1
|
Jirmo AC, Busse M, Happle C, Skuljec J, Dalüge K, Habener A, Grychtol R, DeLuca DS, Breiholz OD, Prinz I, Hansen G. IL-17 regulates DC migration to the peribronchial LNs and allergen presentation in experimental allergic asthma. Eur J Immunol 2020; 50:1019-1033. [PMID: 32142593 DOI: 10.1002/eji.201948409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/30/2020] [Accepted: 03/05/2020] [Indexed: 01/04/2023]
Abstract
IL-17 is associated with different phenotypes of asthma, however, it is not fully elucidated how it influences induction and maintenance of asthma and allergy. In order to determine the role of IL-17 in development of allergic asthma, we used IL-17A/F double KO (IL-17A/F KO) and WT mice with or without neutralization of IL-17 in an experimental allergic asthma model and analyzed airway hyperresponsiveness, lung inflammation, T helper cell polarization, and DCs influx and activation. We report that the absence of IL-17 reduced influx of DCs into lungs and lung draining LNs. Compared to WT mice, IL-17A/F KO mice or WT mice after neutralization of IL-17A showed reduced airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and IgE levels. DCs from draining LNs of allergen-challenged IL-17A/F KO mice showed a reduction in expression of migratory and costimulatory molecules CCR7, CCR2, MHC-II, and CD40 compared to WT DCs. Moreover, in vivo stimulation of adoptively transferred antigen-specific cells was attenuated in lung-draining LNs in the absence of IL-17. Thus, we report that IL-17 enhances airway DC activation, migration, and function. Consequently, lack of IL-17 leads to reduced antigen-specific T cell priming and impaired development of experimental allergic asthma.
Collapse
Affiliation(s)
- Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Mandy Busse
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Kathleen Dalüge
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Grychtol
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - David S DeLuca
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver D Breiholz
- Research Core Unit Genomics (RCUG), Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Excellence Cluster RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Jiang R, Jiang Y, Xia P, Luo G, Huang W, Hu Z, Cheng G, Xiong Y, Wang Y, Cui T. Cigarette Smoke Extract Promotes TIM4 Expression in Murine Dendritic Cells Leading to Th2 Polarization through ERK-Dependent Pathways. Int Arch Allergy Immunol 2018; 178:219-228. [PMID: 30522098 DOI: 10.1159/000494505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022] Open
Abstract
Smoking is considered to be the main source of indoor pollution, and it has been identified as an important environmental factor contributing to asthma onset. We know that T helper 2 (Th2) response plays a crucial role in the process of asthma disease. We have investigated the reaction of cigarette smoke extract (CSE) on Th polarization which is controlled by dendritic cells (DCs). Stimulated by CSE, immature DCs from murine bone marrow showed upregulated levels of TIM4. Cocultured with CD4+ T cells, stimulated DCs increased the ratio of IL-4+ versus IFN-γ+ of CD4+ T cells. This suggests a differentiation towards Th2 response. Moreover, antibodies against TIM4 reversed the upexpression of the IL-4+/IFN-γ+ ratio provoked by CSE, indicating that the Th2 polarization which was induced by CSE is via TIM4 mechanisms. CSE could activate mitogen-activated protein kinase pathways like ERK and p38. Upregulation of TIM4 expression by CSE stimulation was found to be inhibited by an ERK inhibitor but not p38 and JNK. In conclusion, DC-induced Th2 polarization is a hallmark of CSE allergy, and this aspect can be explained by CSE-induced TIM4 expression.
Collapse
Affiliation(s)
- Rui Jiang
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yaping Jiang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, (HUST), Wuhan, China
| | - Ping Xia
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangwei Luo
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Wei Huang
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zhimin Hu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guilian Cheng
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yin Xiong
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yueqin Wang
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Tianpen Cui
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China,
| |
Collapse
|
3
|
Vogel AJ, Brown DM. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol 2015; 6:327. [PMID: 26161083 PMCID: PMC4479795 DOI: 10.3389/fimmu.2015.00327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/11/2015] [Indexed: 01/08/2023] Open
Abstract
Despite extensive research, influenza A virus (IAV) remains a major cause of morbidity, mortality, and healthcare expenditure. Emerging pandemics from highly pathogenic IAV strains, such as H5N1 and pandemic H1N1, highlight the need for universal, cross-protective vaccines. Current vaccine formulations generate strain-specific neutralizing antibodies primarily against the outer coat proteins, hemagglutinin and neuraminidase. In contrast to these highly mutable proteins, internal proteins of IAV are more conserved and are a favorable target for developing vaccines that induce strong T cell responses in addition to humoral immunity. Here, we found that intranasal administration with a single dose of CpG and inactivated x31 (H3N2) reduced viral titers and partially protected mice from a heterosubtypic challenge with a lethal dose of PR8 (H1N1). Early after immunization, vaccinated mice showed increased innate immune activation with high levels of MHCII and CD86 expression on dendritic cells in both draining lymph nodes and lungs. Three days after immunization, CD4 and CD8 cells in the lung upregulated CD69, suggesting that activated lymphocytes are present at the site of vaccine administration. The ensuing effector Th1 responses were capable of producing multiple cytokines and were present at least 30 days after immunization. Furthermore, functional memory responses were observed, as antigen-specific IFN-γ+ and GrB+ cells were detected early after lethal infection. Together, this work provides evidence for using pattern recognition receptor agonists as a mucosal vaccine platform for inducing robust T cell responses capable of protecting against heterologous IAV challenges.
