976 PMCID: PMC10487082 DOI: 10.3390/ani13172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This trial was carried out to find out the effects of the parent flock and hatching time of broiler chickens on the production traits and bacteriota development of animals. Two sets of 730 hatching eggs were collected from two different parent flocks with ages of 25 and 50 weeks. In the hatchery, both groups were divided into two subgroups: those hatched during the first 10 and the subsequent 10 h of the hatching window. A feeding trial was carried out afterwards, using the four treatments in six replicate floor pens and feeding commercial starter, grower, and finisher diets that contained all the nutrients according to the breeder's recommendations. The day-old chickens of the older parent flock and those hatched later were heavier, and this advantage remained until the end of the production period. The different ages and origins of the parent flocks failed to modify the microbiological parameters of the chicken's ceca; however, the hatching time significantly influenced the different bacteriota diversity indices: the late-hatched chickens showed higher Bacteroidetes and lower Firmicutes and Actinobacteria abundances at day 11. These treatments resulted in differences in the main families, Ruminococcaceae, Lactobacillaceae, and Bacteroidaceae. These differences could not be found at day 39.
Collapse
Affiliation(s)
- Nikoletta Such
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Kornél Schermann
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - László Pál
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - László Menyhárt
- Institute of Technology, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary;
| | - Valéria Farkas
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Gábor Csitári
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Brigitta Kiss
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Kesete Goitom Tewelde
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| |
Collapse
|
6
|
Ho Ahn J, Hwan Jung K, Seok Lim E, Min Kim S, Ok Han S, Um Y. Recent advances in microbial production of medium chain fatty acid from renewable carbon resources: a comprehensive review. BIORESOURCE TECHNOLOGY 2023; 381:129147. [PMID: 37169199 DOI: 10.1016/j.biortech.2023.129147] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Microbial production of medium chain length fatty acids (MCFAs) from renewable resources is becoming increasingly important in establishing a sustainable and clean chemical industry. This review comprehensively summarizes current advances in microbial MCFA production from renewable resources. Detailed information is provided on two major MCFA production pathways using various renewable resources and other auxiliary pathways supporting MCFA production to help understand the fundamentals of bio-based MCFA production. In addition, conventional and well-studied MCFA producers are classified into two categories, natural and synthetic producers, and their characteristics on MCFA production are outlined. Moreover, various engineering strategies employed to achieve the highest MCFAs production up to date are showcased together with key enzymes suggested for MCFA overproduction. Finally, future challenges and perspectives are discussed towards more efficient production of bio-based MCFA production.
Collapse
Affiliation(s)
- Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kweon Hwan Jung
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Revealing the Characteristics of Glucose- and Lactate-Based Chain Elongation for Caproate Production by Caproicibacterium lactatifermentans through Transcriptomic, Bioenergetic, and Regulatory Analyses. mSystems 2022; 7:e0053422. [PMID: 36073803 PMCID: PMC9600882 DOI: 10.1128/msystems.00534-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Caproate, an important medium-chain fatty acid, can only be synthesized by limited bacterial species by using ethanol, lactate, or certain saccharides. Caproicibacterium lactatifermentans is a promising caproate producer due to its glucose and lactate utilization capabilities. However, the global cellular responses of this bacterium to different carbon sources were not well understood. Here, C. lactatifermentans showed robust growth on glucose but more active caproate synthesis on lactate. Comparative transcriptome revealed that the genes involved in reverse β-oxidation for caproate synthesis and V-type ATPase-dependent ATP generation were upregulated under lactate condition, while several genes responsible for biomass synthesis were upregulated under glucose condition. Based on metabolic pathway reconstructions and bioenergetics analysis, the biomass accumulation on glucose condition may be supported by sufficient supplies of ATP and metabolite intermediates via glycolysis. In contrast, the ATP yield per glucose equivalent from lactate conversion into caproate was only 20% of that from glucose. Thus, the upregulation of the reverse β-oxidation genes may be essential for cell survival under lactate conditions. Furthermore, the remarkably decreased lactate utilization was observed after glucose acclimatization, indicating the negative modulation of lactate utilization by glucose metabolism. Based on the cotranscription of the lactate utilization repressor gene lldR with sugar-specific PTS genes and the opposite expression patterns of lldR and lactate utilization genes, a novel regulatory mechanism of glucose-repressed lactate utilization mediated via lldR was proposed. The results of this study suggested the molecular mechanism underlying differential physiologic and metabolic characteristics of C. lactatifermentans grown on glucose and lactate. IMPORTANCE Caproicibacterium lactatifermentans is a unique and robust caproate-producing bacterium in the family Oscillospiraceae due to its lactate utilization capability, whereas its close relatives such as Caproicibacterium amylolyticum, Caproiciproducens galactitolivorans, and Caproicibacter fermentans cannot utilize lactate but produce lactate as the main fermentation end product. Moreover, C. lactatifermentans can also utilize several saccharides such as glucose and maltose. Although the metabolic versatility of the bacterium makes it to be a promising industrial caproate producer, the cellular responses of C. lactatifermentans to different carbon sources were unknown. Here, the molecular mechanisms of biomass synthesis supported by glucose utilization and the cell survival supported by lactate utilization were revealed. A novel insight into the regulatory machinery in which glucose negatively regulates lactate utilization was proposed. This study provides a valuable basis to control and optimize caproate production, which will contribute to achieving a circular economy and environmental sustainability.
