1
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Deretic N, Bolger-Munro M, Choi K, Abraham L, Gold MR. The Actin-Disassembly Protein Glia Maturation Factor γ Enhances Actin Remodeling and B Cell Antigen Receptor Signaling at the Immune Synapse. Front Cell Dev Biol 2021; 9:647063. [PMID: 34336818 PMCID: PMC8318000 DOI: 10.3389/fcell.2021.647063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Signaling by the B cell antigen receptor (BCR) initiates actin remodeling. The assembly of branched actin networks that are nucleated by the Arp2/3 complex exert outward force on the plasma membrane, allowing B cells to form membrane protrusions that can scan the surface of antigen-presenting cells (APCs). The resulting Arp2/3 complex-dependent actin retrograde flow promotes the centripetal movement and progressive coalescence of BCR microclusters, which amplifies BCR signaling. Glia maturation factor γ (GMFγ) is an actin disassembly-protein that releases Arp2/3 complex-nucleated actin filaments from actin networks. By doing so, GMFγ could either oppose the actions of the Arp2/3 complex or support Arp2/3 complex-nucleated actin polymerization by contributing to the recycling of actin monomers and Arp2/3 complexes. We now show that reducing the levels of GMFγ in human B cell lines via transfection with a specific siRNA impairs the ability of B cells to spread on antigen-coated surfaces, decreases the velocity of actin retrograde flow, diminishes the coalescence of BCR microclusters into a central cluster at the B cell-APC contact site, and decreases APC-induced BCR signaling. These effects of depleting GMFγ are similar to what occurs when the Arp2/3 complex is inhibited. This suggests that GMFγ cooperates with the Arp2/3 complex to support BCR-induced actin remodeling and amplify BCR signaling at the immune synapse.
Collapse
Affiliation(s)
- Nikola Deretic
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kate Choi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Libin Abraham
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Riley DRJ, Khalil JS, Pieters J, Naseem KM, Rivero F. Coronin 1 Is Required for Integrin β2 Translocation in Platelets. Int J Mol Sci 2020; 21:ijms21010356. [PMID: 31948107 PMCID: PMC6982036 DOI: 10.3390/ijms21010356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023] Open
Abstract
Remodeling of the actin cytoskeleton is one of the critical events that allows platelets to undergo morphological and functional changes in response to receptor-mediated signaling cascades. Coronins are a family of evolutionarily conserved proteins implicated in the regulation of the actin cytoskeleton, represented by the abundant coronins 1, 2, and 3 and the less abundant coronin 7 in platelets, but their functions in these cells are poorly understood. A recent report revealed impaired agonist-induced actin polymerization and cofilin phosphoregulation and altered thrombus formation in vivo as salient phenotypes in the absence of an overt hemostasis defect in vivo in a knockout mouse model of coronin 1. Here we show that the absence of coronin 1 is associated with impaired translocation of integrin β2 to the platelet surface upon stimulation with thrombin while morphological and functional alterations, including defects in Arp2/3 complex localization and cAMP-dependent signaling, are absent. Our results suggest a large extent of functional overlap among coronins 1, 2, and 3 in platelets, while aspects like integrin β2 translocation are specifically or predominantly dependent on coronin 1.
Collapse
Affiliation(s)
- David R. J. Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; (D.R.J.R.); (J.S.K.)
| | - Jawad S. Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; (D.R.J.R.); (J.S.K.)
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Jean Pieters
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland;
| | - Khalid M. Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9NL, UK;
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK; (D.R.J.R.); (J.S.K.)
