1
|
Khairani AF, Shalannandia WA, Bashari MH, Atik N. Aaptamine Alters Vimentin Expression and Migration Capability of Triple-Negative Breast Cancer Cells. J Exp Pharmacol 2025; 17:239-247. [PMID: 40420842 PMCID: PMC12105642 DOI: 10.2147/jep.s512099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Purpose This study aimed to explore the effect of Aaptamine, an alkaloid derived from marine sponges, on the vimentin expression in both mRNA and protein levels and the migration capacity of breast cancer cells. Methods The triple-negative breast cancer cell line MDA-MB-231 was used for in vitro experiments. Low-cytotoxicity concentrations of Aaptamine (12.5 to 50 μM) were given to MDA-MB-231 cells. The vimentin mRNA and protein expression were evaluated using RT-qPCR and immunofluorescence, respectively, 72 h after Aaptamine treatment. The migration scratch assay was conducted for 48 hours. Results Aaptamine treatment in three different doses did not affect the expression of vimentin at the mRNA level while significantly lowering vimentin protein expression at the concentration of 12.5 µM. In addition, Aaptamine significantly inhibited breast cancer cell migration in a dose-dependent manner. Conclusion Aaptamine inhibits vimentin protein expression and demonstrates anti-migration activity in the sub-cytotoxic dose.
Collapse
Affiliation(s)
- Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Widad Aghnia Shalannandia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
- Graduate School of Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| |
Collapse
|
2
|
Hubiernatorova A, Novak J, Vaskovicova M, Sekac D, Kropyvko S, Hodny Z. Tristetraprolin affects invasion-associated genes expression and cell motility in triple-negative breast cancer model. Cytoskeleton (Hoboken) 2025; 82:311-326. [PMID: 39319680 PMCID: PMC12063522 DOI: 10.1002/cm.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that negatively regulates its target mRNAs and has been shown to inhibit tumor progression and invasion. Tumor invasion requires precise regulation of cytoskeletal components, and dysregulation of cytoskeleton-associated genes can significantly alter cell motility and invasive capability. Several genes, including SH3PXD2A, SH3PXD2B, CTTN, WIPF1, and WASL, are crucial components of the cytoskeleton reorganization machinery and are essential for adequate cell motility. These genes are also involved in invasion processes, with SH3PXD2A, SH3PXD2B, WIPF1, and CTTN being key components of invadopodia-specialized structures that facilitate invasion. However, the regulation of these genes is not well understood. This study demonstrates that ectopic expression of TTP in MDA-MB-231 cells leads to decreased mRNA levels of CTTN and SH3PXD2A, as well as defects in cell motility and actin filament organization. Additionally, doxorubicin significantly increases TTP expression and reduces the mRNA levels of cytoskeleton-associated genes, enhancing our understanding of how doxorubicin may affect the transcriptional profile of cells. However, doxorubicin affects target mRNAs differently than TTP ectopic expression, suggesting it may not be the primary mechanism of doxorubicin in breast cancer (BC) treatment. High TTP expression is considered as a positive prognostic marker in multiple cancers, including BC. Given that doxorubicin is a commonly used drug for treating triple-negative BC, using TTP as a prognostic marker in this cohort of patients might be limited since it might be challenging to understand if high TTP expression occurred due to the favorable physiological state of the patient or as a consequence of treatment.
Collapse
Affiliation(s)
- Anastasiia Hubiernatorova
- Department of Functional GenomicsInstitute of Molecular Biology and Genetics NAS of UkraineKyivUkraine
- Laboratory of Cell Regeneration and PlasticityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - Josef Novak
- Laboratory of Genome IntegrityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Michaela Vaskovicova
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
- Laboratory of DNA IntegrityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
| | - David Sekac
- Laboratory of Cell Regeneration and PlasticityInstitute of Animal Physiology and Genetics of the Czech Academy of SciencesLibechovCzech Republic
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Serhii Kropyvko
- Department of Functional GenomicsInstitute of Molecular Biology and Genetics NAS of UkraineKyivUkraine
| | - Zdenek Hodny
- Laboratory of Genome IntegrityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
3
|
Attia M, Hill D, Chaw CS, Elkordy AA. Novel combinational nanomedicines, liposomes, to tackle breast cancer. J Microencapsul 2025:1-24. [PMID: 40185262 DOI: 10.1080/02652048.2025.2487031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
AIMS Doxorubicin (DOX), a potent chemotherapeutic, is a commonly prescribed treatment for breast cancer, but is limited by severe organ toxicity. Therefore, more effective therapies are required. This study developed a novel DOX-liposomes (LipDOX-ALA-AA) co-loaded with alpha-lipoic-acid (ALA) and ascorbic-acid (AA) to enhance antineoplastic effect. METHODS Liposomes were fabricated using a microfluidic-system with a DSPClipid:Cholesterol ratio of 1:1 and a flow rate ratio of 5:1. Liposomes were investigated using various-techniques such-as dynamic light scattering to measure liposomes' size and charge; and UV-spectroscopy to determine DOX-encapsulation-efficiency, EE. Cytotoxicity assays used various cell-lines. RESULTS Data revealed that LipDOX-ALA-AA had diameter of 79.0 ± 0.3 nm, with narrow size distribution, and zeta-potential of -4.0 ± 1.2. DOX-EE exceeded 95%, drug load was 0.5 mg/105.5 mg total content, drug release followed a biphasic pattern. Cytotoxicity assay showed activity (p < 0.05) against breast cancer cell-lines with reduced nephrotoxicity compared to Doxosome. CONCLUSION This novel formulation (LipDOX-ALA-AA) offers a promise in breast cancer therapy.
Collapse
Affiliation(s)
- Mohamed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - David Hill
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| |
Collapse
|
4
|
Lee F, Cheng SP, Chen MJ, Huang WC, Liu YM, Chang SC, Chang YC. Zinc Finger Protein 639 Expression Is a Novel Prognostic Determinant in Breast Cancer. J Breast Cancer 2025; 28:86-98. [PMID: 40133986 PMCID: PMC12046354 DOI: 10.4048/jbc.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/29/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
PURPOSE Zinc finger protein 639 (ZNF639) is often found within the overlapping amplicon of PIK3CA, and previous studies suggest its involvement in the pathogenesis of esophageal and oral squamous cell carcinomas. However, its expression and significance in breast cancer remain uncharacterized. METHODS Immunohistochemical analysis of ZNF639 was performed using tissue microarrays. Functional studies, including colony formation, Transwell cell migration, and in vivo metastasis, were conducted on breast tumor cells with ZNF639 knockdown via small interfering RNA transfection. RESULTS Reduced ZNF639 immunoreactivity was observed in 82% of the breast cancer samples, independent of hormone receptor and human epidermal growth factor receptor 2 status. In multivariate Cox regression analyses, ZNF639 expression was associated with favorable survival outcomes, including recurrence-free survival (hazard ratio, 0.35; 95% confidence interval [CI], 0.14-0.89) and overall survival (hazard ratio, 0.41; 95% CI, 0.16-1.05). ZNF639 knockdown increased clonogenicity, cell motility, and lung metastasis in NOD/SCID mice. Following the ZNF639 knockdown, the expression of Snail1, vimentin, and C-C chemokine ligand 20 (CCL20) was upregulated, and the changes in cell phenotype mediated by ZNF639 were reversed by the subsequent knockdown of CCL20. CONCLUSION Low ZNF639 expression is a novel prognostic factor for recurrence-free survival in patients with breast cancer.
