1
|
Process Optimisation of Low Silica Zeolite Synthesis from Spodumene Leachate Residue. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Zhao X, Zhao H, Huang X, Wang L, Liu F, Hu X, Li J, Zhang G, Ji P. Effect and mechanisms of synthesis conditions on the cadmium adsorption capacity of modified fly ash. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112550. [PMID: 34340151 DOI: 10.1016/j.ecoenv.2021.112550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, modified coal fly ash (NMFA) was prepared by sodium hydroxide (NaOH) with low-temperature hydrothermal method. The differences of the ash to alkali mass ratio (5:3, 5:4, 5:5, 5:6), calcination temperature (100 ℃, 200 ℃, 300 ℃), and calcination time (1 h, 3 h, 5 h) were investigated. The adsorption experiments obtained the optimal result with the ash to base ratio of 5:5, calcination temperature of 200 ℃, and calcination time of 3 h, adsorbing 90.27 mg/g of Cd2+. The characterization results (SEM-EDS, FTIR, XRD, and XPS) also confirmed the effective adsorption of Cd2+ by NMFA. The functional groups of Si-O, Al-O, and Fe-O played an important role in Cd2+ removal. Meanwhile, the influences of dosage, different pH, and co-existing cations were also investigated. Quasi-secondary adsorption kinetics and Langmuir isotherm model were also referred to the Cd2+ adsorption by NMFA. Therefore, the good adsorption of NMFA-3 on Cd2+ provided new ideas for the safe utilization of fly ash and heavy metal purification in wastewater.
Collapse
Affiliation(s)
- Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hanghang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jingtian Li
- The first geological and Mineral Survey Institute of Henan Bureau of Geology and mineral exploration and development, Luoyang 471023, China
| | - Guibin Zhang
- Suzhou Suchuang Environmental Protection Technology Co., Ltd, 215100, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Hartati, Firda PBD, Bahruji H, Bakar MB. Review on heterogeneous catalysts for the synthesis of perfumery chemicals via isomerization, acetalization and hydrogenation. FLAVOUR FRAG J 2021. [DOI: 10.1002/ffj.3671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hartati
- Department of Chemistry Faculty of Science and Technology Universitas Airlangga Surabaya Indonesia
| | - Putri Bintang Dea Firda
- Department of Chemistry Faculty of Science and Technology Universitas Airlangga Surabaya Indonesia
| | - Hasliza Bahruji
- Centre for Advanced Material and Energy Sciences Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Mohd Bakri Bakar
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia Johor Malaysia
| |
Collapse
|
4
|
Zhao H, Huang X, Zhang G, Li J, He Z, Ji P, Zhao J. Possibility of removing cadmium pollution from the environment using a newly synthesized material coal fly ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4997-5008. [PMID: 31845260 DOI: 10.1007/s11356-019-07163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Coal fly ash (FA) is a solid waste produced in coal combustion. This study focused on the removal of Cd2+ from wastewater by a newly synthesized adsorbent material, the low-temperature and sodium hydroxide-modified fly ash (SHM-FA). The SEM and BET analyses of SHM-FA demonstrated that the adsorbent was porous and had a huge specific surface area. The XRF, XRD, FTIR and TGA characterization showed that SHM-FA has an amorphous structure and the Si-O and Al-O in the fly ash dissolved into the solution, which improved the adsorption capacity of Cd. The results indicated that SHM-FA has desired adsorption performance. The adsorption performance was significantly affected by the dosage, starting pH, Cd2+ initial concentrations, and temperature, as well as adsorption time. In the optimal conditions, the removal efficiency and adsorption capacity of Cd2+ by SHM-FA were 95.76% and 31.79 mg g-1, respectively. The experiment provided clearly explained adsorption kinetics and isotherms. And the results confirmed that the adsorption behavior was well described by the pseudo-second-order kinetic and Langmuir isotherm model, which means that the adsorption of Cd2+ was controlled by SHM-FA through surface reaction and external diffusion process. In addition, the recycling of SHM-FA for reuse after Cd2+ adsorption showed high removal efficiency up to six times of use. Therefore, it can be concluded that SHM-FA is a low-cost adsorbent for Cd2+ removal from wastewater.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin, 300191, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Guibin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jingtian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China.
| | - Junzhe Zhao
- Shenzhen ImMidas Environmental Technology Co., Ltd, Room 210, Chuangke Compound, 1018# Chaguang Road, Nanshan District, Shenzhen, 518000, China
| |
Collapse
|