1
|
Das R, Chatterjee DR, Kapoor S, Vyas H, Shard A. Novel sulfonamides unveiled as potent anti-lung cancer agents via tumor pyruvate kinase M2 activation. RSC Med Chem 2024; 15:3070-3091. [PMID: 39309364 PMCID: PMC11411637 DOI: 10.1039/d4md00367e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/06/2024] [Indexed: 09/25/2024] Open
Abstract
This rational pursuit led to the identification of a novel sulfonamide derivative as a potent anti-lung cancer (LC) compound. Considering these results, we synthesized 38 novel sulfonamide derivatives with diverse skeletal structures. In vitro cytotoxicity assays revealed a potent and selective antiproliferative effect against A549 cells after evaluating a panel of cancer cell lines. Compound 9b has emerged as a potent activator of tumor pyruvate kinase M2 (PKM2), a protein known to play a critical role in LC. Apoptosis assays and cell cycle analysis demonstrated early apoptosis and G2 phase arrest. In silico studies demonstrated interactions between compound 9b and the activator binding site of PKM2. Surface plasmon resonance (SPR) experiments strongly indicated that 9b has a high affinity (K d of 1.378 nM) for PKM2. Furthermore, the increase in reactive oxygen species and decrease in lactate concentration suggested that compound 9b has significant anticancer effects. Notably, the increase in particle size following treatment with 9b suggested the tetramerization of PKM2. This work provides insights that might advance efforts to develop effective non-platinum anticancer agents.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Het Vyas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A) Opposite Airforce station Palaj, Gandhinagar Gujarat - 382355 India
| |
Collapse
|
2
|
Wang J, Yang W, Li Y, Ma X, Xie Y, Zhou G, Liu S. Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods. Gels 2024; 10:480. [PMID: 39057503 PMCID: PMC11275505 DOI: 10.3390/gels10070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are widely used as excellent drug carriers in the field of biomedicine. However, their application in medicine is limited by their poor mechanical properties and softness. To improve the mechanical properties of hydrogels, a novel triple-network amphiphilic hydrogel with three overlapping crosslinking methods using a one-pot free-radical polymerization was synthesized in this study. Temperature-sensitive and pH-sensitive monomers were incorporated into the hydrogel to confer stimulus responsiveness, making the hydrogel stimuli-responsive. The successful synthesis of the hydrogel was confirmed using techniques, such as proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). In order to compare and analyze the properties of physically crosslinked hydrogels, physically-chemically double-crosslinked hydrogels, and physically-chemically clicked triple-crosslinked hydrogels, various tests were conducted on the gels' morphology, swelling behavior, thermal stability, mechanical properties, and drug loading capacity. The results indicate that the triple-crosslinked hydrogel maintains low swelling, high mechanical strength, and good thermal stability while not significantly compromising its drug delivery capability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (J.W.); (W.Y.); (Y.L.); (X.M.); (Y.X.); (G.Z.)
| |
Collapse
|
3
|
Fan B, Wang Q, Wang S, Gao Y, Liang Y, Pan J, Fu X, Li L, Meng W. Label-Free Ratiometric Homogeneous Electrochemical Strategy Based on Exonuclease III-Aided Signal Amplification for Facile and Rapid Detection of miR-378. Int J Anal Chem 2024; 2024:8368987. [PMID: 38807657 PMCID: PMC11132827 DOI: 10.1155/2024/8368987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/24/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
MiR-378 is abnormally expressed in various cancers, such as hepatocellular carcinoma, renal cell carcinoma, and nonsmall cell lung cancer. Here, we developed a label- and immobilization-free ratiometric homogeneous electrochemical strategy based on exonuclease III (Exo III) for the facile and rapid determination of miR-378. Two 3'-protruding hairpin DNA probes (HPs) are designed in this strategy. Doxorubicin (DOX) and potassium ferrocyanide (Fe2+) were used as label-free probes to produce a response signal (IDOX) and a reference signal (IFe2+) in the solution phase. When no target was present in the solution, the HP was stable, most of the DOX was intercalated in the stem of the HP, and the diffusion rate of DOX was significantly reduced, resulting in reduced electrochemical signal response. When miR-378 was present, double-cycle signal amplification triggered by Exo III cleavage was initiated, ultimately disrupting the hairpin structures of HP1 and HP2 and releasing a large amount of DOX into the solution, yielding a stronger electrochemical signal, which was low to 50 pM. This detection possesses excellent selectivity, demonstrating high application potential in biological systems, and offers simple and low-cost electrochemical detection for miR-378.
