1
|
Autosomal dominant Emery-Dreifuss muscular dystrophy caused by a mutation in the lamin A/C gene identified by exome sequencing: a case report. BMC Pediatr 2022; 22:601. [PMID: 36253810 PMCID: PMC9575219 DOI: 10.1186/s12887-022-03662-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background Emery-Dreifuss Muscular Dystrophy (EDMD) is an uncommon genetic disease among the group of muscular dystrophies. EDMD is clinically heterogeneous and resembles other muscular dystrophies. Mutation of the lamin A/C (LMNA) gene, which causes EDMD, also causes many other diseases. There is inter and intrafamilial variability in clinical presentations. Precise diagnosis can help in patient surveillance, especially before they present with cardiac problems. Hence, this paper shows how a molecular work-out by next-generation sequencing can help this group of disorders. Case presentation A 2-year-10-month-old Javanese boy presented to our clinic with weakness in lower limbs and difficulty climbing stairs. The clinical features of the boy were Gower's sign, waddling gait and high CK level. His father presented with elbow contractures and heels, toe walking and weakness of limbs, pelvic, and peroneus muscles. Exome sequencing on this patient detected a pathogenic variant in the LMNA gene (NM_170707: c.C1357T: NP_733821: p.Arg453Trp) that has been reported to cause Autosomal Dominant Emery-Dreifuss muscular dystrophy. Further examination showed total atrioventricular block and atrial fibrillation in the father. Conclusion EDMD is a rare disabling muscular disease that poses a diagnostic challenge. Family history work-up and thorough neuromuscular physical examinations are needed. Early diagnosis is essential to recognize orthopaedic and cardiac complications, improving the clinical management and prognosis of the disease. Exome sequencing could successfully determine pathogenic variants to provide a conclusive diagnosis.
Collapse
|
2
|
Cardiac Complications of Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Jędrzejowska M, Potulska-Chromik A, Gos M, Gambin T, Dębek E, Rosiak E, Stępień A, Szymańczak R, Wojtaś B, Gielniewski B, Ciara E, Sobczyńska A, Chrzanowska K, Kostera-Pruszczyk A, Madej-Pilarczyk A. Floppy infant syndrome as a first manifestation of LMNA-related congenital muscular dystrophy. Eur J Paediatr Neurol 2021; 32:115-121. [PMID: 33940562 DOI: 10.1016/j.ejpn.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
LMNA-related congenital muscular dystrophy (L-CMD) is the most severe phenotypic form of skeletal muscle laminopathies. This paper reports clinical presentation of the disease in 15 Polish patients from 13 families with genetically confirmed skeletal muscle laminopathy. In all these patients floppy infant syndrome was the first manifestation of the disease. The genetic diagnosis was established by next generation sequencing (targeted panel or exome; 11 patients) or classic Sanger sequencing (4 patients). In addition to known pathogenic LMNA variants: c.116A > G (p.Asn39Ser), c.745C > T (p.Arg249Trp), c.746G > A (p.Arg249Gln), c.1072G > A (p.Glu358Lys), c.1147G > A (p.Glu383Lys), c.1163G > C (p.Arg388Pro), c.1357C > T (p.Arg453Trp), c.1583C > G (p.Thr528Arg), we have identified three novel ones: c.121C > G (p.Arg41Gly), c.1127A > G (p.Tyr376Cys) and c.1160T > C (p.Leu387Pro). Eleven patients had de novo mutations, 4 - familial. In one family we observed intrafamilial variability of clinical course: severe L-CMD in the male proband, intermediate form in his sister and asymptomatic in their mother. One asymptomatic father had somatic mosaicism. L-CMD should be suspected in children with hypotonia in infancy and delayed motor development, who have poor head control, severe hyperlordosis and unstable and awkward gait. Serum creatine kinase may be high (~1000IU/l). Progression of muscle weakness is fast, leading to early immobilization. In some patients with L-CMD joint contractures can develop with time. MRI shows that the most frequently affected muscles are the serratus anterior, lumbar paraspinal, gluteus, vastus, adductor magnus, hamstrings, medial head of gastrocnemius and soleus. Ultra-rare laminopathies can be a relatively common cause of generalized hypotonia in children. Introduction of wide genome sequencing methods was a breakthrough in diagnostics of diseases with great clinical and genetic variability and allowed approach "from genotype do phenotype". However target sequencing of LMNA gene could be considered in selected patients with clinical picture suggestive for laminopathy.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Rare Diseases Research Platform, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Monika Gos