- Correspondence: ; Tel.: +44-1482-644-633
| |
Collapse
|
4
|
Riley DRJ, Khalil JS, Naseem KM, Rivero F. Biochemical and immunocytochemical characterization of coronins in platelets. Platelets 2019; 31:913-924. [PMID: 31801396 PMCID: PMC7497283 DOI: 10.1080/09537104.2019.1696457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rapid reorganization of the actin cytoskeleton in response to receptor-mediated signaling cascades allows platelets to transition from a discoid shape to a flat spread shape upon adhesion to damaged vessel walls. Coronins are conserved regulators of the actin cytoskeleton turnover but they also participate in signaling events. To gain a better picture of their functions in platelets we have undertaken a biochemical and immunocytochemical investigation with a focus on Coro1. We found that class I coronins Coro1, 2 and 3 are abundant in human and mouse platelets whereas little Coro7 can be detected. Coro1 is mainly cytosolic, but a significant amount associates with membranes in an actin-independent manner and does not translocate from or to the membrane fraction upon exposure to thrombin, collagen or prostacyclin. Coro1 rapidly translocates to the Triton insoluble cytoskeleton upon platelet stimulation with thrombin or collagen. Coro1, 2 and 3 show a diffuse cytoplasmic localization with discontinuous accumulation at the cell cortex and actin nodules of human platelets, where all three coronins colocalize. Our data are consistent with a role of coronins as integrators of extracellular signals with actin remodeling and suggests a high extent of functional overlap among class I coronins in platelets.
Collapse
Affiliation(s)
- David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK.,School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol , Bristol, UK
| | - Khalid M Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds , Leeds, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK
| |
Collapse
|
5
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Coronin 1A, a novel player in integrin biology, controls neutrophil trafficking in innate immunity. Blood 2017; 130:847-858. [PMID: 28615221 DOI: 10.1182/blood-2016-11-749622] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/11/2017] [Indexed: 12/21/2022] Open
Abstract
Trafficking of polymorphonuclear neutrophils (PMNs) during inflammation critically depends on the β2 integrins lymphocyte function-associated antigen 1 (LFA-1) (CD11a/CD18) and macrophage-1 antigen (CD11b/CD18). Here, we identify coronin 1A (Coro1A) as a novel regulator of β2 integrins that interacts with the cytoplasmic tail of CD18 and is crucial for induction of PMN adhesion and postadhesion events, including adhesion strengthening, spreading, and migration under flow conditions. Transition of PMN rolling to firm adhesion critically depends on Coro1A by regulating the accumulation of high-affinity LFA-1 in focal zones of adherent cells. Defective integrin affinity regulation in the genetic absence of Coro1A impairs leukocyte adhesion and extravasation in inflamed cremaster muscle venules in comparison with control animals. In a Helicobacter pylori mouse infection model, PMN infiltration into the gastric mucosa is dramatically reduced in Coro1A-/- mice, resulting in an attenuated gastric inflammation. Thus, Coro1A represents an important novel player in integrin biology, with key functions in PMN trafficking during innate immunity.
Collapse
|
7
|
Tchang VSY, Stiess M, Siegmund K, Karrer U, Pieters J. Role for coronin 1 in mouse NK cell function. Immunobiology 2017; 222:291-300. [PMID: 27717523 DOI: 10.1016/j.imbio.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/17/2016] [Indexed: 10/21/2022]
Abstract
Coronin 1, a member of the evolutionary conserved WD repeat protein family of coronin proteins is expressed in all leukocytes, but a role for coronin 1 in natural killer (NK) cell homeostasis and function remains unclear. Here, we have analyzed the number and functionality of NK cells in the presence and absence of coronin 1. In coronin 1-deficient mice, absolute NK cell numbers and phenotype were comparable to wild type mice in blood, spleen and liver. Following in vitro stimulation of the activating NK cell receptors NK1.1, NKp46, Ly49D and NKG2D, coronin 1-deficient NK cells were functional with respect to interferon-γ production, degranulation and intracellular Ca2+ mobilization. Also, both wild type as well as coronin 1-deficient NK cells showed comparable cytotoxic activity. Furthermore, activation and functionality of NK cells following Vesicular Stomatitis Virus (VSV) infection was similar between wild type and coronin 1-deficient mice. Taken together these data suggest that coronin 1 is dispensable for mouse NK cell homeostasis and function.