Collapse
Affiliation(s)
- Fang Lee
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Min Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Kozole SL, Beningo KA. Myosin Light Chains in the Progression of Cancer. Cells 2024; 13:2081. [PMID: 39768172 PMCID: PMC11674124 DOI: 10.3390/cells13242081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The myosin light chains (MLCs) of non-muscle myosin II are known to regulate cellular architecture and generate cellular forces; they also have an increasingly emerging role in the progression of cancer. The phosphorylation state of the myosin light chains controls the activity of myosins that are implicated in invasion and proliferation. In cancers, when proliferation is greatly increased, cytokinesis relies on phosphorylated light chains to activate the contractile forces used to separate the cells. Likewise, during metastasis, kinase pathways culminate in aligning MLC structures for enhanced cell motility through stress fiber contraction and the accumulation of myosin filaments at the leading edge. This review summarizes the myosin light chain family members known to promote cancer progression and evidence of how their altered activities change the behavior of cells involving the mechanical-based processes of proliferation and cell movements during metastasis. In addition, myosin light chains impact the immune response to cancers and currently serve as biomarkers in staging this disease; a brief summary of these topics is provided at the end of the review.
Collapse
Affiliation(s)
| | - Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
6
|
James C, Whitehead A, Plummer JT, Thompson R, Badal S. Failure to progress: breast and prostate cancer cell lines in developing targeted therapies. Cancer Metastasis Rev 2024; 43:1529-1548. [PMID: 39060878 DOI: 10.1007/s10555-024-10202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Developing anticancer drugs from preclinical to clinical takes approximately a decade in a cutting-edge biomedical lab and still 97% of most fail at clinical trials. Cell line usage is critical in expediting the advancement of anticancer therapies. Yet developing appropriate cell lines has been challenging and overcoming these obstacles whilst implementing a systematic approach of utilizing 3D models that recapitulate the tumour microenvironment is prudent. Using a robust and continuous supply of cell lines representing all ethnic groups from all locales is necessary to capture the evolving tumour landscape in culture. Next, the conversion of these models to systems on a chip that can by way of high throughput cytotoxic assays identify drug leads for clinical trials should fast-track drug development while markedly improving success rates. In this review, we describe the challenges that have hindered the progression of cell line models over seven decades and methods to overcome this. We outline the gaps in breast and prostate cancer cell line pathology and racial representation alongside their involvement in relevant drug development.
Collapse
Affiliation(s)
- Chelsi James
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica
| | - Akeem Whitehead
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica
| | | | - Rory Thompson
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, West Indies, Jamaica.
| |
Collapse
|
7
|
Dang LN, Choi J, Lee E, Lim Y, Kwon JW, Park S. Exploiting mechanoregulation via FAK/YAP to overcome platinum resistance in ovarian cancer. Biomed Pharmacother 2024; 179:117335. [PMID: 39191020 DOI: 10.1016/j.biopha.2024.117335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer cells mechanically interact with the tumor microenvironment during cancer development. Mechano-reciprocity has emerged as a crucial factor affecting anti-cancer drug resistance during adjuvant therapy. Here, we investigated the focal adhesion kinase (FAK)/Yes-associated protein (YAP) signaling axis as a prospective strategy for circumventing cisplatin resistance in ovarian cancer (OC). The Cancer Genome Atlas (TCGA) data analysis revealed that FAK overexpression significantly correlated with unfavorable clinical outcomes in patients with ovarian cancer. AFM indentation experiments showed that cell elasticity depends on FAK activity. Notably, the combination of FAK inhibition and cisplatin treatment led to a 69 % reduction in the IC50 of cisplatin. This combined treatment also increased apoptosis compared to the individual treatments, along with the upregulation of the pro-apoptotic factor BAX and cleaved PARP. Suppressing FAK expression sequestered YAP in the cytosol, potentially reducing cellular proliferation and promoting apoptosis. Moreover, reduced FAK expression sensitized drug-resistant OC cells to cisplatin treatment owing to a decrease in nuclear tension, allowing the relocation of YAP to the cytosol. In a mouse model, the co-administration of an FAK inhibitor and cisplatin significantly suppressed tumor growth and increased apoptotic events and DNA fragmentation. Our findings suggest that drug resistance can be attributed to the perturbation of mechanosensing signaling pathways, which drive the mechanical reinforcement of cancer cells. OC cells can restore their sensitivity to cisplatin treatment by strategically reducing YAP localization in the nucleus through FAK downregulation.
Collapse
Affiliation(s)
- Loi Nguyen Dang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jinsol Choi
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Eunhee Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Yeonju Lim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Won Kwon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
8
|
Coelho LL, Vianna MM, da Silva DM, Gonzaga BMDS, Ferreira RR, Monteiro AC, Bonomo AC, Manso PPDA, de Carvalho MA, Vargas FR, Garzoni LR. Spheroid Model of Mammary Tumor Cells: Epithelial-Mesenchymal Transition and Doxorubicin Response. BIOLOGY 2024; 13:463. [PMID: 39056658 PMCID: PMC11273983 DOI: 10.3390/biology13070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.
Collapse
Affiliation(s)
- Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Matheus Menezes Vianna
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Debora Moraes da Silva
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University (UFF), Rio de Janeiro 24020-150, Brazil;
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Adriana Cesar Bonomo
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Pedro Paulo de Abreu Manso
- Laboratory of Pathology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | | | - Fernando Regla Vargas
- Laboratory of Epidemiology of Congenital Malformations, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| |
Collapse
|
9
|
Gayan S, Teli A, Sonawane A, Dey T. Impact of Chemotherapeutic Stress Depends on The Nature of Breast Cancer Spheroid and Induce Behavioral Plasticity to Resistant Population. Adv Biol (Weinh) 2024; 8:e2300271. [PMID: 38063815 DOI: 10.1002/adbi.202300271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/20/2023] [Indexed: 04/15/2024]
Abstract
Cellular or tumor dormancy, identified recently as one of the main reasons behind post-therapy recurrence, can be caused by diverse reasons. Chemotherapy has recently been recognized as one of such reasons. However, in-depth studies of chemotherapy-induced dormancy are lacking due to the absence of an in vitro human-relevant model tailor-made for such a scenario. This report utilized multicellular breast cancer spheroid to create a primary platform for establishing a chemotherapy-induced dormancy model. It is observed that extreme chemotherapeutic stress affects invasive and non-invasive spheroids differently. Non-invasive spheroids exhibit more resilience and maintain viability and migrational ability, while invasive spheroids display heightened susceptibility and improved tumorigenic capacity. Heterogenous spheroids exhibit increased tumorigenic capacity while show minimal survival ability. Further probing of chemotherapeutically dormant spheroids is needed to understand the molecular mechanism and identify dormancy-related markers to achieve therapeutic success in the future.
