1
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
2
|
Sharma A, Virmani T, Sharma A, Chhabra V, Kumar G, Pathak K, Alhalmi A. Potential Effect of DPP-4 Inhibitors Towards Hepatic Diseases and Associated Glucose Intolerance. Diabetes Metab Syndr Obes 2022; 15:1845-1864. [PMID: 35733643 PMCID: PMC9208633 DOI: 10.2147/dmso.s369712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Dipeptidyl-peptidase-4 (DPP-4) is an enzyme having various properties and physiological roles in lipid accumulation, resistance to anticancer agents, and immune stimulation. DPP-4 includes membrane-bound peptidases and is a kind of enzyme that cleaves alanine or proline-containing peptides such as incretins, chemokines, and appetite-suppressing hormones (neuropeptide) at their N-terminal dipeptides. DPP-4 plays a role in the final breakdown of peptides produced by other endo and exo-peptidases from nutritious proteins and their absorption in these tissues. DPP-4 enzyme activity has different modes of action on glucose metabolism, hunger regulation, gastrointestinal motility, immune system function, inflammation, and pain regulation. According to the literature survey, as DPP-4 levels increase in individuals with liver conditions, up-regulation of hepatic DPP-4 expression is likely to be the cause of glucose intolerance or insulin resistance. This review majorly focuses on the cleavage of alanine or proline-containing peptides such as incretins by the DPP-4 and its resulting conditions like glucose intolerance and cause of DPP-4 level elevation due to some liver conditions. Thus, we have discussed the various effects of DPP-4 on the liver diseases like hepatitis C, non-alcoholic fatty liver, hepatic regeneration and stem cell, hepatocellular carcinoma, and the impact of elevated DPP-4 levels in association with liver diseases as a cause of glucose intolerance and their treatment drug of choices. In addition, the effect of DPP-4 inhibitors on obesity and their negative aspects are also discussed in brief.
Collapse
Affiliation(s)
- Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Anjali Sharma
- Freelancer, Pharmacovigilance Expert, Uttar Pradesh, India
| | - Vaishnavi Chhabra
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Uttar Pradesh, 206130, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen
- Correspondence: Abdulsalam Alhalmi, Department of Pharmaceutical Science, College of Pharmacy, Aden University, Aden, Yemen, Email
| |
Collapse
|
3
|
Sundqvist KG. CD28 Superagonist Shock and Blockage of Motogenic T Cell Cascade. Front Immunol 2021; 12:670864. [PMID: 33968078 PMCID: PMC8098977 DOI: 10.3389/fimmu.2021.670864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karl-Gösta Sundqvist
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute and Clinical Immunology and Transfusion Medicine Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Gurgel Penaforte-Saboia J, Couri CEB, Vasconcelos Albuquerque N, Lauanna Lima Silva V, Bitar da Cunha Olegario N, Oliveira Fernandes V, Montenegro Junior RM. Emerging Roles of Dipeptidyl Peptidase-4 Inhibitors in Delaying the Progression of Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:565-573. [PMID: 33603422 PMCID: PMC7882449 DOI: 10.2147/dmso.s294742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from the immune cell-mediated destruction of functional pancreatic β-cells. In the presymptomatic period, T1DM is characterized by the presence of two or more autoantibodies against the islet cells in patients without glycemic decompensation. Therapeutic strategies that can modify the autoimmune process could slow the progression of T1DM. Dipeptidyl peptidase-4 (DPP-4) or CD26, a multifunctional serine protease with a dual function (regulatory protease and binding protein), can modulate inflammation and immune cell-mediated β-cell destruction. CD26 is involved in T-cell co-stimulation, migration, memory development, thymic maturation, and emigration patterns. DPP-4 degrades the peptide hormones GLP-1 and GIP. In addition to regulating glucose metabolism, DPP-4 exerts anti-apoptotic, regenerative, and proliferative effects to promote β-cell mass expansion. GLP-1 receptor signaling may regulate murine lymphocyte proliferation and maintenance of peripheral regulatory T-cells. In patients with T1DM, the serum DPP-4 activity is upregulated. Several studies have suggested that the upregulated DPP-4 activity is correlated with T1DM pathophysiology. DPP-4, which is preferentially expressed on the Th1 surface, can promote the polarization of Th1 immunity, a prerequisite for T1DM development. CD26 inhibition can suppress T-cell proliferation and Th1 cytokine production and stimulate tumor growth factor beta-1 (TGF-β1) secretion, which plays an important role in the regulation of autoimmunity in T1DM. Studies on humans or animal models of T1DM have suggested that DPP-4 inhibitors can improve β-cell function and attenuate autoimmunity in addition to decreasing insulin dependence. This review summarizes the emerging roles of DPP-4 inhibitors in potentially delaying the progression of T1DM.
