1
|
Burris HA, Kurkjian CD, Hart L, Pant S, Murphy PB, Jones SF, Neuwirth R, Patel CG, Zohren F, Infante JR. TAK-228 (formerly MLN0128), an investigational dual TORC1/2 inhibitor plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. Cancer Chemother Pharmacol 2017; 80:261-273. [PMID: 28601972 DOI: 10.1007/s00280-017-3343-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE This phase I trial evaluated the safety, pharmacokinetic profile, and antitumor activity of investigational oral TORC1/2 inhibitor TAK-228 plus paclitaxel, with/without trastuzumab, in patients with advanced solid malignancies. METHODS Sixty-seven patients received TAK-228 6-40 mg via three dosing schedules; once daily for 3 days (QDx3d QW) or 5 days per week (QDx5d QW), and once weekly (QW) plus paclitaxel 80 mg/m2 (dose-escalation phase, n = 47) and with/without trastuzumab 2 mg/kg (expansion phase, n = 20). Doses were escalated using a modified 3 + 3 design, based upon dose-limiting toxicities in cycle 1. RESULTS TAK-228 pharmacokinetics exhibited dose-dependent increase in exposure when dosed with paclitaxel and no apparent differences when administered with or 24 h after paclitaxel. Dose-limiting toxicities were dehydration, diarrhea, stomatitis, fatigue, rash, thrombocytopenia, neutropenia, leukopenia, and nausea. The maximum tolerated dose of TAK-228 was determined as 10-mg QDx3d QW; the expansion phase proceeded with 8-mg QDx3d QW. Overall, the most common grade ≥3 drug-related toxicities were neutropenia (21%), diarrhea (12%), and hyperglycemia (12%). Of 54 response-evaluable patients, eight achieved partial response and six had stable disease lasting ≥6 months. CONCLUSION TAK-228 demonstrated a safety profile consistent with other TORC inhibitors and promising preliminary antitumor activity in a range of tumor types; no meaningful difference was noted in the pharmacokinetics of TAK-228 when administered with or 24 h after paclitaxel. These findings support further investigation of TAK-228 in combination with other agents including paclitaxel, with/without trastuzumab, in patients with advanced solid tumors. CLINICALTRIALS. GOV IDENTIFIER NCT01351350.
Collapse
Affiliation(s)
- Howard A Burris
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA. .,Tennessee Oncology PLLC, Nashville, TN, USA.
| | - C D Kurkjian
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Hart
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Florida Cancer Specialists, Fort Myers, FL, USA
| | - S Pant
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P B Murphy
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Tennessee Oncology PLLC, Nashville, TN, USA
| | - S F Jones
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA
| | - R Neuwirth
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - C G Patel
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - F Zohren
- Millennium Pharmaceuticals, Inc., A Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - J R Infante
- Sarah Cannon Research Institute, 250 25th Avenue North, #100, Nashville, TN, 37203, USA.,Tennessee Oncology PLLC, Nashville, TN, USA
| |
Collapse
|
2
|
Subbiah V, Wagner MJ, McGuire MF, Sarwari NM, Devarajan E, Lewis VO, Westin S, Kato S, Brown RE, Anderson P. Personalized comprehensive molecular profiling of high risk osteosarcoma: Implications and limitations for precision medicine. Oncotarget 2016; 6:40642-54. [PMID: 26510912 PMCID: PMC4747358 DOI: 10.18632/oncotarget.5841] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 12/28/2022] Open
Abstract
Background Despite advances in molecular medicine over recent decades, there has been little advancement in the treatment of osteosarcoma. We performed comprehensive molecular profiling in two cases of metastatic and chemotherapy-refractory osteosarcoma to guide molecularly targeted therapy. Patients and Methods Hybridization capture of >300 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer was applied to >50 ng of DNA extracted from tumor samples from two patients with recurrent, metastatic osteosarcoma. The DNA from each sample was sequenced to high, uniform coverage. Immunohistochemical probes and morphoproteomics analysis were performed, in addition to fluorescence in situ hybridization. All analyses were performed in CLIA-certified laboratories. Molecularly targeted therapy based on the resulting profiles was offered to the