Collapse
Affiliation(s)
- Alexander J Vogel
- School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE , USA ; Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| | - Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln , Lincoln, NE , USA ; Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| |
Collapse
|
4
|
Qin Q, Wang Z, Pan P, Cao Z, Xia Q, Tan H, Hu C. Lung dendritic cells undergo maturation and polarization towards a T helper type 2-stimulating phenotype in a mouse model of asthma: Role of nerve growth factor. Exp Ther Med 2014; 8:1402-1408. [PMID: 25289030 PMCID: PMC4186495 DOI: 10.3892/etm.2014.1967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022] Open
Abstract
Nerve growth factor (NGF) and dendritic cells (DCs) have been hypothesized to modulate T cell responses in a mouse model of asthma. However, whether NGF plays a role in regulating the maturation and polarization of lung DCs remains unclear. In the present study, the effect of NGF inhibition on the maturation and phenotype of lung DCs was investigated in a mouse model of asthma. BALB/c mice were sensitized and challenged with ovalbumin (OVA), and subsequently received anti-NGF treatment. At 24 h following the last challenge, airway responsiveness and inflammation were examined. The concentrations of NGF, interferon (IFN)-γ and interleukin (IL)-4 were analyzed. In addition, maturation and CD103 expression in the lung DCs were investigated. Anti-NGF treatment was found to significantly reduce airway hyperreactivity and inflammation in asthmatic mice. In addition, a subdued T helper 2 (Th2) response was observed, characterized by the downregulation of IL-4 and the upregulation of IFN-γ. Furthermore, the expression of the DC surface molecules, CD80, CD86 and major histocompatibility complex class II, as well as the proportion of lung CD103+ DCs, decreased in the OVA-sensitized and challenged mice. The proportion of lung CD103+ DCs also exhibited a positive correlation with the levels of plasma NGF in the mice. These results may provide an explanation for the role of NGF in amplifying the Th2 response in allergic diseases. Therefore, NGF may promote the maturation and polarization towards a Th2-stimulating phenotype of activated DCs, contributing to an amplification of the Th2 response in asthma.
Collapse
Affiliation(s)
- Qingwu Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhan Wang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pinhua Pan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Bronchial Asthma Research Center of Hunan Province, Changsha, Hunan 410008, P.R. China
| | - Zu Cao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Xia
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongyi Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Bronchial Asthma Research Center of Hunan Province, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
5
|
Matsui H, Tomizawa H, Eiho K, Kashiwazaki Y, Edwards S, Biffen M, Bell JP, Bahl A, Leishman AJ, Murray CM, Takaku H, Ueda Y. Mechanism of action of inhibition of allergic immune responses by a novel antedrug TLR7 agonist. THE JOURNAL OF IMMUNOLOGY 2012; 189:5194-205. [PMID: 23125414 DOI: 10.4049/jimmunol.1101331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triggering innate immune responses through TLRs is expected to be a novel therapeutic strategy for the treatment of allergic diseases. TLR agonists are able to modulate Th2 immune responses through undefined mechanisms. We investigated the mechanism of action of the suppression of Th2 immune responses with a novel antedrug TLR7 agonist. The antedrug is rapidly metabolized by plasma esterases to an acid with reduced activity to limit systemic responses. Topical administration of this compound inhibited features of the allergic airway inflammatory response in rat and murine allergic airways model. Type I IFN played a role in the suppression of Th2 cytokines produced from murine splenocytes. Inhibition of Th2 immune responses with the antedrug TLR7 agonist was shown to be via a type I IFN-dependent mechanism following short-term exposure to the compound, although there might be type I IFN-independent mechanisms following long-term exposure. We have demonstrated that local type I IFN signaling and plasmacytoid dendritic cells, but not Th1 immune responses, are required for in vivo efficacy against murine airway Th2-driven eosinophilia. Furthermore, migration of dendritic cell subsets into the lung was related to efficacy and is dependent on type I IFN signaling. Thus, the mechanism of action at the cytokine and cellular level involved in the suppression of Th2 allergic responses has been characterized, providing a potential new approach to the treatment of allergic disease.