Collapse
Affiliation(s)
- Jaquellyne Gurgel Penaforte-Saboia
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos Eduardo Barra Couri
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Natasha Vasconcelos Albuquerque
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
| | | | - Natália Bitar da Cunha Olegario
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Virgínia Oliveira Fernandes
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
| | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, Brazil
- Correspondence: Renan Magalhães Montenegro Junior Federal University of Ceará, Rua Coronel Nunes de Melo s/n, Fortaleza, 60430-270, Ceará, BrazilTel +55 8533668600Fax +55 85 3366-8619 Email
| |
Collapse
|
5
|
Affiliation(s)
- Karl-Gösta Sundqvist
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska Institute and Clinical Immunology and Transfusion Medicine Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Maitre E, Le‐Page A, Comoz F, Truquet F, Damaj G, Cornet E, Verneuil L, Salaün V, Troussard X. Usefulness of Flow Cytometry for the Detection of Cutaneous Localization in Malignant Hematologic Disorders. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:283-293. [DOI: 10.1002/cyto.b.21784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Elsa Maitre
- Laboratoire d'hématologie, CHU de Caen, Calvados, 14033 Caen France
| | - Anne‐Laure Le‐Page
- Laboratoire d'Anatomopathologie, CHU de Caen, Calvados, 14033 Caen France
| | - Francois Comoz
- Laboratoire d'Anatomopathologie, CHU de Caen, Calvados, 14033 Caen France
| | - Florence Truquet
- Laboratoire d'hématologie, CHU de Caen, Calvados, 14033 Caen France
| | - Gandhi Damaj
- Institut d'Hématologie Bas Normand, CHU de Caen, Calvados, 14033 Caen France
| | - Edouard Cornet
- Laboratoire d'hématologie, CHU de Caen, Calvados, 14033 Caen France
| | | | - Véronique Salaün
- Laboratoire d'hématologie, CHU de Caen, Calvados, 14033 Caen France
| | - Xavier Troussard
- Laboratoire d'hématologie, CHU de Caen, Calvados, 14033 Caen France
- Institut d'Hématologie Bas Normand, CHU de Caen, Calvados, 14033 Caen France
| |
Collapse
|
7
|
Sundqvist KG. T Cell Co-Stimulation: Inhibition of Immunosuppression? Front Immunol 2018; 9:974. [PMID: 29774033 PMCID: PMC5943593 DOI: 10.3389/fimmu.2018.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Karl-Gösta Sundqvist
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Clinical Immunology and Transfusion Medicine at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Rot A, Massberg S, Khandoga AG, von Andrian UH. Chemokines and Hematopoietic Cell Trafficking. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
9
|
Wakao H, Sugimoto C, Kimura S, Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. Front Immunol 2017; 8:1711. [PMID: 29250077 PMCID: PMC5717033 DOI: 10.3389/fimmu.2017.01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for difficult-to-cure infectious diseases and cancer and contributes to improvement of our welfare.