patients. Biomedical analytics were performed using QIAGEN's Ingenuity® Pathway Analysis. Results In Patient #1, comprehensive next-generation exome sequencing showed MET amplification, PIK3CA mutation, CCNE1 amplification, and PTPRD mutation. Immunohistochemistry-based morphoproteomic analysis revealed c-Met expression [(p)-c-Met (Tyr1234/1235)] and activation of mTOR/AKT pathway [IGF-1R (Tyr1165/1166), p-mTOR [Ser2448], p-Akt (Ser473)] and expression of SPARC and COX2. Targeted therapy was administered to match the P1K3CA, c-MET, and SPARC and COX2 aberrations with sirolimus+ crizotinib and abraxane+ celecoxib. In Patient #2, aberrations included NF2 loss in exons 2–16, PDGFRα amplification, and TP53 mutation. This patient was enrolled on a clinical trial combining targeted agents temsirolimus, sorafenib and bevacizumab, to match NF2, PDGFRα and TP53 aberrations. Both the patients did not benefit from matched therapy. Conclusions Relapsed osteosarcoma is characterized by complex signaling and drug resistance pathways. Comprehensive molecular profiling holds great promise for tailoring personalized therapies for cancer. Methods for such profiling are evolving and need to be refined to better assist clinicians in making treatment decisions based on the large amount of data that results from this type of testing. Further research in this area is warranted.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J Wagner
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary F McGuire
- Department of Pathology & Laboratory Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Nawid M Sarwari
- Department of Internal Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Eswaran Devarajan
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valerae O Lewis
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanon Westin
- Division of Gynecological Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Kato
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert E Brown
- Department of Pathology & Laboratory Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Pete Anderson
- Department of of Pediatric Hematology/Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Phowichit S, Kobayashi M, Fujinoya Y, Sato Y, Sanphanya K, Vajragupta O, Chularojmontri L, Wattanapitayakul SK. Antiangiogenic Effects of VH02, a Novel Urea Derivative: In Vitro and in Vivo Studies. Molecules 2016; 21:molecules21091258. [PMID: 27657036 PMCID: PMC6272876 DOI: 10.3390/molecules21091258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/14/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is a vital target for therapeutic intervention in cancer. We have recently described a computer-based drug design for a small molecule VEGFR2 inhibitor named VH02 (1-((1-(1H-indazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(3-chloromethylphenyl)urea). This study aimed to further explore the anti-angiogenic activity of VH02 both in vitro and in vivo. The in vitro assays include cell viability, capillary-like tube formation, MMP activity, and western blot analyses of signaling through VEGFR2 while the in vivo anti-angiogenic response were performed to evaluate the effect on vascularization in Matrigel plug applied in C57BL/6L mice. VH02 reduced angiogenesis behavior of EA.hy926 including cell viability, migration, adhesion, capillary-like tube formation, and MMP-2 activity induced by VEGF. Furthermore, VH02 regulated angiogenesis by directly inhibiting VEGFR2 on Tyr1175 signaling pathway leading to the inhibition of Akt-mediated cell survival and migration. Disruption of phosphorylation at VEGFR2-Tyr1175 by VH02 abolished FAK-Tyr397 signaling but not phosphorylation of p38 MAPK. This suggests that blockade of FAK by VH02 apparently associated with reduction of endothelial cell motility. Actin cytoskeleton rearrangement was diminished by VH02 in human endothelial cells. The anti-angiogenic effect of VH02 was confirmed in the in vivo model, revealing the reduction of vascular density in Matrigel plug after VH02 treatment. Additionally, the pericyte-like cells surrounding blood vessels in the plugs were significantly reduced as well as vascular density and p-Akt intensity. Our findings indicate that VH02 successfully inhibits VEGF-induced angiogenesis both in vitro and in vivo models. The compound could be further developed as an antiangiogenesis agent for cancer therapy.