Collapse
Affiliation(s)
- Vincent Sam Yong Tchang
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Stiess
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Kerstin Siegmund
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland; Department of Medicine, Cantonal Hospital of Winterthur, Brauerstrasse 15, CH-8401 Winterthur, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
8
|
Tokarz-Deptuła B, Malinowska M, Adamiak M, Deptuła W. Coronins and their role in immunological phenomena. Cent Eur J Immunol 2017; 41:435-441. [PMID: 28450807 PMCID: PMC5382889 DOI: 10.5114/ceji.2016.65143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/06/2016] [Indexed: 02/05/2023] Open
Abstract
Coronins are a large family of proteins occurring in many eukaryotes. In mammals, seven coronin genes have been identified, evidencing that coronins 1 to 6 present classic coronin structure, while coronin 7 is a tandem coronin particle, without a spiral domain, although the best characterised coronin, in terms of both structure and function, is the mammalian coronin 1. It has been proven that they are related to regulation of actin dynamics, e.g. as a result of interaction with the complex of proteins Arp2/3. These proteins also modulate the activity of immune system cells, including lymphocyte T and B cells, neutrophils and macrophages. They are involved in bacterial infections with Mycobacterium tuberculosis, M. leprae and Helicobacter pylori and participate in the response to viral infections, e.g. infections of lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis Indiana virus (VSV). Also their involvement in autoimmune diseases such as lupus erythematosus has been recorded.
Collapse
Affiliation(s)
| | | | - Mateusz Adamiak
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland
| | - Wiesław Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Poland
| |
Collapse
|
9
|
Siegmund K, Klepsch V, Hermann-Kleiter N, Baier G. Proof of Principle for a T Lymphocyte Intrinsic Function of Coronin 1A. J Biol Chem 2016; 291:22086-22092. [PMID: 27566541 PMCID: PMC5063991 DOI: 10.1074/jbc.m116.748012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Coronins are evolutionarily conserved proteins that were originally identified as modulators of actin-dependent processes. Studies analyzing complete Coronin 1a knock-out mice have shown that this molecule is an important regulator of naive T cell homeostasis and it has been linked to immune deficiencies as well as autoimmune disorders. Nevertheless, because Coronin 1A is strongly expressed in all leukocyte subsets, it is not conclusive whether or not this phenotype is attributed to a T cell-intrinsic function of Coronin 1A. To address this research question, we have generated a T cell-specific Coronin 1a knock-out mouse (Coro1afl/fl × Cd4[Cre]). Deletion of Coronin 1A specifically in T cells led to a strong reduction in T cell number and a shift toward the effector/memory phenotype in peripheral lymphoid organs when compared with Cd4[Cre] mice expressing wild-type Coronin 1A. In contrast to peripheral lymphoid tissue, thymocyte number and subsets were not affected by the deletion of Coronin 1a Furthermore, T cell-specific Coronin 1a knock-out mice were largely resistant to the induction of autoimmunity when tested in the myelin oligoglycoprotein-induced EAE mouse model of multiple sclerosis. Thus, the phenotype of T cell-specific Coronin 1a deletion resembles the phenotype observed with conventional (whole body) Coronin 1a knock-out mice. In summary, our findings provide formal proof of the predominant T cell-intrinsic role of Coronin 1A.
Collapse
Affiliation(s)
- Kerstin Siegmund
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Victoria Klepsch
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Gottfried Baier
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Bane KS, Lepper S, Kehrer J, Sattler JM, Singer M, Reinig M, Klug D, Heiss K, Baum J, Mueller AK, Frischknecht F. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites. PLoS Pathog 2016; 12:e1005710. [PMID: 27409081 PMCID: PMC4943629 DOI: 10.1371/journal.ppat.1005710] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. Parasites causing malaria are transmitted by mosquitoes and need to migrate to cross tissue barriers. The form of the parasite transmitted by the mosquito, the so-called sporozoite, needs motility to enter the salivary glands, to migrate within the skin and to enter into blood capillaries and eventually hepatocytes, where the parasites differentiate into thousands of merozoites that invade red blood cells. Sporozoite motility is based on an actin-myosin motor, as is the case in many other eukaryotic cells. However, most eukaryotic cells move much slower than sporozoites. How these parasites reach their high speed is not clear but current evidence suggests that actin filaments need to be organized by either actin-binding proteins or membrane proteins that link the filaments to an extracellular substrate. The present study explores the role of the actin filament-binding protein coronin in the motility of sporozoites of the rodent model parasite Plasmodium berghei. We found that the deletion of P. berghei coronin leads to defects in parasite motility and thus lower infection of mosquito salivary glands, which translates into less efficient transmission of the parasites. Our experiments suggest that coronin organizes actin filaments to achieve rapid and directional motility. We also identify two signaling pathways that converge to regulate actin filament dynamics and suggest that they play a role in switching the parasite from its motility mode to a cell invasion mode.
