1
|
Lee JU, Hong J, Park E, Baek J, Choi YM, Chin SS, Jeon KJ, Kim WJ, Park SW, Jeong SH. Gene expression changes in mouse lung induced by subacute inhalation of PM 10-rich particulate matter. Inhal Toxicol 2024:1-11. [PMID: 39388309 DOI: 10.1080/08958378.2024.2410736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Particulate matter (PM) air pollution is associated with an increased incidence of lung diseases, but the underlying mechanisms have not been fully elucidated. In this study, a mouse model of subacute lung inflammation was employed to investigate the cellular responses and gene expression changes induced by exposure to natural ambient air pollution. METHODS C57BL/6J mice were exposed to road dust (primarily PM10) at 150 µg/m³ for 21 days (8 h/day) through a nose-only inhalation exposure system. Lung tissues were analyzed for the expression of proinflammatory signaling, oxidative stress, and fibrosis markers. RNA-sequencing analysis was conducted to identify differentially expressed genes (DEGs). A gene ontology over-representation analysis was performed to identify the altered genetic pathways. RESULTS Elevated levels of proinflammatory cytokines, including IL-1β, IL-6, and TNF-α, and an increase in phosphorylated MAPK were determined in the road dust exposure group compared to the control group. Histopathological examinations revealed more severe lung inflammation and damage in the exposed mice, including fibrosis and bronchiolar hyperplasia. Gene expression profiling identified 108 DEGs, with decreases in most except genes such as Krt15 and Reg3g. The protein-protein interaction network analysis together with text-mining identified 18 key hub genes, associated with fatty acid oxidation, lipid metabolism, and peroxisomes. CONCLUSION This study identified key genes, signaling pathways, and cellular responses in mouse lung affected by road dust exposure. These findings contribute to a deeper understanding of the transcriptional and cellular responses induced by subacute exposure to the PM in road dust.
Collapse
Affiliation(s)
- Jong-Uk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Jisu Hong
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Eunji Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Junyeong Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Ye Min Choi
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Su Sie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-Do, South Korea
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, Incheon, South Korea
| | - Woo-Jin Kim
- Department of Internal Medicine Environmental Health Center, Kangwon National University, Chuncheon-si, Gangwon-do, South Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-Do, South Korea
| | - Sung Hwan Jeong
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University, Gil Medical Center, Incheon, South Korea
| |
Collapse
|
2
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
3
|
Park Y, Lee I, Lee MJ, Park H, Jung GS, Kim N, Im W, Kim H, Lee JH, Cho S, Choi YS. Particulate matter exposure induces adverse effects on endometrium and fertility via aberrant inflammatory and apoptotic pathways in vitro and in vivo. CHEMOSPHERE 2024; 361:142466. [PMID: 38810796 DOI: 10.1016/j.chemosphere.2024.142466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study aimed to evaluate the adverse effects of particulate matter (PM) exposure on endometrial cells and fertility and to identify possible underlying mechanisms. Thirteen women (aged 15-52 years) were included in this study. Enrolled patients underwent laparoscopic surgery at Gangnam Severance Hospital between 1 January and 31 December 2021. For in vivo experiments, 36 female and nine male C57BL/6 mice were randomly divided into control(vehicle), low-dose(10 mg/kg/d), and high-dose exposure groups(20 mg/kg/d). PM was inhaled nasally for four weeks and natural mating was performed. NIST® SRM® 1648a was used for PM exposure. qRT-PCR, western blotting and Masson's trichrome staining were performed. PM treatment in human endometrial stromal cells induced inflammation with significant upregulation of IL-1β, p-NF-kB, and p-c-Jun compared to those of controls. Additionally, PM treatment significantly increased apoptosis in human endometrial stromal cells by downregulating p-AKT and upregulating p-p53/p53, Cas-3, BAX/Bcl-2, p-AMPK, and p-ERK. After PM treatment, the relative expression of IL-1β, IL-6, TNF-α, p-NF-κB, p-c-Jun, and p-Nrf2/Nrf2 significantly increased in murine endometrium compared to those of the controls. Expression of apoptotic proteins p53, p27, and Cas-3, was also significantly elevated in murine endometrium of the PM exposure group compared to that of the controls. A significant increase in expression of procollagen Ⅰ, and Masson's trichrome staining scores in the murine endometrium was noted after PM treatment. PM treatment significantly decreased ERα expression. After natural mating, all 3 female mice in the control group gave birth to 25 offspring (mean 8.1), whereas in the low-dose PM treatment group, two of three female mice gave birth to nine offspring (mean 4.5). No pregnant mice or offspring was present in the high-dose PM treatment group. PM exposure induces adverse effects on the endometrium through aberrant activation of inflammatory and apoptotic pathways and is associated with detrimental effects on murine fertility.