Collapse
|
8
|
Alteration in Gut Microbiota Associated with Zinc Deficiency in School-Age Children. Nutrients 2022; 14:nu14142895. [PMID: 35889856 PMCID: PMC9319427 DOI: 10.3390/nu14142895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Zinc deficiency could lead to a dynamic variation in gut microbial composition and function in animals. However, how zinc deficiency affects the gut microbiome in school-age children remains unclear. The purpose of this study was to profile the dynamic shifts in the gut microbiome of school-age children with zinc deficiency, and to determine whether such shifts are associated with dietary intake. A dietary survey, anthropometric measurements, and serum tests were performed on 177 school-age children, and 67 children were selected to explore the gut microbial community using amplicon sequencing. School-age children suffered from poor dietary diversity and insufficient food and nutrient intake, and 32% of them were zinc deficient. The inflammatory cytokines significantly increased in the zinc deficiency (ZD) group compared to that in the control (CK) group (p < 0.05). There was no difference in beta diversity, while the Shannon index was much higher in the ZD group (p < 0.05). At the genus level, Coprobacter, Acetivibrio, Paraprevotella, and Clostridium_XI were more abundant in the ZD group (p < 0.05). A functional predictive analysis showed that the metabolism of xenobiotics by cytochrome P450 was significantly depleted in the ZD group (p < 0.05). In conclusion, gut microbial diversity was affected by zinc deficiency with some specific bacteria highlighted in the ZD group, which may be used as biomarkers for further clinical diagnosis of zinc deficiency.
Collapse
|
9
|
Zhou W, Xia Y, Zhao Y, Wang Y, Wu Z, Suyama T, Zhang W. Study on the Effect of Key Genes ME2 and adhE during Luzhou-flavor Baijiu Brewing. Foods 2022; 11:foods11050700. [PMID: 35267332 PMCID: PMC8909148 DOI: 10.3390/foods11050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Luzhou-flavor baijiu (LFB) is brewed by the combined action of various microorganisms, and its flavor is affected by the microbial community and the genes they express, but which genes are the key ones during LFB brewing is less clear. Based on our previous studies the genes ME2 and adhE were identified as key genes, but which role they play was also unknown. In this study functional microorganisms were screened based on the key genes ME2 and adhE, and they were identified to be Rummeliibacillus suwonensis, Clostridium tyrobutyricum and Lactobacillus buchneri. Then simulated fermentation experiments were carried out with the functional microorganisms, and during the fermentation process expression of the key genes and the amounts of the main flavors were detected to analyze the role of the key genes. The results showed that the key gene ME2 was significantly positively correlated with the contents of the main acids, however the key gene adhE and the formation of the main esters in the LFB brewing process was a significant positive correlation. This study verified the two key genes ME2 and adhE complement each other in the LFB brewing process, playing an important role in promoting the formation of flavor substances, and are very beneficial to improve the quality of LFB.
Collapse
Affiliation(s)
- Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
- Department of Light Industry Engineering, Sichuan Technology and Business College, Dujiangyan 611800, China
| | - Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
| | - Taikei Suyama
- National Institute of Technology, Akashi College, Akashi 674-8501, Japan;
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (W.Z.); (Y.X.); (Y.Z.); (Y.W.); (Z.W.)
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan 620860, China
- Correspondence: ; Tel.: +86-028-8540-1785; Fax: +86-028-3760-0278
| |
Collapse
|