Collapse
Affiliation(s)
- Hiroshi Wakao
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Chie Sugimoto
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Shinzo Kimura
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Rika Wakao
- Office of Regulatory Science, Pharmaceutical and Medical Device Agency (PMDA), Tokyo, Japan
| |
Collapse
|
10
|
Panezai J, Bergdahl E, Sundqvist KG. T-cell regulation through a basic suppressive mechanism targeting low-density lipoprotein receptor-related protein 1. Immunology 2017; 152:308-327. [PMID: 28580688 DOI: 10.1111/imm.12770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Cell adhesion is generally considered to depend on positive regulation through ligation of integrins and cytokine receptors. However, here we show that T-cell adhesion, and notably also T-cell receptor (TCR) -induced activation, are subject to constant suppression through shedding of low-density lipoprotein receptor-related protein 1 (LRP1). The broad-spectrum metalloprotease inhibitor GM6001 abrogated shedding, so inducing prominent cell surface expression of LRP1 while enhancing TCR-induced activation and adhesion to β1 and β2 integrin ligands, hence arresting the cells. Integrin ligands also inhibited shedding but the effect was less potent than that of GM6001. Unlike GM6001, integrin ligands also induced cell surface expression of full-length thrombospondin-1 (TSP170) and TSP130, which associated with LRP1, and TSP110, which did not associate with LRP1. Cell surface expression of LRP1 and TSP130 were induced exclusively in adhering cells, expression of TSP110 preferentially in non-adhering cells and expression of TSP170 correlated with T-cell motility. The pro-adhesive chemokine CXCL12 also inhibited LRP1 shedding and induced surface expression of TSP170 and TSP130 while inhibiting TSP110. Exogenous TSP-1 and ligation of CD28 inhibited shedding although less effectively than GM6001, and the inhibition through CD28 was independent of TSP-1. Small interfering RNA silencing experiments confirmed involvement of LRP1 and TSP-1 in integrin-dependent adhesion and TCR-induced activation. Hence, the poor LRP1 expression in T cells depends on shedding. Integrin ligands and CXCL12 antagonize shedding through a TSP-1-dependent pathway and ligation of CD28 antagonizes shedding independent of TSP-1. The disappearance of LRP1 from the cell surface may provide basic immunosuppression at the T-cell level.
Collapse
Affiliation(s)
- Jeneen Panezai
- Division of Periodontology, Department of Dental Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden.,Department of Periodontology, Altamash Institute of Dental Medicine, Karachi, Pakistan
| | - Eva Bergdahl
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Karl-Gösta Sundqvist
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Kadiri M, El Azreq MA, Berrazouane S, Boisvert M, Aoudjit F. Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK. J Cell Biochem 2017; 118:2819-2827. [PMID: 28198034 DOI: 10.1002/jcb.25932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maleck Kadiri
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Sofiane Berrazouane
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Marc Boisvert
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
12
|
Klemann C, Wagner L, Stephan M, von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin Exp Immunol 2016; 185:1-21. [PMID: 26919392 DOI: 10.1111/cei.12781] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/14/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
CD26/DPP4 (dipeptidyl peptidase 4/DP4/DPPIV) is a surface T cell activation antigen and has been shown to have DPP4 enzymatic activity, cleaving-off amino-terminal dipeptides with either L-proline or L-alanine at the penultimate position. It plays a major role in glucose metabolism by N-terminal truncation and inactivation of the incretins glucagon-like peptide-1 (GLP) and gastric inhibitory protein (GIP). In 2006, DPP4 inhibitors have been introduced to clinics and have been demonstrated to efficiently enhance the endogenous insulin secretion via prolongation of the half-life of GLP-1 and GIP in patients. However, a large number of studies demonstrate clearly that CD26/DPP4 also plays an integral role in the immune system, particularly in T cell activation. Therefore, inhibition of DPP4 might represent a double-edged sword. Apart from the metabolic benefit, the associated immunological effects of long term DPP4 inhibition on regulatory processes such as T cell homeostasis, maturation and activation are not understood fully at this stage. The current data point to an important role for CD26/DPP4 in maintaining lymphocyte composition and function, T cell activation and co-stimulation, memory T cell generation and thymic emigration patterns during immune-senescence. In rodents, critical immune changes occur at baseline levels as well as after in-vitro and in-vivo challenge. In patients receiving DPP4 inhibitors, evidence of immunological side effects also became apparent. The scope of this review is to recapitulate the role of CD26/DPP4 in the immune system regarding its pharmacological inhibition and T cell-dependent immune regulation.