Collapse
Affiliation(s)
- Sukanya Gayan
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Teli
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Sonawane
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Tuli Dey
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
10
|
Capela AM, Tavares-Marcos C, Estima-Arede HF, Nóbrega-Pereira S, Bernardes de Jesus B. NORAD-Regulated Signaling Pathways in Breast Cancer Progression. Cancers (Basel) 2024; 16:636. [PMID: 38339387 PMCID: PMC10854850 DOI: 10.3390/cancers16030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Long non-coding RNA activated by DNA damage (NORAD) has recently been associated with pathologic mechanisms underlying cancer progression. Due to NORAD's extended range of interacting partners, there has been contradictory data on its oncogenic or tumor suppressor roles in BC. This review will summarize the function of NORAD in different BC subtypes and how NORAD impacts crucial signaling pathways in this pathology. Through the preferential binding to pumilio (PUM) proteins PUM1 and PUM2, NORAD has been shown to be involved in the control of cell cycle, angiogenesis, mitosis, DNA replication and transcription and protein translation. More recently, NORAD has been associated with PUM-independent roles, accomplished by interacting with other ncRNAs, mRNAs and proteins. The intricate network of NORAD-mediated signaling pathways may provide insights into the potential design of novel unexplored strategies to overcome chemotherapy resistance in BC treatment.
Collapse
Affiliation(s)
| | | | | | - Sandrina Nóbrega-Pereira
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.C.); (C.T.-M.); (H.F.E.-A.)
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (A.M.C.); (C.T.-M.); (H.F.E.-A.)
| |
Collapse
|
11
|
Karagülle OO, Yurttaş AG. Synergistic effects of ozone with doxorubicin on the proliferation, apoptosis and metastatic profile of luminal-B type human breast cancer cell line. Tissue Cell 2023; 85:102233. [PMID: 37866151 DOI: 10.1016/j.tice.2023.102233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
OBJECTIVE Luminal-B type human breast cancer cell line (BT-474) to assess the synergistic effects of ozone applied after chemotherapeutic treatment with various dosages of doxorubicin, and compare the results with the effects on L929 fibroblast cell line. METHODS Doxorubicin (1-50 M) was added to each cell lines and left to sit for 24 h at 37 °C. Then, as combination groups, half of the groups were incubated with 30 g/mL ozone for 25 min. Tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β), and matrix metalloproteinase-2 and - 9 (MMP-2 and MMP-9) levels were measured using the MTT test, flow cytometry, and immunocytochemistry, respectively. RESULTS When compared to simply doxorubicin-applied cells without ozone treatment, each dose of doxorubicin + ozone treatment considerably boosted L929 viability but significantly decreased BT-474 viability. Additionally, the combination increased the apoptotic impact of doxorubicin on BT-474 but not L929 (P < 0.001). TGF-, MMP-2, and MMP-9 levels of L929 after combination were substantially higher than those of the other groups (P < 0.01). Doxorubicin's effect on BT-474's protein levels, which had significantly decreased in comparison to those of the other groups, was reversed by the combination treatment (P < 0.05). CONCLUSION Doxorubicin's anti-proliferative and apoptotic effects were enhanced by ozone treatment in BT-474 cells, but it also repaired and healed healthy fibroblast cells that had been harmed by the cytotoxicity of the chemotherapy drug. If doxorubicin and ozone treatment are coupled, BT-474 cells may develop resistance to it through expressions of TNF-α, TGF-β, MMP-2, and MMP-9.
Collapse
Affiliation(s)
- Onur Olgaç Karagülle
- Department of General Surgery, Istanbul Education and Research Hospital, University of Health Sciences, Cerrahpaşa, Org. Abdurrahman Nafiz Gürman Cd. No:24 Fatih, 34098, İstanbul, Turkey.
| | - Asiye Gök Yurttaş
- Istanbul Health and Technology University, Faculty of Pharmacy, Biochemistry Department, İstanbul, Turkey.
| |
Collapse
|
12
|
Casagrande N, Borghese C, Avanzo M, Aldinucci D. In Doxorubicin-Adapted Hodgkin Lymphoma Cells, Acquiring Multidrug Resistance and Improved Immunosuppressive Abilities, Doxorubicin Activity Was Enhanced by Chloroquine and GW4869. Cells 2023; 12:2732. [PMID: 38067159 PMCID: PMC10706762 DOI: 10.3390/cells12232732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a highly curable disease (70-80%), even though long-term toxicities, drug resistance, and predicting clinical responses to therapy are major challenges in cHL treatment. To solve these problems, we characterized two cHL cell lines with acquired resistance to doxorubicin, KM-H2dx and HDLM-2dx (HRSdx), generated from KM-H2 and HDLM-2 cells, respectively. HRSdx cells developed cross-resistance to vinblastine, bendamustin, cisplatin, dacarbazine, gemcitabine, brentuximab vedotin (BV), and γ-radiation. Both HDLM-2 and HDLM-2dx cells had intrinsic resistance to BV but not to the drug MMAE. HDLM-2dx acquired cross-resistance to caelyx. HRSdx cells had in common decreased CD71, CD80, CD54, cyt-ROS, HLA-DR, DDR1, and CD44; increased Bcl-2, CD58, COX2, CD26, CCR5, and invasive capability; increased CCL5, TARC, PGE2, and TGF-β; and the capability of hijacking monocytes. In HRSdx cells less sensitive to DNA damage and oxidative stress, the efflux drug transporters MDR1 and MRP1 were not up-regulated, and doxorubicin accumulated in the cytoplasm rather than in the nucleus. Both the autophagy inhibitor chloroquine and extracellular vesicle (EV) release inhibitor GW4869 enhanced doxorubicin activity and counteracted doxorubicin resistance. In conclusion, this study identifies common modulated antigens in HRSdx cells, the associated cross-resistance patterns, and new potential therapeutic options to enhance doxorubicin activity and overcome resistance.
Collapse
Affiliation(s)
- Naike Casagrande
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (C.B.); (D.A.)
| | - Cinzia Borghese
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (C.B.); (D.A.)
| | - Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Donatella Aldinucci
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (C.B.); (D.A.)
| |
Collapse
|
13
|
Barguilla I, Candela-Noguera V, Oliver P, Annangi B, Díez P, Aznar E, Martínez-Máñez R, Marcos R, Hernández A, Marcos MD. Toxicological Profiling and Long-Term Effects of Bare, PEGylated- and Galacto-Oligosaccharide-Functionalized Mesoporous Silica Nanoparticles. Int J Mol Sci 2023; 24:16158. [PMID: 38003350 PMCID: PMC10671840 DOI: 10.3390/ijms242216158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are amongst the most used nanoparticles in biomedicine. However, the potentially toxic effects of MSNs have not yet been fully evaluated, being a controversial matter in research. In this study, bare MSNs, PEGylated MSNs (MSNs-PEG), and galacto-oligosaccharide-functionalized MSNs (MSNs-GAL) are synthesized and characterized to assess their genotoxicity and transforming ability on human lung epithelial BEAS-2B cells in short- (48 h) and long-term (8 weeks) exposure scenarios. Initial short-term treatments show a dose-dependent increase in genotoxicity for MSNs-PEG-treated cells but not oxidative DNA damage for MSNs, MSNs-PEG, or for MSNs-GAL. In addition, after 8 weeks of continuous exposure, neither induced genotoxic nor oxidative DNA is observed. Nevertheless, long-term treatment with MSNs-PEG and MSNs-GAL, but not bare MSNs, induces cell transformation features, as evidenced by the cell's enhanced ability to grow independently of anchorage, to migrate, and to invade. Further, the secretome from cells treated with MSNs and MSNs-GAL, but not MSNs-PEG, shows certain tumor-promoting abilities, increasing the number and size of HeLa cell colonies formed in the indirect soft-agar assay. These results show that MSNs, specifically the functionalized ones, provoke some measurable adverse effects linked to tumorigenesis. These effects are in the order of other nanomaterials, such as carbon nanotubes or cerium dioxide nanoparticles, but they are lower than those provoked by some approved drugs, such as doxorubicin or dexamethasone.