Collapse
Affiliation(s)
- Suwadee Phowichit
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
| | - Miho Kobayashi
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Yuriko Fujinoya
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Kingkarn Sanphanya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudhya Road, Bangkok 10400, Thailand.
| | - Opa Vajragupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudhya Road, Bangkok 10400, Thailand.
| | - Linda Chularojmontri
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, 95 Paholyotin Rd, Klongluang, Pathumthani 12120, Thailand.
| | - Suvara K Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
| |
Collapse
|
4
|
Ghobrial IM, Siegel DS, Vij R, Berdeja JG, Richardson PG, Neuwirth R, Patel CG, Zohren F, Wolf JL. TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or Waldenström's macroglobulinemia. Am J Hematol 2016; 91:400-5. [PMID: 26800393 DOI: 10.1002/ajh.24300] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
The PI3K/AKT/mTOR signaling pathways are frequently dysregulated in multiple human cancers, including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and Waldenström's macroglobulinemia (WM). This was the first clinical study to evaluate the safety, tolerability, maximal-tolerated dose (MTD), dose-limiting toxicity (DLT), pharmacokinetics, and preliminary clinical activity of TAK-228, an oral TORC1/2 inhibitor, in patients with MM, NHL, or WM. Thirty-nine patients received TAK-228 once daily (QD) at 2, 4, 6, or 7 mg, or QD for 3 days on and 4 days off each week (QDx3d QW) at 9 or 12 mg, in 28-day cycles. The overall median age was 61.0 years (range 46-85); 31 patients had MM, four NHL, and four WM. Cycle 1 DLTs occurred in five QD patients (stomatitis, urticaria, blood creatinine elevation, fatigue, and nausea and vomiting) and four QDx3d QW patients (erythematous rash, fatigue, asthenia, mucosal inflammation, and thrombocytopenia). The MTDs were determined to be 4 mg QD and 9 mg QDx3d QW. Thirty-six patients (92%) reported at least one drug-related toxicity; the most common grade ≥3 drug-related toxicities were thrombocytopenia (15%), fatigue (10%), and neutropenia (5%). TAK-228 exhibited a dose-dependent increase in plasma exposure and no appreciable accumulation with repeat dosing; mean plasma elimination half-life was 6-8 hr. Of the 33 response-evaluable patients, one MM patient had a minimal response, one WM patient achieved partial response, one WM patient had a minor response, and 18 patients (14 MM, two NHL, and two WM) had stable disease. These findings encourage further studies including combination strategies.
Collapse
Affiliation(s)
- Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston Massachusetts
| | - David S. Siegel
- John Theurer Cancer Center at Hackensack University Medical Center; Hackensack New Jersey
| | - Ravi Vij
- Division of Hematology and Oncology, Washington University School of Medicine; St. Louis Missouri
| | | | - Paul G. Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute; Boston Massachusetts
| | - Rachel Neuwirth
- Global Biostatistics, Millennium Pharmaceuticals, Inc, Cambridge, Massachusetts, USA, a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited
| | - Chirag G. Patel
- Clinical Pharmacology, Millennium Pharmaceuticals, Inc; Cambridge Massachusetts USA, a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited
| | - Fabian Zohren
- Oncology Clinical Research, Millennium Pharmaceuticals, Inc; Cambridge Massachusetts USA, a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited
| | - Jeffrey L. Wolf
- Department of Medicine; University of California San Francisco; San Francisco California
| |
Collapse
|
5
|
Myint ZW, Raparla S, Kamugisha LK. Metaplastic breast cancer with chondroid differentiation. J Community Hosp Intern Med Perspect 2015; 5:28935. [PMID: 26333865 PMCID: PMC4558288 DOI: 10.3402/jchimp.v5.28935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 11/14/2022] Open
Abstract
Background Metaplastic carcinoma of the breast is an extremely rare subtype of breast cancer with an incidence of <1% of all breast neoplasms. Metaplastic carcinoma with chondroid differentiation is the rarest among all histologic subtypes of breast cancer. We report a case of infiltrating ductal carcinoma with metaplastic features of chondroid differentiation. Case presentation A 58-year-old-woman presented to our clinic with a 4-month history of a lump in her right breast. On examination, a firm non-tender mass measuring 2×2 cm was noted in the right upper outer quadrant. It was not attached to the underlying structures. Mammography revealed a dense irregular mass in the axillary tail and a circumscribed nodule in the 6 O'clock periareolar region. This was a new development compared to the patient's most recent screening mammogram performed 2 years and 6 months previously. Ultrasound demonstrated a lobulated solid mass in the axillary tail and a simple cyst in the 6 O'clock periareolar region. Biopsy of the areolar region of the right breast revealed atypical duct hyperplasia. Fine needle aspiration cytology of the right breast axillary tail revealed a poorly differentiated invasive carcinoma consistent with mammary duct origin. On histopathological examination, it was an infiltrating ductal carcinoma with metaplastic features of chondroid differentiation. The tumor was estrogen receptor, progesterone receptor, and HER-2 negative with 0% nuclear staining. Ki-67 index was 52% with strong nuclear staining. The overall ELSTON grade of invasive carcinoma was grade 3. The patient received adjuvant chemotherapy with AC-T (adriamycin, cytoxan, and taxol) and is currently undergoing surveillance for recurrent disease. Conclusion Metaplastic breast cancer is an extremely rare subtype of breast carcinoma. Initial management of localized disease consists of wide excision with clear surgical margins followed by radiation or mastectomy and sentinel lymph node biopsy. Although standard breast chemotherapy regimens such as AC-T are routinely used in metaplastic breast cancer in both adjuvant and metastatic settings, outcomes are significantly inferior to other breast subtypes. Further studies are required to explore targeted treatment to achieve better outcomes in this patient population.