Collapse
Affiliation(s)
- Yunjeong Park
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, 08308, Republic of Korea
| | - Inha Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Jung Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyemin Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea
| | - Gee Soo Jung
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea
| | - Nara Kim
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea
| | - Wooseok Im
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Heeyon Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea; Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Young Sik Choi
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Wu T, Liu B, Wei Y, Li Z. TGF-β Regulates m 6A RNA Methylation after PM 2.5 Exposure. TOXICS 2023; 11:1026. [PMID: 38133427 PMCID: PMC10747615 DOI: 10.3390/toxics11121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
PM2.5 exposure leads to a variety of respiratory diseases, including pulmonary fibrosis, metastatic lung cancer, etc. Exposure to PM2.5 results in the alteration of epigenetic modification. M6A RNA methylation is an essential epigenetic modification that regulates gene expression at the post-transcriptional level. Our previous study found that PM2.5 exposure up-regulated m6A RNA methylation and TGF-β expression level in the lung, but the mechanisms and pathways of PM2.5 regulation of m6A RNA methylation are still unclear. Moreover, a previous study reported that the TGF-β signal pathway could regulate m6A RNA methylation. Based on this evidence, we investigate the role of the TGF-β signaling pathway in PM2.5-induced m6A RNA methylation with the A549 cell line. Our results showed that PM2.5 could induce upregulation of m6A RNA methylation, accompanied by increased expression of TGF-β, Smad3, methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14). Furthermore, these alterations induced by PM2.5 exposure could be reversed by treatment with TGF-β inhibitor. Therefore, we speculated that the TGF-β signal pathway plays an indispensable role in regulating m6A RNA methylation after PM2.5 exposure. Our study demonstrates that PM2.5 exposure influences m6A RNA methylation by inducing the alteration of the TGF-β signal pathway, which could be an essential mechanism for lung-related diseases induced by PM2.5 exposure.
Collapse
Affiliation(s)
| | | | | | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.W.); (B.L.); (Y.W.)
| |
Collapse
|
5
|
Choi YJ, Han H, Lee JH, Lee J, Kim CY, Byun MK, Cho JH, Park HJ. Particulate matter 10-induced airway inflammation and fibrosis can be regulated by chitinase-1 suppression. Respir Res 2023; 24:85. [PMID: 36934237 PMCID: PMC10024831 DOI: 10.1186/s12931-023-02392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Particulate matter10 (PM10) can induce airway inflammation and fibrosis. Recently, chitinase-1 has been shown to play key roles in inflammation and fibrosis. We aimed to investigate the effects of chitinase-1 inhibitor in PM10-treated murine mice models. METHODS In female BALB/c mice, PM10 was intranasally administered six times over 3 weeks, and ovalbumin (OVA) was intraperitoneally injected and then intranasally administered. Chitinase-1 inhibitor (CPX) 6 times over 3 weeks or dexamethasone 3 times in the last week were intraperitoneally administered. Two days after the last challenges, mice were euthanized. Messenger RNA sequencing using lung homogenates was conducted to evaluate signaling pathways. RESULTS PM10 and/or OVA-induced airway inflammation and fibrosis murine models were established. CPX and dexamethasone ameliorated PM10 or PM10/OVA-induced airway hyper-responsiveness, airway inflammation, and fibrosis. CPX and dexamethasone also reduced levels of various inflammatory markers in lung homogenates. PM10 and OVA also induced changes in mRNA expression across an extreme range of genes. CPX and dexamethasone decreased levels of mRNA expression especially associated with inflammation and immune regulation. They also significantly regulated asthma and asthma-related pathways, including the JACK-STAT signaling pathway. CONCLUSIONS Chitinase-1 suppression by CPX can regulate PM10- and OVA-induced and aggravated airway inflammation and fibrosis via an asthma-related signaling pathway.