Collapse
Affiliation(s)
- Kartik S. Bane
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Miriam Reinig
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Kirsten Heiss
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Malva GmbH, Heidelberg, Germany
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ann-Kristin Mueller
- Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
11
|
Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28:825-8. [DOI: 10.1016/j.intimp.2015.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
12
|
Polati R, Brandi J, Dalai I, Zamò A, Cecconi D. Tissue proteomics of splenic marginal zone lymphoma. Electrophoresis 2015; 36:1612-21. [PMID: 25873066 DOI: 10.1002/elps.201400329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare chronic B lymphoproliferative disease, whose molecular pathogenesis has still not been well established. For the first time, a proteomic approach was undertaken to analyse the protein profiles of SMZL tissue. 1D and 2D Western blot, immunohistochemical analysis, and functional data mining were also performed in order to validate results, investigate protein species specific regulation, classify proteins, and explore their potential relationships. We demonstrated that SMZL is characterized by modulation of protein species related to energetic metabolism and apoptosis pathways. We also reported specific protein species (such as biliverdin reductase A, manganese superoxide dismutase, beta-2 microglobulin, growth factor receptor-bound protein 2, acidic leucine-rich nuclear phosphoprotein 32 family member A, and Set nuclear oncogene) directly involved in NF-kB and BCR pathways, as well as in chromatin remodelling and cytoskeleton. Our findings shed new light on SMZL pathogenesis and provide a basis for the future development of novel biomarkers. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD001124.
Collapse
Affiliation(s)
- Rita Polati
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Jessica Brandi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Irene Dalai
- Department of Pathology and Diagnostics, Pathological Anatomy, University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Pathology and Diagnostics, Pathological Anatomy, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
13
|
BoseDasgupta S, Moes S, Jenoe P, Pieters J. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J 2015; 282:1167-81. [PMID: 25645340 DOI: 10.1111/febs.13214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/12/2014] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
Abstract
The induction of macropinocytosis in macrophages during an inflammatory response is important for clearance of pathogenic microbes as well as the generation of appropriate immune responses. Recent data suggest that cytokine stimulation of macrophages induces macropinocytosis through phosphorylation of the protein coronin 1, thereby redistributing coronin 1 from the cell cortex to the cytoplasm followed by the activation of phosphoinositol-3 (PI-3) kinase. However, how coronin 1 phosphorylation regulates these processes remains unclear. We here define an essential role for 14-3-3ζ in cytokine-induced and coronin-1-dependent macropinocytosis in macrophages. We found that, upon stimulation, phosphorylated coronin 1 transiently associated with 14-3-3ζ and receptor of activated C kinase 1 (RACK1). Importantly, downregulation of 14-3-3ζ, but not RACK1, prevented relocation of coronin 1, as well as the induction of PI-3 kinase activity and thereby macropinocytosis upon cytokine stimulation. Together these data define an essential role for 14-3-3ζ in the regulation of macropinocytosis in macrophages upon cytokine stimulation through modulation of the localization of coronin 1.
Collapse
|
14
|
Abstract
The importance of the cytoskeleton in mounting a successful immune response is evident from the wide range of defects that occur in actin-related primary immunodeficiencies (PIDs). Studies of these PIDs have revealed a pivotal role for the actin cytoskeleton in almost all stages of immune system function, from hematopoiesis and immune cell development, through to recruitment, migration, intercellular and intracellular signaling, and activation of both innate and adaptive immune responses. The major focus of this review is the immune defects that result from mutations in the Wiskott-Aldrich syndrome gene (WAS), which have a broad impact on many different processes and give rise to clinically heterogeneous immunodeficiencies. We also discuss other related genetic defects and the possibility of identifying new genetic causes of cytoskeletal immunodeficiency.