Collapse
Affiliation(s)
- Bingyuan Fan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
- Nanpi No. 1 Middle School, Cangzhou 061599, China
| | - Shan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yahui Gao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Liang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Jinru Pan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Xinrui Fu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Meng
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Miao H, Cui W, Zhang T, Zhang Y, Zhang J, Lou H, Fan P. Mitochondrial targeting derivatives of honokiol enhanced selective antitumor activity in NCI-H446 cells and decreased in vivo toxicity in Caenorhabditis elegans. Eur J Med Chem 2024; 264:115996. [PMID: 38086195 DOI: 10.1016/j.ejmech.2023.115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
Mitochondria, responsible for ATP production and apoptosis regulation, play a key role in cancer cells. Honokiol regulates apoptosis through the endogenous mitochondrial pathway but does not specifically target tumor cells. We designed 28 novel derivatives of honokiol using triple-function delocalized lipophilic cations such as berberine and F16 as mitochondrion-targeting carriers. While all derivatives exhibited enhanced cytotoxicity toward tumor cells compared to honokiol, the derivative 2E-3-F16 exhibited a substantial tumor cell selectivity between NCI-H446 cancer cells and HBE cells by one order of magnitude and enhanced the sensitivity of A549 cells to cisplatin. Mechanistically, it targeted mitochondria and induced apoptosis by preventing tumor cells from entering the G0/G1 phases as well as inducing an abnormal elevation of reactive oxygen species, thereby decreasing the mitochondrial membrane potential level. It also showed lower toxicity toward Caenorhabditis elegans than honokiol. This study provides a possible method for developing mitochondrion-targeting antitumor drugs with high efficiency and low toxicity based on natural products.
Collapse
Affiliation(s)
- Huicong Miao
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenbo Cui
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Tao Zhang
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Research Institute, Zibo 255400, PR China
| | - Yue Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
5
|
Park HY, Park JH, Shin MG, Han SJ, Ji YS, Oh HJ, Kim YC, Lee T, Choi YD, Oh IJ. Case Report: A case of ultra-late recurrence of KIF13A-RET fusion non-small cell lung cancer response to selpercatinib. Front Oncol 2023; 13:1178762. [PMID: 37182165 PMCID: PMC10166794 DOI: 10.3389/fonc.2023.1178762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Background Cancer recurrence remains a significant problem, and most postoperative recurrences of non-small cell lung cancer (NSCLC) develop within 5 years after resection. We present a rare case of ultra-late recurrence of NSCLC accompanying choroidal metastasis with KIF13A-RET fusion 14 years after the definitive surgery. Case description A 48-year-old female patient who had never-smoked presented with decreased visual acuity. She had been treated with right upper lobe lobectomy followed by adjuvant chemotherapy 14 years prior. Fundus photographs revealed bilateral choroidal metastatic lesions. Positron emission tomography-computed tomography (PET-CT) scans showed extensive bone metastases and focal hypermetabolism in the left uterine cervix. An excision biopsy of the uterus showed primary lung adenocarcinoma with immunohistochemistry of TTF-1+. Plasma next-generation sequencing (NGS) identified the presence of KIF13A-RET fusion. After 6 months of selpercatinib therapy, PET-CT revealed a partial response for bone and uterine metastasis and stable disease for choroidal lesions. Conclusion In this case report, we are reporting a rare case of ultra-late recurrence of NSCLC in a patient with choroidal metastasis. Furthermore, the diagnosis of NSCLC with RET fusion was based on liquid-based NGS rather than tissue-based biopsy. The patient showed a good response to selpercatinib, which supports the efficacy of selpercatinib as a treatment for RET-fusion-positive NSCLC with choroidal metastasis.
Collapse
Affiliation(s)
- Ha-Young Park
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Joo-Heon Park
- Departments of Laboratory Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Myung-Geun Shin
- Departments of Laboratory Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Seung Jung Han
- Dxome Co. Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong-Sok Ji
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Taebum Lee
- Department of Pathology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| |
Collapse
|