Collapse
Affiliation(s)
- C Klemann
- Center of Pediatric Surgery, Hannover Medical School, Hannover.,Center of Chronic Immunodeficiency, University Medical Center Freiburg, University Medical Center Freiburg
| | - L Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V.,Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Stephan
- Clinic for Psychosomatics and Psychotherapy, Hannover Medical School, Hannover
| | - S von Hörsten
- Department for Experimental Therapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Talme T, Bergdahl E, Sundqvist KG. Methotrexate and its therapeutic antagonists caffeine and theophylline, target a motogenic T-cell mechanism driven by thrombospondin-1 (TSP-1). Eur J Immunol 2016; 46:1279-90. [DOI: 10.1002/eji.201546122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 02/19/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Toomas Talme
- Department of Medicine; Division of Dermatology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| | - Eva Bergdahl
- Department of Laboratory Medicine; Division of Clinical Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| | - Karl-Gösta Sundqvist
- Department of Laboratory Medicine; Division of Clinical Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
- Department of Laboratory Medicine; Division of Therapeutic Immunology; Karolinska Institute at Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
14
|
Bergström SE, Uzunel M, Talme T, Bergdahl E, Sundqvist KG. Antigen-induced regulation of T-cell motility, interaction with antigen-presenting cells and activation through endogenous thrombospondin-1 and its receptors. Immunology 2015; 144:687-703. [PMID: 25393517 DOI: 10.1111/imm.12424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022] Open
Abstract
Antigen recognition reduces T-cell motility, and induces prolonged contact with antigen-presenting cells and activation through mechanisms that remain unclear. Here we show that the T-cell receptor (TCR) and CD28 regulate T-cell motility, contact with antigen-presenting cells and activation through endogenous thrombospondin-1 (TSP-1) and its receptors low-density lipoprotein receptor-related protein 1 (LRP1), calreticulin and CD47. Antigen stimulation induced a prominent up-regulation of TSP-1 expression, and transiently increased and subsequently decreased LRP1 expression whereas calreticulin was unaffected. This antigen-induced TSP-1/LRP1 response down-regulated a motogenic mechanism directed by LRP1-mediated processing of TSP-1 in cis within the same plasma membrane while promoting contact with antigen-presenting cells and activation through cis interaction of the C-terminal domain of TSP-1 with CD47 in response to N-terminal TSP-1 triggering by calreticulin. The antigen-induced TSP-1/LRP1 response maintained a reduced but significant motility level in activated cells. Blocking CD28 co-stimulation abrogated LRP1 and TSP-1 expression and motility. TCR/CD3 ligation alone enhanced TSP-1 expression whereas CD28 ligation alone enhanced LRP1 expression. Silencing of TSP-1 inhibited T-cell conjugation to antigen-presenting cells and T helper type 1 (Th1) and Th2 cytokine responses. The Th1 response enhanced motility and increased TSP-1 expression through interleukin-2, whereas the Th2 response weakened motility and reduced LRP1 expression through interleukin-4. Ligation of the TCR and CD28 therefore elicits a TSP-1/LRP1 response that stimulates prolonged contact with antigen-presenting cells and, although down-regulating motility, maintains a significant motility level to allow serial contacts and activation. Th1 and Th2 cytokine responses differentially regulate T-cell expression of TSP-1 and LRP1 and motility.