Collapse
Affiliation(s)
- Dale A Moulding
- Molecular Immunology Unit, Center for Immunodeficiency, Institute of Child Health, University College London, London, UK
| | | | | | | |
Collapse
|
15
|
Jayachandran R, BoseDasgupta S, Pieters J. Surviving the macrophage: tools and tricks employed by Mycobacterium tuberculosis. Curr Top Microbiol Immunol 2014; 374:189-209. [PMID: 23154833 DOI: 10.1007/82_2012_273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis has evolved to withstand one of the most inhospitable cells within the human body, namely the macrophage, a cell that is normally geared toward the destruction of any invading microbe. How M. tuberculosis achieves this is still incompletely understood; however, a number of mechanisms are now known that provide advantages to M. tuberculosis for its survival and proliferation inside the macrophage. While some of these mechanisms are mediated by factors released by M. tuberculosis, others rely on host components that are being hijacked to benefit survival of M. tuberculosis within the macrophage as well to avoid the generation of an effective immune response. Here, we describe several of these mechanisms, also pointing out the potential usage of this knowledge toward the development of novel strategies to treat tuberculosis. Furthermore, we attempt to put the 'macrophage niche' into context with other intracellular pathogens and discuss some of the generalities as well as specializations that M. tuberculosis employs to survive.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | | | | |
Collapse
|
16
|
Jayachandran R, Liu X, BoseDasgupta S, Müller P, Zhang CL, Moshous D, Studer V, Schneider J, Genoud C, Fossoud C, Gambino F, Khelfaoui M, Müller C, Bartholdi D, Rossez H, Stiess M, Houbaert X, Jaussi R, Frey D, Kammerer RA, Deupi X, de Villartay JP, Lüthi A, Humeau Y, Pieters J. Coronin 1 regulates cognition and behavior through modulation of cAMP/protein kinase A signaling. PLoS Biol 2014; 12:e1001820. [PMID: 24667537 PMCID: PMC3965382 DOI: 10.1371/journal.pbio.1001820] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/12/2014] [Indexed: 01/14/2023] Open
Abstract
The evolutionarily conserved protein coronin 1 is needed for activating the cyclic AMP signaling pathway in the brain and is important for cognition and behavior. Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic–AMP–protein kinase A–dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1–deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes. Memory and behavior depend on the proper transduction of signals in the brain, but the underlying molecular mechanisms remain largely unknown. Coronin 1 is a member of a highly conserved family of proteins, and although its gene lies in a chromosome region associated with neurobehavioral dysfunction in mice and men, it has never been directly ascribed a specific function in the brain. Here we show that coronin 1 plays an important role in cognition and behavior by regulating the cyclic AMP (cAMP) signaling pathway. We find that when cell surface receptors are activated, coronin 1 stimulates cAMP production and activation of protein kinase A. Coronin 1 deficiency resulted in severe functional defects at excitatory synapses. Furthermore, in both mice and humans, deletion or mutation of coronin 1 causes severe neurobehavioral defects, including social deficits, increased aggression, and learning disabilities. Strikingly, treatment with a membrane-permeable analogue of cAMP restored synaptic plasticity and behavioral defects in mice lacking coronin 1. Together this work not only shows a critical role for coronin 1 in neurobehavior but also defines a role for the coronin family in regulating the transmission of signals within cells.
Collapse
Affiliation(s)
| | - Xiaolong Liu
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Chun-Lei Zhang
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | | | - Vera Studer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Jacques Schneider
- Department of Radiology, University Children Hospital, UKBB, Basel, Switzerland
| | - Christel Genoud
- Center for Cellular Imaging and NanoAnalytics, University of Basel, Basel, Switzerland
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | - Malik Khelfaoui
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | | | | | | | | | - Xander Houbaert
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Rolf Jaussi
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Frey
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Richard A. Kammerer
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
| | - Xavier Deupi
- Biomolecular Research Laboratory, Paul Scherrer Institute, Villigen, Switzerland
- Condensed Matter Theory, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, Bordeaux, France
- * E-mail: (Y.H.); (J.P.)