Collapse
Affiliation(s)
- Irene Barguilla
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Vicente Candela-Noguera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Patrick Oliver
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Balasubramanyam Annangi
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Paula Díez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain (R.M.)
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, 46026 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Bernardo T, Behrends C, Klein D, Kuntze A, Timmermann B, von Neubeck C. Similar additive effects of doxorubicin in combination with photon or proton irradiation in soft tissue sarcoma models. Front Oncol 2023; 13:1211984. [PMID: 37503316 PMCID: PMC10368985 DOI: 10.3389/fonc.2023.1211984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
High-precision radiotherapy with proton beams is frequently used in the management of aggressive soft tissue sarcoma (STS) and is often combined with doxorubicin (Dox), the first-line chemotherapy for STS. However, current treatment approaches continue to result in high local recurrence rates often occurring within the treatment field. This strongly indicates the need of optimized treatment protocols taking the vast heterogeneity of STS into account, thereby fostering personalized treatment approaches. Here, we used preclinical STS models to investigate the radiation response following photon (X) or proton (H) irradiation alone and in combination with different treatment schedules of Dox. As preclinical models, fibrosarcoma (HT-1080), undifferentiated pleiomorphic sarcoma (GCT), and embryonal rhabdomyosarcoma (RD) cell lines were used; the latter two are mutated for TP53. The cellular response regarding clonogenic survival, apoptosis, cell-cycle distribution, proliferation, viability, morphology, and motility was investigated. The different STS cell types revealed a dose-dependent radiation response with reduced survival, proliferation, viability, and motility whereas G2/M phase arrest as well as apoptosis were induced. RD cells showed the most radiosensitive phenotype; the linear quadratic model fit could not be applied. In combined treatment schedules, Dox showed the highest efficiency when applied after or before and after radiation; Dox treatment only before radiation was less efficient. GCT cells were the most chemoresistant cell line in this study most probably due to their TP53 mutation status. Interestingly, similar additive effects could be observed for X or H irradiation in combination with Dox treatment. However, the additive effects were determined more frequently for X than for H irradiation. Thus, further investigations are needed to specify alternative drug therapies that display superior efficacy when combined with H therapy.
Collapse
Affiliation(s)
- Teresa Bernardo
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carina Behrends
- West German Proton Therapy Center Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
- Faculty of Physics, Technical University (TU) Dortmund University, Dortmund, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Kuntze
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- West German Proton Therapy Center Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Wiggins L, Lord A, Murphy KL, Lacy SE, O'Toole PJ, Brackenbury WJ, Wilson J. The CellPhe toolkit for cell phenotyping using time-lapse imaging and pattern recognition. Nat Commun 2023; 14:1854. [PMID: 37012230 PMCID: PMC10070448 DOI: 10.1038/s41467-023-37447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
With phenotypic heterogeneity in whole cell populations widely recognised, the demand for quantitative and temporal analysis approaches to characterise single cell morphology and dynamics has increased. We present CellPhe, a pattern recognition toolkit for the unbiased characterisation of cellular phenotypes within time-lapse videos. CellPhe imports tracking information from multiple segmentation and tracking algorithms to provide automated cell phenotyping from different imaging modalities, including fluorescence. To maximise data quality for downstream analysis, our toolkit includes automated recognition and removal of erroneous cell boundaries induced by inaccurate tracking and segmentation. We provide an extensive list of features extracted from individual cell time series, with custom feature selection to identify variables that provide greatest discrimination for the analysis in question. Using ensemble classification for accurate prediction of cellular phenotype and clustering algorithms for the characterisation of heterogeneous subsets, we validate and prove adaptability using different cell types and experimental conditions.
Collapse
Affiliation(s)
- Laura Wiggins
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Alice Lord
- Department of Biology, University of York, York, UK
| | - Killian L Murphy
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | - Stuart E Lacy
- Wolfson Atmospheric Chemistry Laboratories, University of York, York, UK
| | - Peter J O'Toole
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - William J Brackenbury
- York Biomedical Research Institute, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Julie Wilson
- Department of Mathematics, University of York, York, UK.
| |
Collapse
|
16
|
Amalina ND, Salsabila IA, Zulfin UM, Jenie RI, Meiyanto E. In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells. J Egypt Natl Canc Inst 2023; 35:6. [PMID: 36967442 DOI: 10.1186/s43046-023-00166-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1.
Methods
Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay’s method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO).
Results
Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies.
Conclusion
These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.
Collapse
|
17
|
Co-Encapsulation of Simvastatin and Doxorubicin into pH-Sensitive Liposomes Enhances Antitumoral Activity in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15020369. [PMID: 36839690 PMCID: PMC9960841 DOI: 10.3390/pharmaceutics15020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic drug used as the first line in breast cancer treatment; however, cardiotoxicity is the main drawback of the therapy. Preclinical studies evidenced that the association of simvastatin (SIM) with DOX leads to a better prognosis with reduced side effects and deaths. In this work, a novel pH-sensitive liposomal formulation capable of co-encapsulating DOX and SIM at different molar ratios was investigated for its potential in breast tumor treatment. Studies on physicochemical characterization of the liposomal formulations were carried out. The cytotoxic effects of DOX, SIM, and their combinations at different molar ratios (1:1; 1:2 and 2:1), free or co-encapsulated into pH-sensitive liposomes, were evaluated against three human breast cancer cell lines (MDA-MB-231, MCF-7, and SK-BR-3). Experimental protocols included cell viability, combination index, nuclear morphological changes, and migration capacity. The formulations showed a mean diameter of less than 200 nm, with a polydispersity index lower than 0.3. The encapsulation content was ~100% and ~70% for DOX and SIM, respectively. A more pronounced inhibitory effect on breast cancer cell lines was observed at a DOX:SIM molar ratio of 2:1 in both free and encapsulated drugs. Furthermore, the 2:1 ratio showed synergistic combination rates for all concentrations of cell inhibition analyzed (50, 75, and 90%). The results demonstrated the promising potential of the co-encapsulated liposome for breast tumor treatment.
Collapse
|
18
|
Wang J, Wang F, Xie D, Zhou M, Liao J, Wu H, Dai Y, Huang J, Zhao Y. PLGA Nanoparticles Containing VCAM-1 Inhibitor Succinobucol and Chemotherapeutic Doxorubicin as Therapy against Primary Tumors and Their Lung Metastases. Pharmaceutics 2023; 15:pharmaceutics15020349. [PMID: 36839671 PMCID: PMC9958791 DOI: 10.3390/pharmaceutics15020349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The treatment of malignant tumors is usually accompanied by poor prognosis due to metastasis of tumor cells. Hence, it is crucial to enhance anti-metastasis efficacy when anti-tumor treatments are conducted. It has been reported that the vascular cell adhesion molecule-1 (VCAM-1) is highly expressed on the surface of tumor cells and plays an essential role in the metastasis of tumor cells. Thus, reducing VCAM-1 expression offers hope for inhibiting the metastasis of tumor cells. Evidence has shown that succinobucol (Suc) can selectively and efficiently inhibit VCAM-1 expression. Inspired by these, we designed dual drug-loaded PLGA nanoparticles (Co-NPs) to co-deliver VCAM-1 inhibitor Suc and the chemotherapeutic doxorubicin (Dox) which could both effectively suppress primary melanoma and its lung metastases. Co-NPs were composed of PLGA encapsulated Suc and Dox as hydrophobic cores and DSPE-mPEG2000 as surface modification materials. With an appropriate particle size (122.4 nm) and a negatively charged surface (-6.77 mV) we could achieve prolonged blood circulation. The in vitro experiments showed that Co-NPs had potent cytotoxicity against B16F10 cells and could significantly inhibit VCAM-1 expression and migration of B16F10 cells. Additionally, the in vivo experiments showed that Co-NPs could efficiently suppress not only primary melanoma but also its lung metastases. In conclusion, PLGA nanoparticles containing VCAM-1 inhibitor Suc and chemotherapeutic Dox as therapy against primary tumors and their lung metastases provides a promising drug delivery strategy for the treatment of metastatic malignant tumors.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jiaxing Liao
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Hongliang Wu
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yue Dai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
- Correspondence: (J.H.); (Y.Z.)