Collapse
Affiliation(s)
- Sten-Erik Bergström
- Department of Medicine, Karolinska Institute, Huddinge, Sweden; Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
A salicylate-based small molecule HS-Cm exhibits immunomodulatory effects and inhibits dipeptidyl peptidase-IV activity in human T cells. Eur J Pharmacol 2014; 726:124-32. [PMID: 24491838 DOI: 10.1016/j.ejphar.2014.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells are key players in chronic inflammatory diseases, including atherosclerosis. Salicylates, like aspirin, display not only anti-inflammatory, anti-thrombotic, anti-atherosclerotic activities, but also immunomodulatory effects in T cells at high dosages. Here, we aimed to identify potent immunomodulators for T cells through cell-based screening from a mini-library of 300 salicylate-based small molecules, and elucidate the mechanisms. Human peripheral blood T cells were isolated from buffy coat. Phorbol 12-myristate 13-acetate plus ionomycin (P/I) was used to stimulate T cells. Cytokine production was measured by enzyme-linked immunosorbent assays. T cell activation markers were determined by flow cytometry. The activation of transcription factors and kinases was analyzed by western blotting, electrophoretic mobility shift assay, or kinase assay. Through library screening, we identified a small molecule named HS-Cm [C13H9ClFNO2; N-(4-chloro-2-fluorophenyl)-2-hydroxybenzamide] that exhibited potent immunomodulatory effects on T cells with low cytotoxicity. In P/I-stimulated T cells, HS-Cm inhibited the production of interleukin-2, tumor necrosis factor-alpha, and interferon-gamma and suppressed the expression of surface activation markers CD25, CD69, and CD71, but not CD45RO. HS-Cm down-regulated DNA-binding activities of activator protein-1 and nuclear factor-kappa B, but not nuclear factor of activated T-cells, through inhibiting c-Jun N-terminal kinase/p38 and inhibitor of kappaB alpha (IκBα) kinase (IKK)/IκBα pathways, respectively. On the basis of structure-activity relationship, HS-Cm exerted considerable inhibition of dipeptidyl-peptidase IV/CD26 activity in T cells. Our results suggested that the small molecule HS-Cm exhibiting immunomodulatory effects on T cells may be useful for therapeutics in chronic inflammatory diseases, like atherosclerosis, diabetes and autoimmune arthritis.
Collapse
|
16
|
Talme T, Bergdahl E, Sundqvist KG. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1. Immunology 2014; 142:176-92. [PMID: 24877199 DOI: 10.1111/imm.12229] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.
Collapse
|
17
|
Bergström SE, Bergdahl E, Sundqvist KG. A cytokine-controlled mechanism for integrated regulation of T-lymphocyte motility, adhesion and activation. Immunology 2014; 140:441-55. [PMID: 23866045 DOI: 10.1111/imm.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/04/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
The co-ordination of T-cell motility, adhesion and activation remains poorly understood. It is also unclear how these functions are co-ordinated with external stimuli. Here we unveil a series of molecular interactions in cis at the surface of T lymphocytes with potent effects on motility and adhesion in these cells, and communicating with proliferative responses. These interactions were controlled by the signature cytokines of T helper subsets interleukin-2 (IL-2) and IL-4. Low-density lipoprotein receptor-related protein 1 (LRP1) was found to play a key role for T-cell motility by promoting development of polarized cell shape and cell movement. Endogenous thrombospondin-1 (TSP-1) enhanced cell surface expression of LRP1 through CD47. Cell surface expressed LRP1 induced motility and processing of TSP-1 while inhibiting adhesion to intercellular adhesion molecule 1 and fibronectin. Interleukin-2, but not IL-4, stimulated synthesis of TSP-1 and motility through TSP-1 and LRP1. Stimulation of the T-cell receptor (TCR)/CD3 complex inhibited TSP-1 expression. Inhibitor studies indicated that LRP1 regulated TSP-1 expression and promoted motility through JAK signalling. This LRP1-mediated motogenic signalling was connected to CD47/Gi protein signalling and IL-2-induced signalling through TSP-1. The motogenic TSP-1/LRP1 mechanism antagonized TCR/CD3-induced T-cell proliferation. These results indicate that LRP1 in collaboration with TSP-1 directs a counter-adhesive and counter-proliferative motogenic cascade. T cells seem programmed to prioritize movement before adhesion through this cascade. In conclusion, vital decision-making in T lymphocytes regulating motility, adhesive interactions and proliferation, are integrated through a molecular mechanism connecting different cell surface receptors and their signalling pathways.