Collapse
Affiliation(s)
- Yong Jun Choi
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Heejae Han
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jae-Hyun Lee
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jaeuk Lee
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Chi Young Kim
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Min Kwang Byun
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Jae Hwa Cho
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| | - Hye Jung Park
- grid.459553.b0000 0004 0647 8021Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Gangnam Severance Hospital, 211, Eonju-Ro, Gangnam-Gu, Seoul, 06273 Korea
| |
Collapse
|
6
|
Somayajulu M, McClellan SA, Wright R, Pitchaikannu A, Croniger B, Zhang K, Hazlett LD. Airborne Exposure of the Cornea to PM 10 Induces Oxidative Stress and Disrupts Nrf2 Mediated Anti-Oxidant Defenses. Int J Mol Sci 2023; 24:3911. [PMID: 36835320 PMCID: PMC9965133 DOI: 10.3390/ijms24043911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The purpose of this study is to test the effects of whole-body animal exposure to airborne particulate matter (PM) with an aerodynamic diameter of <10 μm (PM10) in the mouse cornea and in vitro. C57BL/6 mice were exposed to control or 500 µg/m3 PM10 for 2 weeks. In vivo, reduced glutathione (GSH) and malondialdehyde (MDA) were analyzed. RT-PCR and ELISA evaluated levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inflammatory markers. SKQ1, a novel mitochondrial antioxidant, was applied topically and GSH, MDA and Nrf2 levels were tested. In vitro, cells were treated with PM10 ± SKQ1 and cell viability, MDA, mitochondrial ROS, ATP and Nrf2 protein were tested. In vivo, PM10 vs. control exposure significantly reduced GSH, corneal thickness and increased MDA levels. PM10-exposed corneas showed significantly higher mRNA levels for downstream targets, pro-inflammatory molecules and reduced Nrf2 protein. In PM10-exposed corneas, SKQ1 restored GSH and Nrf2 levels and lowered MDA. In vitro, PM10 reduced cell viability, Nrf2 protein, and ATP, and increased MDA, and mitochondrial ROS; while SKQ1 reversed these effects. Whole-body PM10 exposure triggers oxidative stress, disrupting the Nrf2 pathway. SKQ1 reverses these deleterious effects in vivo and in vitro, suggesting applicability to humans.
Collapse
Affiliation(s)
- Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Sharon A. McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Robert Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Bridget Croniger
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Lee MK, Kim HD, Lee SH, Lee JH. Curcumin Ameliorates Particulate Matter-Induced Pulmonary Injury through Bimodal Regulation of Macrophage Inflammation via NF-κB and Nrf2. Int J Mol Sci 2023; 24:ijms24031858. [PMID: 36768180 PMCID: PMC9915121 DOI: 10.3390/ijms24031858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The direct effects of particulate matter (PM) on lung injury and its specific molecular mechanisms are unclear. However, experimental evidence has shown that oxidative stress-mediated inflammation in macrophages is the main pathological outcome of PM exposure. Curcumin has been reported to protect organs against the disturbance of homeostasis caused by various toxic agents through anti-inflammatory and antioxidative effects. However, the protective action of curcumin against PM-induced pulmonary inflammation and the underlying mechanism have not been thoroughly investigated. In this study, we established a PM-induced pulmonary inflammation mouse model using the intratracheal instillation method to investigate the protective ability of curcumin against PM-induced pulmonary inflammation. Compared to the mice treated with PM only, the curcumin-treated mice showed alleviated alveolar damage, decreased immune cell infiltration, and reduced proinflammatory cytokine production in both lung tissue and BALF. To evaluate the underlying mechanism, the mouse macrophage cell line RAW264.7 was used. Pretreatment with curcumin prevented the production of PM-induced proinflammatory cytokines by deactivating NF-κB through the suppression of MAPK signaling pathways. Furthermore, curcumin appears to attenuate PM-induced oxidative stress through the activation of Nrf2 and downstream antioxidant signaling. Our findings demonstrate that curcumin protects against PM-induced lung injury by suppressing oxidative stress and inflammatory activation in macrophages.
Collapse
Affiliation(s)
- Min Kook Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
- BK21 FOUR Research Group for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
| | - Hyo Dam Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
- BK21 FOUR Research Group for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
| | - Suk Hee Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
- BK21 FOUR Research Group for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Correspondence: (S.H.L.); (J.H.L.); Tel.: +82-044-860-1764 (J.H.L.)
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
- BK21 FOUR Research Group for Omics-Based Bio-Health in Food Industry, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Correspondence: (S.H.L.); (J.H.L.); Tel.: +82-044-860-1764 (J.H.L.)