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (Y.H.); (J.P.)
| |
Collapse
|
17
|
Vinet AF, Fiedler T, Studer V, Froquet R, Dardel A, Cosson P, Pieters J. Initiation of multicellular differentiation in Dictyostelium discoideum is regulated by coronin A. Mol Biol Cell 2014; 25:688-701. [PMID: 24403600 PMCID: PMC3937094 DOI: 10.1091/mbc.e13-04-0219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multicellular development of Dictyostelium is induced by starvation and is crucial for its long-term survival. Coronin A mediates the transition from growth to development of the cells and initiates the cAMP-dependent relay by regulating the response to secreted cell density and nutrient deprivation factors. Many biological systems respond to environmental changes by activating intracellular signaling cascades, resulting in an appropriate response. One such system is represented by the social amoeba Dictyostelium discoideum. When food sources become scarce, these unicellular cells can initiate a cAMP-driven multicellular aggregation program to ensure long-term survival. On starvation, the cells secrete conditioned medium factors that initiate cAMP signal transduction by inducing expression of genes such as cAMP receptors and adenylate cyclase. The mechanisms involved in the activation of the first pulses of cAMP release have been unclear. We here show a crucial role for the evolutionarily conserved protein coronin A in the initiation of the cAMP response. On starvation, coronin A–deficient cells failed to up-regulate the expression of cAMP-regulated genes, thereby failing to initiate development, despite a normal prestarvation response. Of importance, external addition of cAMP to coronin A–deficient cells resulted in normal chemotaxis and aggregate formation, thereby restoring the developmental program and suggesting a functional cAMP relay in the absence of coronin A. These results suggest that coronin A is dispensable for cAMP sensing, chemotaxis, and development per se but is part of a signal transduction cascade essential for system initiation leading to multicellular development in Dictyostelium.
Collapse
Affiliation(s)
- Adrien F Vinet
- Biozentrum, University of Basel, 4056 Basel, Switzerland Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Tchang VSY, Mekker A, Siegmund K, Karrer U, Pieters J. Diverging role for coronin 1 in antiviral CD4+ and CD8+ T cell responses. Mol Immunol 2013; 56:683-92. [DOI: 10.1016/j.molimm.2013.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/24/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
|
19
|
Pieters J, Müller P, Jayachandran R. On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 2013; 13:510-8. [PMID: 23765056 DOI: 10.1038/nri3465] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent work has implicated members of the evolutionarily conserved family of coronin proteins - in particular coronin 1 - in immune homeostasis. Coronins are involved in processes as diverse as pathogen survival in phagocytes and homeostatic T cell signalling. Notably, in both mice and humans, coronin mutations are associated with immune deficiencies and resistance to autoimmunity. In this article, we review what is currently known about these conserved molecules and discuss a potential common mechanism that underlies their diverse activities, which seem to involve cytoskeletal interactions as well as calcium-calcineurin signalling.
Collapse
Affiliation(s)
- Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | | | | |
Collapse
|
20
|
Siegmund K, Lee WY, Tchang VS, Stiess M, Terracciano L, Kubes P, Pieters J. Coronin 1 is dispensable for leukocyte recruitment and liver injury in concanavalin A-induced hepatitis. Immunol Lett 2013; 153:62-70. [DOI: 10.1016/j.imlet.2013.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/25/2013] [Accepted: 06/30/2013] [Indexed: 01/13/2023]
|
21
|
Jayachandran R, Scherr N, Pieters J. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 2013; 10:1007-22. [PMID: 23106276 DOI: 10.1586/eri.12.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more than 2 billion latently infected people, TB continues to represent a serious threat to human health. According to the WHO, 1.1 million people died from TB in 2010, which is equal to approximately 3000 deaths per day. The causative agent of the disease, Mycobacterium tuberculosis, is a highly successful pathogen having evolved remarkable strategies to persist within the host. Although normally, upon phagocytosis by macrophages, bacteria are readily eliminated by lysosomes, pathogenic mycobacteria actively prevent destruction within macrophages. The strategies that pathogenic mycobacteria apply range from releasing virulence factors to manipulating host molecules resulting in the modulation of host signal transduction pathways in order to sustain their viability within the infected host. Here, we analyze the current status of how a better understanding of both the bacterial and host factors involved in virulence can be used to develop drugs that may be helpful to curb the TB epidemic.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