Collapse
Affiliation(s)
- Sten-Erik Bergström
- Department of Medicine, Karolinska Institute, Huddinge, Sweden; Division of Clinical Immunology, Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Schadler KL, Crosby EJ, Zhou AY, Bhang DH, Braunstein L, Baek KH, Crawford D, Crawford A, Angelosanto J, Wherry EJ, Ryeom S. Immunosurveillance by antiangiogenesis: tumor growth arrest by T cell-derived thrombospondin-1. Cancer Res 2014; 74:2171-81. [PMID: 24590059 DOI: 10.1158/0008-5472.can-13-0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in cancer immunotherapy suggest that manipulation of the immune system to enhance the antitumor response may be a highly effective treatment modality. One understudied aspect of immunosurveillance is antiangiogenic surveillance, the regulation of tumor angiogenesis by the immune system, independent of tumor cell lysis. CD4(+) T cells can negatively regulate angiogenesis by secreting antiangiogenic factors such as thrombospondin-1 (TSP-1). In tumor-bearing mice, we show that a Th1-directed viral infection that triggers upregulation of TSP-1 in CD4(+) and CD8(+) T cells can inhibit tumor angiogenesis and suppress tumor growth. Using bone marrow chimeras and adoptive T-cell transfers, we demonstrated that TSP-1 expression in the T-cell compartment was necessary and sufficient to inhibit tumor growth by suppressing tumor angiogenesis after the viral infection. Our results establish that tumorigenesis can be stanched by antiangiogenic surveillance triggered by an acute viral infection, suggesting novel immunologic approaches to achieve antiangiogenic therapy.
Collapse
Affiliation(s)
- Keri L Schadler
- Authors' Affiliations: Department of Cancer Biology, Abramson Family Cancer Research Institute; Department of Microbiology, Institute for Immunology, Perelman School of Medicine; Department of Pathobiology, Veterinary School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Children's Hospital, Boston, Massachusetts; and Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Evans-Molina C, Hatanaka M, Mirmira RG. Lost in translation: endoplasmic reticulum stress and the decline of β-cell health in diabetes mellitus. Diabetes Obes Metab 2013; 15 Suppl 3:159-69. [PMID: 24003933 PMCID: PMC3777692 DOI: 10.1111/dom.12163] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/12/2013] [Indexed: 12/27/2022]
Abstract
Emerging data illustrate a pivotal role for activation of β-cell endoplasmic reticulum (ER) stress pathways in diabetes pathophysiology. The purpose of this review is to appraise the evidence for β-cell ER stress in human type 1 and 2 diabetes, review the molecular signalling pathways involved in the unfolded protein response and ER stress signalling, and to provide data from polyribosome profiling to illustrate the impact of ER stress on the mRNA translation response. Finally, we will discuss existing and novel therapeutic strategies that target β-cell ER stress and discuss their use in rodent and human type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis IN, USA
| | - Masayuki Hatanaka
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis IN, USA
| | - Raghavendra G. Mirmira
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis IN, USA
| |
Collapse
|
20
|
Expansion of Functional Human Mucosal-Associated Invariant T Cells via Reprogramming to Pluripotency and Redifferentiation. Cell Stem Cell 2013; 12:546-58. [DOI: 10.1016/j.stem.2013.03.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/27/2013] [Accepted: 03/07/2013] [Indexed: 02/06/2023]
|
21
|
Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: A key player in chronic liver disease. World J Gastroenterol 2013; 19:2298-2306. [PMID: 23613622 PMCID: PMC3631980 DOI: 10.3748/wjg.v19.i15.2298] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/15/2012] [Accepted: 03/07/2013] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a membrane-associated peptidase, also known as CD26. DPP-4 has widespread organ distribution throughout the body and exerts pleiotropic effects via its peptidase activity. A representative target peptide is glucagon-like peptide-1, and inactivation of glucagon-like peptide-1 results in the development of glucose intolerance/diabetes mellitus and hepatic steatosis. In addition to its peptidase activity, DPP-4 is known to be associated with immune stimulation, binding to and degradation of extracellular matrix, resistance to anti-cancer agents, and lipid accumulation. The liver expresses DPP-4 to a high degree, and recent accumulating data suggest that DPP-4 is involved in the development of various chronic liver diseases such as hepatitis C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Furthermore, DPP-4 occurs in hepatic stem cells and plays a crucial role in hepatic regeneration. In this review, we described the tissue distribution and various biological effects of DPP-4. Then, we discussed the impact of DPP-4 in chronic liver disease and the possible therapeutic effects of a DPP-4 inhibitor.