| | - Yu Zhao
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
- Correspondence: (J.H.); (Y.Z.)
| |
Collapse
|
19
|
Liu CL, Cheng SP, Huang WC, Chen MJ, Lin CH, Chen SN, Chang YC. Aberrant Expression of Solute Carrier Family 35 Member A2 Correlates With Tumor Progression in Breast Cancer. In Vivo 2023; 37:262-269. [PMID: 36593004 PMCID: PMC9843756 DOI: 10.21873/invivo.13076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM A recent study suggested that solute carrier family 35 member A2 (SLC35A2) is related to poor prognosis in patients with breast cancer. SLC35A2 transports uridine diphosphate-galactose from the cytosol to the lumen of the endoplasmic reticulum and Golgi. MATERIALS AND METHODS Immunohistochemical expression of SLC35A2 was evaluated using tissue microarrays. Cell growth, migration, and invasion of breast cancer cells were examined following loss- and gain-of-expression of SLC35A2. RESULTS Normal breast tissue exhibited SLC35A2 immunoreactivity in the nucleus. A progressive increase in cytoplasmic expression from in situ carcinoma to invasive carcinoma was observed. There was a correlation between cytoplasmic SLC35A2 expression and breast cancer stage (p<0.001). MDA-MB-468 and MCF-7 cells transfected with SLC35A2 shRNA had unchanged cell viability but significantly reduced cell migration and invasion. In contrast, MDA-MB-231 and HCC1806 cells transfected with the SLC35A2 expression vector showed increased migration. CONCLUSION Breast cancer progression is accompanied by differential expression patterns of SLC35A2. The migratory or invasive capacity of breast cancer cells is associated with SLC35A2 expression.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, R.O.C
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, R.O.C
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, R.O.C
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan, R.O.C
| | - Shan-Na Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, R.O.C
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, R.O.C.;
| |
Collapse
|
20
|
Demeule M, Charfi C, Currie JC, Zgheib A, Danalache BA, Béliveau R, Marsolais C, Annabi B. The TH1902 Docetaxel Peptide-Drug Conjugate Inhibits Xenografts Growth of Human SORT1-Positive Ovarian and Triple-Negative Breast Cancer Stem-like Cells. Pharmaceutics 2022; 14:1910. [PMID: 36145658 PMCID: PMC9503230 DOI: 10.3390/pharmaceutics14091910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Breast and ovarian cancer stem cells (CSC) can contribute to the invasive and chemoresistance phenotype of tumors. TH1902, a newly developed sortilin (SORT1)-targeted peptide-docetaxel conjugate is currently in phase-1 clinical trial. Whether TH1902 impacts the chemoresistance phenotype of human triple-negative breast CSC (hTNBCSC) and ovarian CSC (hOvCSC) is unknown. Methods and Results: Immunophenotyping of hTNBCSC and hOvCSC was performed by flow cytometry and confirmed the expression of SORT1, and of CSC markers CD133, NANOG, and SOX2. Western blotting demonstrated the expression of the drug efflux pumps from the P-gp family members, ABCB1 and ABCB5. The cellular uptake of the fluorescent Alexa488-peptide from TH1902 was inhibited upon siRNA-mediated repression of SORT1 or upon competition with SORT1 ligands. In contrast to docetaxel, TH1902 inhibited in vitro migration, induced cell apoptosis and lead to G2/M cell cycle arrest of the hTNBCSC. These events were unaffected by the presence of the P-gp inhibitors cyclosporine A or PSC-833. In vivo, using immunosuppressed nude mice xenografts, TH1902 significantly inhibited the growth of hTNBCSC and hOvCSC xenografts (~80% vs. ~35% for docetaxel) when administered weekly as intravenous bolus for three cycles at 15 mg/kg, a dose equivalent to the maximal tolerated dose of docetaxel. Therapeutic efficacy was further observed when carboplatin was combined to TH1902. Conclusions: Overall, TH1902 exerts a superior anticancer activity than the unconjugated docetaxel, in part, by circumventing the CSC drug resistance phenotype that could potentially reduce cancer recurrence attributable to CSC.
Collapse
Affiliation(s)
| | - Cyndia Charfi
- Theratechnologies Inc., Montréal, QC H3A 1T8, Canada
| | | | - Alain Zgheib
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Bogdan Alexandru Danalache
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | - Richard Béliveau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
21
|
Godinho-Pereira J, Lopes MD, Garcia AR, Botelho HM, Malhó R, Figueira I, Brito MA. A Drug Screening Reveals Minocycline Hydrochloride as a Therapeutic Option to Prevent Breast Cancer Cells Extravasation across the Blood-Brain Barrier. Biomedicines 2022; 10:1988. [PMID: 36009536 PMCID: PMC9405959 DOI: 10.3390/biomedicines10081988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Among breast cancer (BC) patients, 15-25% develop BC brain metastases (BCBM), a severe condition due to the limited therapeutic options, which points to the need for preventive strategies. We aimed to find a drug able to boost blood-brain barrier (BBB) properties and prevent BC cells (BCCs) extravasation, among PI3K, HSP90, and EGFR inhibitors and approved drugs. We used BCCs (4T1) and BBB endothelial cells (b.End5) to identify molecules with toxicity to 4T1 cells and safe for b.End5 cells. Moreover, we used those cells in mixed cultures to perform a high-throughput microscopy screening of drugs' ability to ameliorate BBB properties and prevent BCCs adhesion and migration across the endothelium, as well as to analyse miRNAs expression and release profiles. KW-2478, buparlisib, and minocycline hydrochloride (MH) promoted maximal expression of the junctional protein β-catenin and induced 4T1 cells nucleus changes. Buparlisib and MH further decreased 4T1 adhesion. MH was the most promising in preventing 4T1 migration and BBB disruption, tumour and endothelial cytoskeleton-associated proteins modifications, and miRNA deregulation. Our data revealed MH's ability to improve BBB properties, while compromising BCCs viability and interaction with BBB endothelial cells, besides restoring miRNAs' homeostasis, paving the way for MH repurposing for BCBM prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Margarida Dionísio Lopes
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Hugo M. Botelho
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
22
|
Piazzesi A, Afsar SY, van Echten‐Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer's help is another's hindrance. Mol Oncol 2021; 15:3256-3279. [PMID: 34289244 PMCID: PMC8637577 DOI: 10.1002/1878-0261.13063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer development is a multistep process in which cells must overcome a series of obstacles before they can become fully developed tumors. First, cells must develop the ability to proliferate unchecked. Once this is accomplished, they must be able to invade the neighboring tissue, as well as provide themselves with oxygen and nutrients. Finally, they must acquire the ability to detach from the newly formed mass in order to spread to other tissues, all the while evading an immune system that is primed for their destruction. Furthermore, increased levels of inflammation have been shown to be linked to the development of cancer, with sites of chronic inflammation being a common component of tumorigenic microenvironments. In this Review, we give an overview of the impact of sphingolipid metabolism in cancers, from initiation to metastatic dissemination, as well as discussing immune responses and resistance to treatments. We explore how sphingolipids can either help or hinder the progression of cells from a healthy phenotype to a cancerous one.