22
|
Federzoni EA, Humbert M, Valk PJM, Behre G, Leibundgut EO, Torbett BE, Fey MF, Tschan MP. The actin-binding protein CORO1A is a novel PU.1 (SPI1)- and CEBPA-regulated gene with significantly lower expression in APL and CEBPA-mutated AML patients. Br J Haematol 2012; 160:855-9. [PMID: 23252456 DOI: 10.1111/bjh.12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
MESH Headings
- CCAAT-Enhancer-Binding Proteins/biosynthesis
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Microfilament Proteins/biosynthesis
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
|
23
|
Oku T, Nakano M, Kaneko Y, Ando Y, Kenmotsu H, Itoh S, Tsuiji M, Seyama Y, Toyoshima S, Tsuji T. Constitutive turnover of phosphorylation at Thr-412 of human p57/coronin-1 regulates the interaction with actin. J Biol Chem 2012; 287:42910-20. [PMID: 23100250 DOI: 10.1074/jbc.m112.349829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin-binding protein p57/coronin-1, a member of the coronin protein family, is selectively expressed in hematopoietic cells and plays crucial roles in the immune response through reorganization of the actin cytoskeleton. We previously reported that p57/coronin-1 is phosphorylated by protein kinase C, and the phosphorylation down-regulates the association of this protein with actin. In this study we analyzed the phosphorylation sites of p57/coronin-1 derived from HL60 human leukemic cells by MALDI-TOF-MS, two-dimensional gel electrophoresis, and Phos-tag® acrylamide gel electrophoresis in combination with site-directed mutagenesis and identified Ser-2 and Thr-412 as major phosphorylation sites. A major part of p57/coronin-1 was found as an unphosphorylated form in HL60 cells, but phosphorylation at Thr-412 of p57/coronin-1 was detected after the cells were treated with calyculin A, a Ser/Thr phosphatase inhibitor, suggesting that p57/coronin-1 undergoes constitutive turnover of phosphorylation/dephosphorylation at Thr-412. A diphosphorylated form of p57/coronin-1 was detected after the cells were treated with phorbol 12-myristate 13-acetate plus calyculin A. We then assessed the effects of phosphorylation at Thr-412 on the association of p57/coronin-1 with actin. A co-immunoprecipitation experiment with anti-p57/coronin-1 antibodies and HL60 cell lysates revealed that β-actin was co-precipitated with the unphosphorylated form but not with the phosphorylated form at Thr-412 of p57/coronin-1. Furthermore, the phosphorylation mimic (T412D) of p57/coronin-1 expressed in HEK293T cells exhibited lower affinity for actin than the wild-type or the unphosphorylation mimic (T412A) did. These results indicate that the constitutive turnover of phosphorylation at Thr-412 of p57/coronin-1 regulates its interaction with actin.
Collapse
Affiliation(s)
- Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Westritschnig K, BoseDasgupta S, Tchang V, Siegmund K, Pieters J. Antigen processing and presentation by dendritic cells is independent of coronin 1. Mol Immunol 2012; 53:379-86. [PMID: 23099476 DOI: 10.1016/j.molimm.2012.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
Abstract
Coronin 1, which is a member of the evolutionary conserved coronin protein family that is highly expressed in all leukocytes is involved in the activation of the Ca(2+)/calcineurin signaling pathway following cell surface stimulation in T cells, B cells as well as macrophages. Mice deficient for coronin 1 have strongly reduced peripheral T cell numbers as a result of a lack of pro-survival signals for naïve T cells. Whether or not impaired antigen processing and presentation in the absence of coronin 1 expression contributes to this reduction of T cell numbers is unknown. We here show that coronin 1-deficient bone marrow-derived dendritic cells develop normally, and that wild type and coronin 1-deficient dendritic cells were equally able to induce antigen-specific proliferation of T cells. Furthermore, upon immunization, in vivo proliferation of adoptively transferred antigen-specific T cells was comparable in wild type and coronin 1-deficient mice. Finally, infection of wild type and coronin 1-deficient dendritic cells with an ovalbumin-expressing Listeria monocytogenes strain induced comparable levels of ovalbumin-specific T cells responses. Together these results suggest that coronin 1 is dispensable for antigen processing and presentation by dendritic cells.
