Guowei S, Yang X, Li C, Huang D, Lei Z, He C. Comprehensive optimization of composite cryoprotectant for
Saccharomyces boulardii during freeze-drying and evaluation of its storage stability.
Prep Biochem Biotechnol 2019;
49:846-857. [PMID:
31244369 DOI:
10.1080/10826068.2019.1630649]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Saccharomyces boulardii (S. boulardii) is widely adopted in the diarrhea treatment for humans or livestock, so guaranteeing the survival rate of S. boulardii is the critical issue during freeze-drying process. In this study, the survival rate of S. boulardii with composite cryoprotectants during freeze-drying procedure and the subsequent storage were investigated. With the aid of response surface method, the composite cryoprotectants were comprehensively optimized to be lactose of 21.24%, trehalose of 22.00%, and sodium glutamate of 4.00%, contributing to the supreme survival rate of S. boulardii of 64.22 ± 1.35% with the viable cell number of 9.5 ± 0.07 × 109 CFU/g, which was very close to the expected rate of 65.55% with a number of 9.6 × 109 CFU/g. The accelerated storage test demonstrated that the inactivation rate constant of the freeze-dried S. boulardii powder was k-18 = 8.04 × 10-6. In addition, the freeze-dried goat milk powder results exhibited that the inactivation rate constants were k4 = 4.48 × 10-4 and k25 = 9.72 × 10-3 under 4 and 25 °C, respectively. This work provides a composite cryoprotectant formulation that has a good protective effect for the probiotic S. boulardii during freeze-drying process, possessing the potential application prospect in food, medicine, and even feed industry.
Collapse