Collapse
Affiliation(s)
- Antonia Piazzesi
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | | |
Collapse
|
23
|
The Motility and Mesenchymal Features of Breast Cancer Cells Correlate with the Levels and Intracellular Localization of Transglutaminase Type 2. Cells 2021; 10:cells10113059. [PMID: 34831282 PMCID: PMC8616519 DOI: 10.3390/cells10113059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
We have investigated motility in breast cancer cell lines in association with the expression of Transglutaminase type 2 (TG2) as well as upon the administration of Doxorubicin (Dox), an active cytotoxic agent that is employed in chemotherapy. The exposure of MCF-7 cells to the drug increased TG2 levels, triggering epithelial–mesenchymal transition (EMT), thereby supporting cell motility. The effects of Dox on the movement of MCF-7 cells were counteracted by treatment with NC9, a TG2 inhibitor, which induced morphological changes and also reduced the migration of MDA-MB-231 cells exhibiting high levels of TG2. The physical association of TG2 with the cytoskeletal component vimentin appeared pivotal both in drug-treated MCF-7 and in MDA-MB-231 cells and seemed to be independent of the catalytic activity of TG2. NC9 altered the subcellular distribution of TG2 and, consequently, the co-localization of TG2 with vimentin. Furthermore, NC9 induced a nuclear accumulation of TG2 as a prelude to TG2-dependent gene expression modifications. Since enzyme activity can affect both motility and nuclear functions, targeting of this protein could represent a method to improve therapeutic interventions in breast tumors, particularly those to control progression and to limit drug resistance.
Collapse
|
24
|
Mohammed S, Shamseddine AA, Newcomb B, Chavez RS, Panzner TD, Lee AH, Canals D, Okeoma CM, Clarke CJ, Hannun YA. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res 2021; 23:76. [PMID: 34315513 PMCID: PMC8317414 DOI: 10.1186/s13058-021-01452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.
Collapse
Affiliation(s)
- Samia Mohammed
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Achraf A Shamseddine
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Benjamin Newcomb
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Ronald S Chavez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA
| | - Tyler D Panzner
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Allen H Lee
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Daniel Canals
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA
| | - Chioma M Okeoma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA
| | - Christopher J Clarke
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
| | - Yusuf A Hannun
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794- 8430, USA.
- Stony Brook University Cancer Center, MART Level 9, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- Department of Medicine, Stony Brook University, Health Science Center, Hospital Pavilion Level 5, Stony Brook, NY, 11794-8430, USA.
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794-8430, USA.
- The Northport Veterans Affairs Hospital, Northport, NY, 11768, USA.
| |
Collapse
|
25
|
Caballero D, Brancato V, Lima AC, Abreu CM, Neves NM, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Tumor-Associated Protrusion Fluctuations as a Signature of Cancer Invasiveness. Adv Biol (Weinh) 2021; 5:e2101019. [PMID: 34218529 DOI: 10.1002/adbi.202101019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The generation of invasive fluctuating protrusions is a distinctive feature of tumor dissemination. During the invasion, individual cancer cells modulate the morphodynamics of protrusions to optimize their migration efficiency. However, it remains unclear how protrusion fluctuations govern the invasion of more complex multi-cellular structures, such as tumors, and their correlation with the tumor metastatic potential. Herein, a reductionist approach based on 3D tumor cell micro-spheroids with different invasion capabilities is used as a model to decipher the role of tumor-associated fluctuating protrusions in cancer progression. To quantify fluctuations, a set of key biophysical parameters that precisely correlate with the invasive potential of tumors is defined. It is shown that different pharmacological drugs and cytokines are capable of modulating protrusion activity, significantly altering protrusion fluctuations, and tumor invasiveness. This correlation is used to define a novel quantitative invasion index encoding the key biophysical parameters of fluctuations and the relative levels of cell-cell/matrix interactions, which is capable of assessing the tumor's metastatic capability solely based on its magnitude. Overall, this study provides new insights into how protrusion fluctuations regulate tumor cell invasion, suggesting that they may be employed as a novel early indicator, or biophysical signature, of the metastatic potential of tumors.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Virginia Brancato
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
26
|
Moccia C, Haase K. Engineering Breast Cancer On-chip-Moving Toward Subtype Specific Models. Front Bioeng Biotechnol 2021; 9:694218. [PMID: 34249889 PMCID: PMC8261144 DOI: 10.3389/fbioe.2021.694218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second leading cause of death among women worldwide, and while hormone receptor positive subtypes have a clear and effective treatment strategy, other subtypes, such as triple negative breast cancers, do not. Development of new drugs, antibodies, or immune targets requires significant re-consideration of current preclinical models, which frequently fail to mimic the nuances of patient-specific breast cancer subtypes. Each subtype, together with the expression of different markers, genetic and epigenetic profiles, presents a unique tumor microenvironment, which promotes tumor development and progression. For this reason, personalized treatments targeting components of the tumor microenvironment have been proposed to mitigate breast cancer progression, particularly for aggressive triple negative subtypes. To-date, animal models remain the gold standard for examining new therapeutic targets; however, there is room for in vitro tools to bridge the biological gap with humans. Tumor-on-chip technologies allow for precise control and examination of the tumor microenvironment and may add to the toolbox of current preclinical models. These new models include key aspects of the tumor microenvironment (stroma, vasculature and immune cells) which have been employed to understand metastases, multi-organ interactions, and, importantly, to evaluate drug efficacy and toxicity in humanized physiologic systems. This review provides insight into advanced in vitro tumor models specific to breast cancer, and discusses their potential and limitations for use as future preclinical patient-specific tools.
Collapse
Affiliation(s)
| | - Kristina Haase
- European Molecular Biology Laboratory, European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells 2021; 10:cells10061504. [PMID: 34203746 PMCID: PMC8232646 DOI: 10.3390/cells10061504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.
Collapse
|
28
|
miR-154-3p and miR-487-3p synergistically modulate RHOA signaling in the carcinogenesis of thyroid cancer. Biosci Rep 2021; 40:221457. [PMID: 31820783 PMCID: PMC6944667 DOI: 10.1042/bsr20193158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background: miRs family members are often thought to have extensively overlapping targets and synergistically to modulate target gene expression via post-transcriptional repression. The present study was to determine whether miR-154-3p and miR-487-3p synergistically collaborated to regulate RHOA signaling in the carcinogenesis of thyroid cancer. Materials and methods: Candidate miRs were filtrated using miR microarray assays. Gene and protein expression levels were analyzed using RT-qPCR and Western blotting, respectively. Cell growth was evaluated using CCK8 assays and nude-mouse transplanted tumor experiments. Cell apoptosis was detected using Annexin V-FITC double staining. Results: miR-154-3p and miR-487-3p were significantly decreased in 63 thyroid cancer tissues and cell lines compared with those in paired non-tumor tissues and normal thyroid follicular epithelial cells. Low expression levels of miR-154-3p and miR-487-3p significantly correlated with tumor size, TNM stage, histological grade, lymph node metastasis and shorter overall survival in patients with thyroid cancer. Furthermore, the protein expression of RHOA was significantly inversely correlated with miR-154-3p (r = −0.404; P = 0.001) and miR-487-3p (r = −0.456; P < 0.001) expression in thyroid cancer tissues. We experimentally validated that miR-154-3p and miR-487-3p synergistically blocked thyroid cancer cell growth in vitro and in vivo. However, the anti-proliferative and pro-apoptotic activities of miR-154-3p/487-3p were neutralized by RHOA overexpressed vectors. Conclusions: Our present findings expounded a novel signal cascade employing miR-154-3p/487-3p and RHOA to fine-tune thyroid cancer cell proliferation and apoptosis. We corroborated that suppression of RHOA by miR-154-3p/487-3p may be a valuable therapeutic target for impeding thyroid cancer progression.