Collapse
Affiliation(s)
- Hiroyuki Matsui
- Pharmacology Research Laboratory, Dainippon Sumitomo Pharma Co., Ltd., Osaka 541-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Krishnaswamy JK, Jirmo AC, Baru AM, Ebensen T, Guzmán CA, Sparwasser T, Behrens GMN. Toll-like receptor-2 agonist-allergen coupling efficiently redirects Th2 cell responses and inhibits allergic airway eosinophilia. Am J Respir Cell Mol Biol 2012; 47:852-63. [PMID: 22962064 DOI: 10.1165/rcmb.2011-0414oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor (TLR) agonists beneficially modulate allergic airway inflammation. However, the efficiency of TLR agonists varies considerably, and their exact cellular mechanisms (especially of TLR 2/6 agonists) are incompletely understood. We investigated at a cellular level whether the administration of the pharmacologically improved TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPP) conjugated to antigenic peptide (BPP-OVA) could divert an existing Th2 response and influence airway eosinophilia. The effects of BPP-OVA on airway inflammation were assessed in a classic murine sensitization/challenge model and an adoptive transfer model, which involved the adoptive transfer of in vitro differentiated ovalbumin (OVA)-specific Th2 cells. Functional T-cell stimulation by lung dendritic cells (DCs) was determined both in vitro and in vivo, combined with a cytokine secretion analysis. A single mucosal application of BPP-OVA efficiently delivered antigen, led to TLR2-mediated DC activation, and resulted in OVA-specific T-cell proliferation via lung DCs in vivo. In alternative models of allergic airway disease, a single administration of BPP-OVA before OVA challenge (but not BPP alone) significantly reduced airway eosinophilia, most likely through altered antigen-specific T-cell stimulation via DCs. Analyses of adoptively transferred Th2-biased cells after BPP-OVA administration in vivo suggested that BPP-OVA guides antigen-specific Th2 cells to produce significantly higher amounts of IFN-γ upon allergen challenge. In conclusion, our data show for the first time that a single mucosal administration of a TLR 2/6 agonist-allergen conjugate can provoke IFN-γ responses in Th2-biased cells and alleviate allergic airway inflammation.
Collapse
|
7
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
8
|
Lange NE, Zhou X, Lasky-Su J, Himes BE, Lazarus R, Soto-Quirós M, Avila L, Celedón JC, Hawrylowicz CM, Raby BA, Litonjua AA. Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes. BMC MEDICAL GENETICS 2011; 12:26. [PMID: 21324137 PMCID: PMC3048492 DOI: 10.1186/1471-2350-12-26] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/15/2011] [Indexed: 12/27/2022]
Abstract
Background Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts. Methods rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity. Results Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV1 and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant. Conclusion Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.
Collapse
Affiliation(s)
- Nancy E Lange
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim MG, Lee SY, Ko YS, Lee HY, Jo SK, Cho WY, Kim HK. CD4 + CD25 + regulatory T cells partially mediate the beneficial effects of FTY720, a sphingosine-1-phosphate analogue, during ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 2010; 26:111-24. [DOI: 10.1093/ndt/gfq480] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Prajeeth CK, Jirmo AC, Krishnaswamy JK, Ebensen T, Guzman CA, Weiss S, Constabel H, Schmidt RE, Behrens GMN. The synthetic TLR2 agonist BPPcysMPEG leads to efficient cross-priming against co-administered and linked antigens. Eur J Immunol 2010; 40:1272-83. [PMID: 20213735 DOI: 10.1002/eji.200939790] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The property of DC to generate effective CTL responses is influenced by TLR signaling. TLR ligands contain molecular signatures associated with pathogens, have an impact on the antigen processing and presentation by DC, and are being exploited as potential adjuvants. We hypothesized that the TLR2/6 heterodimer agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl polyethylene glycol (BPP), a synthetic derivative of the Mycoplasma macrophage activating lipopeptide-2, is a potent adjuvant for cross-priming against cellular antigens. Systemic administration of BPP-induced maturation of CD8alpha+ DC and CD8alpha- DC in the spleen and resulted in enhanced cross-presentation of intravenously co-administered antigen in mice. In addition, administration of BPP and cell-associated OVA generated an effective CTL response against OVA in vivo in a CD4+ T helper cell-dependent manner, but independent of IFN-alpha. Delivering antigenic peptides directly linked to BPP led to superior CTL immunity as compared to giving antigens and adjuvants admixed. In contrast to other TLR ligands, such as CpG, systemic activation of DC with BPP did not result in shut-down of antigen presentation by splenic DC subsets, although cross-priming against subsequently encountered antigens was reduced. Together, our data provide evidence that BPP is a potent stimulus to generate CTL via cross-priming.
Collapse
|