| |
Collapse
|
8
|
Liu Q, Niu X, Li Y, Zhang JR, Zhu SJ, Yang QY, Zhang W, Gong L. Role of the mucin-like glycoprotein FCGBP in mucosal immunity and cancer. Front Immunol 2022; 13:863317. [PMID: 35936008 PMCID: PMC9354016 DOI: 10.3389/fimmu.2022.863317] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
IgGFc-binding protein (FCGBP) is a mucin first detected in the intestinal epithelium. It plays an important role in innate mucosal epithelial defense, tumor metastasis, and tumor immunity. FCGBP forms disulfide-linked heterodimers with mucin-2 and members of the trefoil factor family. These formed complexes inhibit bacterial attachment to mucosal surfaces, affect the motility of pathogens, and support their clearance. Altered FCGBP expression levels may be important in the pathologic processes of Crohn’s disease and ulcerative colitis. FCGBP is also involved in regulating the infiltration of immune cells into tumor microenvironments. Thus, the molecule is a valuable marker of tumor prognosis. This review summarizes the functional relevance and role of FCGBP in immune responses and disease development, and highlights the potential role in diagnosis and predicting tumor prognosis.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Xia Niu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia-rui Zhang
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Shao-jun Zhu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Qi-yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Wei Zhang
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Li Gong, ; Wei Zhang,
| | - Li Gong
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
- *Correspondence: Li Gong, ; Wei Zhang,
| |
Collapse
|
9
|
Huang WY, Jeong I, Han BK, Kim MJ, Hong J, Ahn SII, Heo W, Pan JH, Kim JK, Shin EC, Kim YJ. Chrysanthemum Zawadskii Herbich var. latilobum (Maxim.) Kitamura water extract prevents BALB/c mice lung injury from particulate matter 10 toxicity. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2064435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Wen Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Inhye Jeong
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jiyoun Hong
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Sung-I. I. Ahn
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungcheongbuk-do, Republic of Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| |
Collapse
|
10
|
SNORD15B and SNORA5C: Novel Diagnostic and Prognostic Biomarkers for Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8260800. [PMID: 35586811 PMCID: PMC9110153 DOI: 10.1155/2022/8260800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is presenting a global public health problem with high incidence and mortality. Early diagnosis and treatment are the most important strategies to improve prognosis of this disease. Besides fecal occult blood test (FOBT) and colonoscopy, the most widely used methods for CRC screening currently, more effective methods for early diagnosis or prognostic prediction for CRC are needed. Small nucleolar RNAs (snoRNAs) is a class of noncoding RNAs (ncRNAs) playing crucial roles in carcinogenesis and considered to be promising tumor biomarker. In this study, we found that SNORD15B, SNORD48, and SNORA5C were significantly upregulated in CRC tissues. High levels of SNORD15B, SNORD48, or SNORA5C predicted poor clinical outcomes of CRC patients. Forced expression of SNORD15B or SNORA5C in CRC cells promoted proliferation and colony formation. In a further investigation, association between the level of SNORD15B/SNORA5C and clinicopathological parameters of CRC patient cohorts was analyzed based on data from The Cancer Genome Atlas (TCGA). We found that high expressions of SNORD15B and SNORA5C were significantly associated with age, lymphatic invasion, and history of colon polyps, and they were proved to be independent risk factors for survival of CRC patients. This study confirms that SNORD15B and SNORA5C have oncogenic effects in carcinogenesis of CRC. The findings suggest the two genes as potential diagnostic and prognostic biomarkers for CRC.
Collapse
|
11
|
Park HJ, Rhee CK, Yoo KH, Park YB. Reliability of Portable Spirometry Performed in the Korea National Health and Nutrition Examination Survey Compared to Conventional Spirometry. Tuberc Respir Dis (Seoul) 2021; 84:274-281. [PMID: 33940672 PMCID: PMC8497770 DOI: 10.4046/trd.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background The Korea National Health and Nutrition Examination Survey (KNHANES) is a well-designed survey to collect national data, which many researchers have used for their studies. In KNHANES, although portable spirometry was used, its reliability has not been verified. Methods We prospectively enrolled 58 participants from four Korean institutions. The participants were classified into normal pattern, obstructive pattern, and restrictive pattern groups according to their previous spirometry results. Lung function was estimated by conventional spirometry and portable spirometry, and the results were compared. Results The intraclass correlation coefficients of forced vital capacity (FVC) (coefficient, 9.993; 95% confidence interval [CI], 0.988–0.996), forced expiratory volume in 1 second (FEV1) (coefficient, 0.997; 95% CI, 0.995–0.998), FEV1/FVC ratio (coefficient, 0.995; 95% CI, 0.992–0.997), and forced expiratory flow at 25–75% (FEF25–75%; coefficient, 0.991; 95% CI, 0.984–0.994) were excellent (all p<0.001). In the subgroup analysis, the results of the three parameters were similar in all groups. In the overall and subgroup analyses, Pearson’s correlation of all the parameters was also excellent in the total (coefficient, 0.986–0.994; p<0.001) and subgroup analyses (coefficient, 0.915–0.995; p<0.001). In the paired t-test, FVC, FEV1/FVC, and FEF25–75% estimated by the two instruments were statistically different. However, FEV1 was not significantly different. Conclusion Lung function estimated by portable spirometry was well-correlated with that estimated by conventional spirometry. Although the values had minimal differences between them, we suggest that the spirometry results from the KNHANES are reliable.
Collapse
Affiliation(s)
- Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yong Bum Park
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| |
Collapse
|