Collapse
|
29
|
Zhuang J, Chen S, Hu Y, Yang F, Huo Q, Xie N. Tumour-Targeted and Redox-Responsive Mesoporous Silica Nanoparticles for Controlled Release of Doxorubicin and an siRNA Against Metastatic Breast Cancer. Int J Nanomedicine 2021; 16:1961-1976. [PMID: 33727809 PMCID: PMC7954039 DOI: 10.2147/ijn.s278724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Metastatic breast cancer seriously harms women's health and is currently the tumour type with the highest mortality rate in women. Recently, the combinatorial therapeutic approaches that integrate anti-cancer drugs and genetic agents is an attractive and promising strategy for the treatment of metastatic breast cancer. Moreover, such a combination strategy requires better drug carriers that can effectively deliver the cargo to the breast cancer cells and achieve controlled release in the cells to achieve better therapeutic effects. METHODS The tumour-targeted and redox-responsive mesoporous silica nanoparticles (MSNs) functionalised with DNA aptamers (AS1411) as a co-delivery system was developed and investigated for the potential against metastatic breast cancer. Doxorubicin (Dox) was loaded onto the MSNs, while AS1411 and a small interfering RNA (siTIE2) were employed as gatekeepers via attachment to the MSNs with redox-sensitive disulfide bonds. RESULTS The controlled release of Dox and siTIE2 was associated with intracellular glutathione. AS1411 mediated the targeted delivery of Dox by increasing its cellular uptake in metastatic breast cancer, ultimately resulting in a lower IC50 in MDA-MB-231 cells (human breast cancer cell line with high metastatic potency), improved biodistribution in tumour-bearing mice, and enhanced in vivo anti-tumour effects. The in vitro cell migration/invasion assay and in vivo anti-metastatic study revealed synergism in the co-delivery system that suppresses cancer cell metastasis. CONCLUSION The tumour-targeted and redox-responsive MSN prepared in this study are promising for the effective delivery and controlled release of Dox and siTIE2 for improved treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Jialang Zhuang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518035, People’s Republic of China
| | - Siqi Chen
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
- Graduate School of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Ye Hu
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fan Yang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Qin Huo
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| |
Collapse
|
30
|
Canals D, Salamone S, Santacreu BJ, Aguilar D, Hernandez-Corbacho MJ, Ostermeyer-Fay AG, Greene M, Nemeth E, Haley JD, Obeid LM, Hannun YA. The doxorubicin-induced cell motility network is under the control of the ceramide-activated protein phosphatase 1 alpha. FASEB J 2021; 35:e21396. [PMID: 33583073 PMCID: PMC8220868 DOI: 10.1096/fj.202002427r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
We have recently reported that a specific pool of ceramide, located in the plasma membrane, mediated the effects of sublethal doses of the chemotherapeutic compound doxorubicin on enhancing cancer cell migration. We identified neutral sphingomyelinase 2 (nSMase2) as the enzyme responsible to generate this bioactive pool of ceramide. In this work, we explored the role of members of the protein phosphatases 1 family (PP1), and we identified protein phosphatase 1 alpha isoform (PP1 alpha) as the specific PP1 isoform to mediate this phenotype. Using a bioinformatics approach, we build a functional interaction network based on phosphoproteomics data on plasma membrane ceramide. This led to the identification of several ceramide-PP1 alpha downstream substrates. Studies on phospho mutants of ezrin (T567) and Scrib (S1378/S1508) demonstrated that their dephosphorylation is sufficient to enhance cell migration. In summary, we identified a mechanism where reduced doses of doxorubicin result in the dysregulation of cytoskeletal proteins and enhanced cell migration. This mechanism could explain the reported effects of doxorubicin worsening cancer metastasis in animal models.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Facultad de Farmacia y Bioquimica, Catedra de Biologia Celular y Molecular, Buenos Aires, Argentina
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | | | - Meaghan Greene
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John D. Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook University, NY, USA
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Northport VA Hospital, Northport, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
- Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
31
|
Liu CL, Cheng SP, Chen MJ, Lin CH, Chen SN, Kuo YH, Chang YC. Quinolinate Phosphoribosyltransferase Promotes Invasiveness of Breast Cancer Through Myosin Light Chain Phosphorylation. Front Endocrinol (Lausanne) 2021; 11:621944. [PMID: 33613454 PMCID: PMC7890081 DOI: 10.3389/fendo.2020.621944] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Perturbed Nicotinamide adenine dinucleotide (NAD+) homeostasis is involved in cancer progression and metastasis. Quinolinate phosphoribosyltransferase (QPRT) is the rate-limiting enzyme in the kynurenine pathway participating in NAD+ generation. In this study, we demonstrated that QPRT expression was upregulated in invasive breast cancer and spontaneous mammary tumors from MMTV-PyVT transgenic mice. Knockdown of QPRT expression inhibited breast cancer cell migration and invasion. Consistently, ectopic expression of QPRT promoted cell migration and invasion in breast cancer cells. Treatment with QPRT inhibitor (phthalic acid) or P2Y11 antagonist (NF340) could reverse the QPRT-induced invasiveness and phosphorylation of myosin light chain. Similar reversibility could be observed following treatment with Rho inhibitor (Y16), ROCK inhibitor (Y27632), PLC inhibitor (U73122), or MLCK inhibitor (ML7). Altogether, these results indicate that QPRT enhanced breast cancer invasiveness probably through purinergic signaling and might be a potential prognostic indicator and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Shan-Na Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hue Kuo
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
32
|
Sharma S, Kalra H, Akundi RS. Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2. Front Pharmacol 2021; 11:617211. [PMID: 33584298 PMCID: PMC7873692 DOI: 10.3389/fphar.2020.617211] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays a major role in the ability of the tumor cells to undergo metastasis. A major player of tumors gaining metastatic property is the inflammatory protein, cyclooxygenase 2 (COX-2). Several tumors show upregulation of this protein, which has been implicated in mediating metastasis in various cancer types such as of colon, breast and lung. In this report, we show that the concentration of extracellular ATP (eATP) is increased in response to cell death mediated by chemotherapeutic agents such as doxorubicin. By using three different cell-lines-HeLa (cervical), IMR-32 (neuronal) and MCF-7 (breast)-we show that this eATP goes on to act on purinergic (P2) receptors. Among the various P2 receptors expressed in these cells we identified P2X7, in IMR-32 and MCF-7 cells, and P2Y12, in HeLa cells, as important in modulating cell migration and invasion. Downstream of the P2 receptor activation, both p42/44 mitogen-activated protein kinase (MAPK) and the p38 MAPK are activated in these cells. These result in an increase in the expression of COX-2 mRNA and protein. We also observe an increase in the activity of matrix metalloproteinase 2 (MMP-2) enzyme in these cells. Blocking the P2 receptors not only blocks migration and invasion, but also COX-2 synthesis and MMP-2 activity. Our results show the link between purinergic receptors and COX-2 expression. Increased levels of ATP in the tumor microenvironment, therefore, leads to increased COX-2 expression, which, in turn, affords migratory and invasive properties to the tumor. This provides P2 receptor-based anti-inflammatory drugs (PBAIDs) a potential opportunity to be explored as cancer therapeutics.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Harshit Kalra