Collapse
Affiliation(s)
- Zin W Myint
- Department of Medicine, Medstar Good Samaritan Hospital, Baltimore, MD, USA;
| | - Sandeep Raparla
- Department of Medicine, Medstar Good Samaritan Hospital, Baltimore, MD, USA
| | - Lois K Kamugisha
- Department of Medicine, Medstar Good Samaritan Hospital, Baltimore, MD, USA
| |
Collapse
|
6
|
Subbiah V, Berry J, Roxas M, Guha-Thakurta N, Subbiah IM, Ali SM, McMahon C, Miller V, Cascone T, Pai S, Tang Z, Heymach JV. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer 2015; 89:76-9. [PMID: 25982012 DOI: 10.1016/j.lungcan.2015.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/06/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
In-frame fusion KIF5B (the-kinesin-family-5B-gene)-RET transcripts have been characterized in 1-2% of non-small cell lung cancers and are known oncogenic drivers. The RET tyrosine kinase inhibitor, vandetanib, suppresses fusion-induced, anchorage-independent growth activity. In vitro studies have shown that vandetanib is a high-affinity substrate of breast cancer resistance protein (Bcrp1/Abcg2) but is not transported by P-glycoprotein (P-gp), limiting its blood-brain barrier penetration. A co-administration strategy to enhance the brain accumulation of vandetanib by modulating P-gp/Abcb1- and Bcrp1/Abcg2-mediated efflux with mTOR inhibitors, specifically everolimus, was shown to increase the blood-brain barrier penetration. We report the first bench-to-bedside evidence that RET inhibitor combined with an mTOR inhibitor is active against brain-metastatic RET-rearranged lung cancer and the first evidence of blood-brain barrier penetration. A 74-year-old female with progressive adenocarcinoma of the lung (wild-type EGFR and no ALK rearrangement) presented for therapy options. A deletion of 5'RET was revealed by FISH assay, indicating RET-gene rearrangement. Because of progressive disease in the brain, she was enrolled in a clinical trial with vandetanib and everolimus (NCT01582191). Comprehensive genomic profiling revealed fusion of KIF5B (the-kinesin-family-5B-gene) and RET, in addition to AKT2 gene amplification. After two cycles of therapy a repeat MRI brain showed a decrease in the intracranial disease burden and PET/CT showed systemic response as well. Interestingly, AKT2 amplification seen is a critical component of the PI3K/mTOR pathway, alterations of which has been associated with both de novo and acquired resistance to targeted therapy. The addition of everolimus may have both overcome the AKT2 amplification to produce a response in addition to its direct effects on the RET gene. Our case report forms the first evidence of blood-brain barrier penetration by vandetanib in combination with everolimus. Further research is required in this setting.
Collapse
Affiliation(s)
- Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.
| | - Jenny Berry
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Michael Roxas
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Nandita Guha-Thakurta
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Ishwaria Mohan Subbiah
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Siraj M Ali
- Foundation Medicine, Boston, MA, United States
| | | | | | - Tina Cascone
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Shobha Pai
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - Zhenya Tang
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | - John V Heymach
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| |
Collapse
|