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Emilia Dębek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Edyta Rosiak
- 2nd Department of Radiology, Medical University of Warsaw, Poland
| | - Agnieszka Stępień
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartłomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | |
Collapse
|
4
|
Heller SA, Shih R, Kalra R, Kang PB. Emery-Dreifuss muscular dystrophy. Muscle Nerve 2019; 61:436-448. [PMID: 31840275 PMCID: PMC7154529 DOI: 10.1002/mus.26782] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a rare muscular dystrophy, but is particularly important to diagnose due to frequent life-threatening cardiac complications. EDMD classically presents with muscle weakness, early contractures, cardiac conduction abnormalities and cardiomyopathy, although the presence and severity of these manifestations vary by subtype and individual. Associated genes include EMD, LMNA, SYNE1, SYNE2, FHL1, TMEM43, SUN1, SUN2, and TTN, encoding emerin, lamin A/C, nesprin-1, nesprin-2, FHL1, LUMA, SUN1, SUN2, and titin, respectively. The Online Mendelian Inheritance in Man database recognizes subtypes 1 through 7, which captures most but not all of the associated genes. Genetic diagnosis is essential whenever available, but traditional diagnostic tools can help steer the evaluation toward EDMD and assist with interpretation of equivocal genetic test results. Management is primarily supportive, but it is important to monitor patients closely, especially for potential cardiac complications. There is a high potential for progress in the treatment of EDMD in the coming years.
Collapse
Affiliation(s)
- Scott A Heller
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Renata Shih
- Congenital Heart Center, University of Florida College of Medicine, Gainesville, Florida
| | - Raghav Kalra
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida
| | - Peter B Kang
- Department of Neurology, University of Florida College of Medicine, Gainesville, Florida.,Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
6
|
Perez Maturo J, Vega P, Medina N, Salinas V, Pauni M, Agosta G, Muntadas Rausei J, Kauffman M. Inferring parental gonadal mosaicism in
LMNA
‐associated muscular dystrophy by ultra‐deep next generation sequencing: A sensitive approach providing valuable information for genetic counseling. Am J Med Genet A 2019; 179:1074-1076. [DOI: 10.1002/ajmg.a.61135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Josefina Perez Maturo
- Consultorio de Neurogenética, Centro Universitario de Neurología y División NeurologíaHospital J.M. Ramos Mejía, Facultad de Medicina, UBA Buenos Aires Argentina
- Programa de Medicina de Precisión y Genómica Clínica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias BiomédicasUniversidad Austral‐CONICET Buenos Aires Argentina
| | - Patricia Vega
- Consultorio de Neurogenética, Centro Universitario de Neurología y División NeurologíaHospital J.M. Ramos Mejía, Facultad de Medicina, UBA Buenos Aires Argentina
- Servicio de Neurología infantilHospital Italiano Buenos Aires Argentina
| | - Nancy Medina
- Consultorio de Neurogenética, Centro Universitario de Neurología y División NeurologíaHospital J.M. Ramos Mejía, Facultad de Medicina, UBA Buenos Aires Argentina
| | - Valeria Salinas
- Consultorio de Neurogenética, Centro Universitario de Neurología y División NeurologíaHospital J.M. Ramos Mejía, Facultad de Medicina, UBA Buenos Aires Argentina
- Programa de Medicina de Precisión y Genómica Clínica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias BiomédicasUniversidad Austral‐CONICET Buenos Aires Argentina
| | - Micaela Pauni
- Servicio de Neurología infantilHospital Italiano Buenos Aires Argentina
| | - Guillermo Agosta
- Servicio de Neurología infantilHospital Italiano Buenos Aires Argentina
| | | | - Marcelo Kauffman
- Consultorio de Neurogenética, Centro Universitario de Neurología y División NeurologíaHospital J.M. Ramos Mejía, Facultad de Medicina, UBA Buenos Aires Argentina
- Programa de Medicina de Precisión y Genómica Clínica, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias BiomédicasUniversidad Austral‐CONICET Buenos Aires Argentina
| |
Collapse
|