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
33
|
Wills CA, Liu X, Chen L, Zhao Y, Dower CM, Sundstrom J, Wang HG. Chemotherapy-Induced Upregulation of Small Extracellular Vesicle-Associated PTX3 Accelerates Breast Cancer Metastasis. Cancer Res 2020; 81:452-463. [PMID: 33115808 DOI: 10.1158/0008-5472.can-20-1976] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Although neoadjuvant chemotherapy is a standard component of breast cancer treatment, recent evidence suggests that chemotherapeutic drugs can promote metastasis through poorly defined mechanisms. Here we utilize xenograft mouse models of triple-negative breast cancer to explore the importance of chemotherapy-induced tumor-derived small extracellular vesicles (sEV) in metastasis. Doxorubicin (DXR) enhanced tumor cell sEV secretion to accelerate pulmonary metastasis by priming the premetastatic niche. Proteomic analysis and CRISPR/Cas9 gene editing identified the inflammatory glycoprotein PTX3 enriched in DXR-elicited sEV as a critical regulator of chemotherapy-induced metastasis. Both genetic inhibition of sEV secretion from primary tumors and pharmacologic inhibition of sEV uptake in secondary organs suppressed metastasis following chemotherapy. Taken together, this research uncovers a mechanism of chemotherapy-mediated metastasis by which drug-induced upregulation of sEV secretion and PTX3 protein cargo primes the premetastatic niche and suggests that inhibition of either sEV uptake in secondary organs or secretion from primary tumor cells may be promising therapeutic strategies to suppress metastasis. SIGNIFICANCE: These findings show that chemotherapy-induced small extracellular vesicles accelerate breast cancer metastasis, and targeted inhibition of tumor-derived vesicles may be a promising therapeutic strategy to improve the efficacy of chemotherapy treatment.
Collapse
Affiliation(s)
- Carson A Wills
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Xiaoming Liu
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Longgui Chen
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Yuanjun Zhao
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Christopher M Dower
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jeffrey Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
34
|
Canals D, Salamone S, Santacreu BJ, Nemeth E, Aguilar D, Hernandez-Corbacho MJ, Adada M, Staquicini DI, Arap W, Pasqualini R, Haley J, Obeid LM, Hannun YA. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J 2020; 34:7610-7630. [PMID: 32307766 PMCID: PMC8265206 DOI: 10.1096/fj.202000205r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | - Mohamad Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Northport VA Hospital
- Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biochemistry, Stony Brook University
- Stony Brook Cancer Center, Stony Brook, NY, United States
| |
Collapse
|
35
|
Chintalaramulu N, Vadivelu R, Nguyen NT, Cock IE. Lapatinib inhibits doxorubicin induced migration of HER2-positive breast cancer cells. Inflammopharmacology 2020; 28:1375-1386. [PMID: 32378049 DOI: 10.1007/s10787-020-00711-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory breast cancer (IBC) is an uncommon and highly aggressive form of breast cancer. The disease is characterized by rapid progression with approximately 50% of IBC patients to have human epidermal growth factor receptor 2 (HER2) amplification. HER2-positive IBC is associated with unfavourable prognosis and increased risk of brain metastasis. Ironically, HER2-positive metastatic breast cancer is still prevalent where therapeutic targeting of HER2-receptor is well developed. In addition, the ability to accurately predict the risk of metastatic potential in these cells poses a substantial challenge. Lapatinib (Lap), a dual kinase inhibitor of HER2 and epidermal growth factor receptor is used in the treatment of advanced HER-2 positive breast cancers and is currently being evaluated in the adjuvant setting. In this study, we report the effectiveness of Lap in the suppression of low-dose response to doxorubicin (Dox) in HER2-positive SKBR3 cells. Upon treatment of SKBR3 cells with 0.1 µM of Dox, the cell viability was significantly increased as compared to the human mammary fibroblasts, and triple-negative human breast cancer MDA-MB-231 cells. Interestingly, the effect of 0.1 µM Dox revealed morphological changes consistent with a significant increase in the formation of prominent F-actin filaments and mitochondrial spread compared with the control SKBR3 cells. Furthermore, an enhanced migration was also evident in these cells. However, a combinational dose of 0.1 µM Dox + 5 µM Lap suppressed the observed phenotypic changes in the 0.1 µM Dox treated SKBR3 cells. There was a significant difference in the prominent F-actin filaments and the mitochondrial spread compared with the 0.1 µM Dox versus combination regimen of 0.1 µM Dox + 5 µM Lap. In addition, the combinational therapy showed a decrease in the percentage of wound closure when compared to the control. Hence, the combinational therapy in which Lap suppresses the low-dose effect of Dox in SKBR3 cells may provide an effective intervention strategy for reducing the risk of metastasis in HER2-positive breast cancers.
Collapse
Affiliation(s)
- Naveen Chintalaramulu
- School of Environment and Science, Nathan Campusampus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia
| | - Raja Vadivelu
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia.
- Department of Chemical System Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo, 113-8656, Japan.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campusampus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia.
- Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
36
|
Bober P, Alexovič M, Tomková Z, Kilík R, Sabo J. RHOA and mDia1 Promotes Apoptosis of Breast Cancer Cells Via a High Dose of Doxorubicin Treatment. Open Life Sci 2019; 14:619-627. [PMID: 33817200 PMCID: PMC7874778 DOI: 10.1515/biol-2019-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Background Transforming RhoA proteins (RHOA) and their downstream Diaphanous homolog 1 proteins (DIAPH1) or mDia1 participate in the regulation of actin cytoskeleton which plays critical role in cells, i.e., morphologic changes and apoptosis. Methodology To determine the cell viability the real time cell analysis (RTCA) and flow cytometry were used. To perform proteomic analysis, the label-free quantitative method and post-translation modification by the nano-HPLC and ESI-MS ion trap mass analyser were used. Results The results of the cell viability showed an increase of dead cells (around 30 %) in MCF-7/DOX-1 (i.e., 1μM of doxorubicin was added to MCF-7/WT breast cancer cell line) compared to MCF-7/WT (control) after 24 h doxorubicin (DOX) treatment. The signalling pathway of the Regulation of actin cytoskeleton (p<0.0026) was determined, where RHOA and mDia1 proteins were up-regulated. Also, post-translational modification analysis of these proteins in MCF-7/DOX-1 cells revealed dysregulation of the actin cytoskeleton, specifically the collapse of actin stress fibbers due to phosphorylation of RHOA at serine 188 and mDia1 at serine 22, resulting in their deactivation and cell apoptosis. Conclusion These results pointed to an assumed role of DOX to dysregulation of actin cytoskeleton and cell death.
Collapse
Affiliation(s)
- Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Zuzana Tomková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Róbert Kilík
- 1st Department of Surgery, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| |
Collapse
|