1
|
Vasylyshyn R, Dmytruk O, Sybirnyy A, Ruchała J. Engineering of Ogataea polymorpha strains with ability for high-temperature alcoholic fermentation of cellobiose. FEMS Yeast Res 2024; 24:foae007. [PMID: 38400543 PMCID: PMC10929770 DOI: 10.1093/femsyr/foae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Successful conversion of cellulosic biomass into biofuels requires organisms capable of efficiently utilizing xylose as well as cellodextrins and glucose. Ogataea (Hansenula) polymorpha is the natural xylose-metabolizing organism and is one of the most thermotolerant yeasts known, with a maximum growth temperature above 50°C. Cellobiose-fermenting strains, derivatives of an improved ethanol producer from xylose O. polymorpha BEP/cat8∆, were constructed in this work by the introduction of heterologous genes encoding cellodextrin transporters (CDTs) and intracellular enzymes (β-glucosidase or cellobiose phosphorylase) that hydrolyze cellobiose. For this purpose, the genes gh1-1 of β-glucosidase, CDT-1m and CDT-2m of cellodextrin transporters from Neurospora crassa and the CBP gene coding for cellobiose phosphorylase from Saccharophagus degradans, were successfully expressed in O. polymorpha. Through metabolic engineering and mutagenesis, strains BEP/cat8∆/gh1-1/CDT-1m and BEP/cat8∆/CBP-1/CDT-2mAM were developed, showing improved parameters for high-temperature alcoholic fermentation of cellobiose. The study highlights the need for further optimization to enhance ethanol yields and elucidate cellobiose metabolism intricacies in O. polymorpha yeast. This is the first report of the successful development of stable methylotrophic thermotolerant strains of O. polymorpha capable of coutilizing cellobiose, glucose, and xylose under high-temperature alcoholic fermentation conditions at 45°C.
Collapse
Affiliation(s)
- Roksolana Vasylyshyn
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Olena Dmytruk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Andriy Sybirnyy
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Justyna Ruchała
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Cwiklinskiej 2D Street, 35-601 Rzeszow, Poland
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAN of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
2
|
Zhang C, Chen H, Zhu Y, Zhang Y, Li X, Wang F. Saccharomyces cerevisiae cell surface display technology: Strategies for improvement and applications. Front Bioeng Biotechnol 2022; 10:1056804. [PMID: 36568309 PMCID: PMC9767963 DOI: 10.3389/fbioe.2022.1056804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial cell surface display technology provides a powerful platform for engineering proteins/peptides with enhanced properties. Compared to the classical intracellular and extracellular expression (secretion) systems, this technology avoids enzyme purification, substrate transport processes, and is an effective solution to enzyme instability. Saccharomyces cerevisiae is well suited to cell surface display as a common cell factory for the production of various fuels and chemicals, with the advantages of large cell size, being a Generally Regarded As Safe (GRAS) organism, and post-translational processing of secreted proteins. In this review, we describe various strategies for constructing modified S. cerevisiae using cell surface display technology and outline various applications of this technology in industrial processes, such as biofuels and chemical products, environmental pollution treatment, and immunization processes. The approaches for enhancing the efficiency of cell surface display are also discussed.
Collapse
Affiliation(s)
- Chenmeng Zhang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Hongyu Chen
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Yiping Zhu
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Yu Zhang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China,*Correspondence: Fei Wang,
| |
Collapse
|