Collapse
Affiliation(s)
- Katrin Westritschnig
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Vaziri B, Torkashvand F, Eslami N, Fayaz A. Comparative proteomics analysis of mice lymphocytes in early stages of infection by different strains of rabies virus. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:311-6. [PMID: 24293818 DOI: 10.1007/s13337-012-0093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 07/06/2012] [Indexed: 02/04/2023]
Abstract
The CNS immune response to rabies virus has been shown to be influenced by virulence of the virus strains. There is no comprehensive report of the peripheral immune response against different strains of rabies virus. In this report we used a comparative proteome analysis to find the early events in the spleen lymphocytes of mice infected by a street strain and an attenuated strain of the rabies virus. Differentially expressed proteins were identified which play important biological roles such as T and B lymphocyte activation (coronin 1), antiviral activity (peroxiredoxin 1), and cytoskeletal reorganization (cofilin 1). These results could be strong hints of early divergence on peripheral immune response under influence of viral strain and their pathogenicity.
Collapse
Affiliation(s)
- Behrouz Vaziri
- Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of Iran, 69, Pasteur St, 13164 Tehran, Iran
| | | | | | | |
Collapse
|
26
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
27
|
Mueller P, Liu X, Pieters J. Migration and Homeostasis of Naive T Cells Depends on Coronin 1-Mediated Prosurvival Signals and Not on Coronin 1-Dependent Filamentous Actin Modulation. THE JOURNAL OF IMMUNOLOGY 2011; 186:4039-50. [DOI: 10.4049/jimmunol.1003352] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Siegmund K, Zeis T, Kunz G, Rolink T, Schaeren-Wiemers N, Pieters J. Coronin 1-Mediated Naive T Cell Survival Is Essential for the Development of Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3452-61. [DOI: 10.4049/jimmunol.1003491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Arandjelovic S, Wickramarachchi D, Hemmers S, Leming SS, Kono DH, Mowen KA. Mast cell function is not altered by Coronin-1A deficiency. J Leukoc Biol 2010; 88:737-45. [PMID: 20643816 DOI: 10.1189/jlb.0310131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coronin-1A is a WD repeat protein family member, highly expressed in all hematopoietic lineages, and acts as a regulator of F-actin dynamics and Ca2+ signaling. In Coro1a(Lmb3) mice results in inactivation of the protein and leads to disease resistance in a model of lupus erythematosus. In Coro1a(-/-) and Coro1a(Lmb3) mice, peripheral T cells exhibit impairments in survival, migration, activation, and Ca2+ flux. In this study, we show that in vitro-differentiated mast cells from Coro1a(Lmb3) mice are viable, developed normally, and are fully functional in assays of degranulation, cytokine secretion, and chemotactic migration, despite increased F-actin levels. In Coro1a(Lmb3) mast cells, Ca2+ flux in response to physiological FcεRI stimulation is unaffected. Finally, Coro1a(Lmb3) mice showed similar in vivo mast cell responses as the WT mice. Coronin-1B and Coronin-1C expression levels were not increased in Coro1a(Lmb3) mast cells but were higher in mast cells than in CD4 T cells or B cells in WT mice. We conclude that Coronin-1A activity is not required for mast cell function.
Collapse
Affiliation(s)
- Sanja Arandjelovic
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
30
|
Combaluzier B, Pieters J. Chemotaxis and phagocytosis in neutrophils is independent of coronin 1. THE JOURNAL OF IMMUNOLOGY 2009; 182:2745-52. [PMID: 19234169 DOI: 10.4049/jimmunol.0801812] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The WD repeat protein family member coronin 1 is exclusively expressed in leukocytes, where it colocalizes with the cortical cytoskeleton. Although initially coronin 1 was believed to regulate F-actin dynamics such as leukocyte motility, phagocytosis, and membrane ruffling, recent work showed that in macrophages, T cells, and B cells, coronin 1 is dispensable for these F-actin dependent processes, instead being involved in the regulation of calcium dependent signaling reactions. In this study, we show that in mice lacking coronin 1 neutrophil populations developed normally, and that coronin 1-deficient neutrophils are fully functional with respect to adherence, membrane dynamics, migration, phagocytosis and the oxidative burst. Therefore, these data argue against a role for coronin 1 in the modulation of F-actin and suggest that coronin 1 is dispensable for neutrophil functioning.
Collapse
|