1
|
Akula S, Alvarado-Vazquez A, Haide Mendez Enriquez E, Bal G, Franke K, Wernersson S, Hallgren J, Pejler G, Babina M, Hellman L. Characterization of Freshly Isolated Human Peripheral Blood B Cells, Monocytes, CD4+ and CD8+ T Cells, and Skin Mast Cells by Quantitative Transcriptomics. Int J Mol Sci 2024; 25:13050. [PMID: 39684762 DOI: 10.3390/ijms252313050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Quantitative transcriptomics offers a new way to obtain a detailed picture of freshly isolated cells. By direct isolation, the cells are unaffected by in vitro culture, and the isolation at cold temperatures maintains the cells relatively unaltered in phenotype by avoiding activation through receptor cross-linking or plastic adherence. Simultaneous analysis of several cell types provides the opportunity to obtain detailed pictures of transcriptomic differences between them. Here, we present such an analysis focusing on four human blood cell populations and compare those to isolated human skin mast cells. Pure CD19+ peripheral blood B cells, CD14+ monocytes, and CD4+ and CD8+ T cells were obtained by fluorescence-activated cell sorting, and KIT+ human connective tissue mast cells (MCs) were purified by MACS sorting from healthy skin. Detailed information concerning expression levels of the different granule proteases, protease inhibitors, Fc receptors, other receptors, transcription factors, cell signaling components, cytoskeletal proteins, and many other protein families relevant to the functions of these cells were obtained and comprehensively discussed. The MC granule proteases were found exclusively in the MC samples, and the T-cell granzymes in the T cells, of which several were present in both CD4+ and CD8+ T cells. High levels of CD4 were also observed in MCs and monocytes. We found a large variation between the different cell populations in the expression of Fc receptors, as well as for lipid mediators, proteoglycan synthesis enzymes, cytokines, cytokine receptors, and transcription factors. This detailed quantitative comparative analysis of more than 780 proteins of importance for the function of these populations can now serve as a good reference material for research into how these entities shape the role of these cells in immunity and tissue homeostasis.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Erika Haide Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Sara Wernersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Box 7023, SE-75007 Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-75123 Uppsala, Sweden
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
2
|
Chen Q, Dent AL. Nonbinary Roles for T Follicular Helper Cells and T Follicular Regulatory Cells in the Germinal Center Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:15-22. [PMID: 37339403 DOI: 10.4049/jimmunol.2200953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/22/2023]
Abstract
Development of high-affinity Abs in the germinal center (GC) is dependent on a specialized subset of T cells called "T follicular helper" (TFH) cells that help select Ag-specific B cells. A second T cell subset, T follicular regulatory (TFR) cells, can act as repressors of the GC and Ab response but can also provide a helper function for GC B cells in some contexts. Recent studies showed that, apart from their traditional helper role, TFH cells can also act as repressors of the Ab response, particularly for IgE responses. We review how both TFH and TFR cells express helper and repressor factors that coordinately regulate the Ab response and how the line between these two subsets is less clear than initially thought. Thus, TFH and TFR cells are interconnected and have "nonbinary" functions. However, many questions remain about how these critical cells control the Ab response.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Zhao D, Yang L, Han P, Zhang H, Wang F, Meng Z, Gan H, Wu Z, Sun W, Chen C, Dou G, Gu R. Blocking TRAIL-DR5 signaling pathway with soluble death receptor 5 fusion protein mitigates radiation-induced injury. Front Pharmacol 2023; 14:1171293. [PMID: 37274104 PMCID: PMC10232792 DOI: 10.3389/fphar.2023.1171293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
The increasing application of nuclear technology, the high fatality of acute radiation syndrome (ARS) and its complex mechanism make ARS a global difficulty that requires urgent attention. Here we reported that the death receptor 5 (DR5), as well as its ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), were both significantly upregulated after irradiation in mice with 6 Gy γ-ray single radiation. And by intravenously administrated with soluble DR5 fusion protein (sDR5-Fc), the competitive antagonist of DR5, the excessive apoptosis in the radiation-sensitive tissues such as spleen and thymus were significantly inhibited and the radiation-induced damage of spleen and thymus were mitigated, while the expression of apoptosis-inhibiting proteins such as Bcl-2 was also significantly upregulated. The biochemical indicators such as serum ALP, AST, ALT, TBIL, K, and Cl levels that affected by radiation, were improved by sDR5-Fc administration. sDR5-Fc can also regulate the number of immune cells and reduce blood cell death. For in vitro studies, it had been found that sDR5-Fc effectively inhibited apoptosis of human small intestinal mucosal epithelial cells and IEC-6 cells using flow cytometry. Finally, survival studies showed that mice administrated with sDR5-Fc after 9 Gy γ-ray single whole body radiation effectively increased the 30-day survival and was in a significant dose-dependent manner. Overall, the findings revealed that DR5/TRAIL-mediated apoptosis pathway had played important roles in the injury of ARS mice, and DR5 probably be a potential target for ARS therapeutics. And the DR5 apoptosis antagonist, sDR5 fusion protein, probably is a promising anti-ARS drug candidate which deserves further investigation.
Collapse
Affiliation(s)
- Danyang Zhao
- School of Life Sciences, Hebei University, Baoding, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Lei Yang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Peng Han
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Haihui Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fanjun Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenzhong Sun
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Chuan Chen
- School of Life Sciences, Hebei University, Baoding, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Koliaki C, Katsilambros N. Repositioning the Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) on the TRAIL to the Development of Diabetes Mellitus: An Update of Experimental and Clinical Evidence. Int J Mol Sci 2022; 23:ijms23063225. [PMID: 35328646 PMCID: PMC8949963 DOI: 10.3390/ijms23063225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF protein superfamily, represents a multifaceted cytokine with unique biological features including both proapoptotic and pro-survival effects in different cell types depending on receptor interactions and local stimuli. Beyond its extensively studied anti-tumor and immunomodulatory properties, a growing body of experimental and clinical evidence over the past two decades suggests a protective role of TRAIL in the development of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. This evidence can be briefly summarized by the following observations: (i) acceleration and exacerbation of T1DM and T2DM by TRAIL blockade or genetic deficiency in animal models, (ii) prevention and amelioration of T1DM and T2DM with recombinant TRAIL treatment or systemic TRAIL gene delivery in animal models, (iii) significantly reduced circulating soluble TRAIL levels in patients with T1DM and T2DM both at disease onset and in more advanced stages of diabetes-related complications such as cardiovascular disease and diabetic nephropathy, (iv) increase of serum TRAIL levels in diabetic patients after initiation of antidiabetic treatment and metabolic improvement. To explore the underlying mechanisms and provide mechanistic links between TRAIL and diabetes, a number of animal and in vitro studies have reported direct effects of TRAIL on several tissues involved in diabetes pathophysiology such as pancreatic islets, skeletal muscle, adipose tissue, liver, kidney, and immune and vascular cells. Residual controversy remains regarding the effects of TRAIL on adipose tissue homeostasis. Although the existing evidence is encouraging and paves the way for investigating TRAIL-related interventions in diabetic patients with cardiometabolic abnormalities, caution is warranted in the extrapolation of animal and in vitro data to the clinical setting, and further research in humans is imperative in order to uncover all aspects of the TRAIL-diabetes relationship and delineate its therapeutic implications in metabolic disease.
Collapse
|