Collapse
|
22
|
Abstract
Apigenin (4',5,7-trihydroxyflavone, 5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many fruits, vegetables, and herbs, the most abundant sources being the leafy herb parsley and dried flowers of chamomile. Present in dietary sources as a glycoside, it is cleaved in the gastrointestinal lumen to be absorbed and distributed as apigenin itself. For this reason, the epithelium of the gastrointestinal tract is exposed to higher concentrations of apigenin than tissues at other locations. This would also be true for epithelial cancers of the gastrointestinal tract. We consider the evidence for actions of apigenin that might hinder the ability of gastrointestinal cancers to progress and spread. Apigenin has been shown to inhibit cell growth, sensitize cancer cells to elimination by apoptosis, and hinder the development of blood vessels to serve the growing tumor. It also has actions that alter the relationship of the cancer cells with their microenvironment. Apigenin is able to reduce cancer cell glucose uptake, inhibit remodeling of the extracellular matrix, inhibit cell adhesion molecules that participate in cancer progression, and oppose chemokine signaling pathways that direct the course of metastasis into other locations. As such, apigenin may provide some additional benefit beyond existing drugs in slowing the emergence of metastatic disease.
Collapse
Affiliation(s)
- Émilie C Lefort
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
23
|
Abstract
Inflammatory bowel diseases (Crohn's disease, ulcerative colitis, undetermined colitis) are a group of chronic autoimmune inflammatory diseases distinguished by recurrent inflammation of various parts of the gastrointestinal (GI) system and presenting a significant public health problem. Despite large basic and clinical research, the aetiology of these diseases and the pathogenesis of inflammation itself remain elusive. Previous studies have confirmed a causal relationship between mediators of inflammatory response and molecules involved in the regulation of their biological activity, especially proteases. The aim of this review is to summarise earlier findings on different aspects of inflammatory bowel diseases, paying particular attention to the involvement of dipeptidyl peptidase IV (CD26 molecule, DPP IV/CD26) in the etiopathogenesis of inflammatory processes in the GI tract. Animal studies of colitis have significantly contributed to the understanding and treatment of these diseases, investigations of ulcerative colitis (DSS-colitis) and Crohn's disease (TNBS-colitis) on the murine model in particular.
Collapse
|
24
|
Qiu X, Hong C, Zhong Z, Li Y, Zhang T, Bao W, Xiong S, Gao XM. Modulation of cellular immunity by antibodies against calreticulin. Eur J Immunol 2012; 42:2419-30. [PMID: 22685035 DOI: 10.1002/eji.201142320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/02/2012] [Accepted: 05/30/2012] [Indexed: 12/26/2022]
Abstract
Although caltreticulin (CRT) is mainly a residential ER protein, it is also expressed on the membrane surface of various types of cells exhibiting multiple functions. We report here that intraperitoneal administration of a soluble recombinant CRT fragment (rCRT/39-272) led to a substantial decrease in delayed type hypersensitivity (DTH) responses in BALB/c mice and EAE in C57BL/6 mice. In the recall response against keyhole limpet hemocyanin (KLH) in vitro, draining lymph node cells from the rCRT/39-272-treated mice produced less IFN-γ but more IL-4 as compared with the cells from the control group. The immunomodulating effect of intraperitoneally administered rCRT/39-272 was attributed to anti-CRT Abs thereby induced, because, in passive transfer experiments, the CRT-specific antiserum could suppress DTH in BALB/c mice. B-cell-deficient μMT mice were not susceptible to rCRT/39-272-mediated DTH suppression. Furthermore, CRT appears on the surface of murine T cells soon after activation and remains detectable (at relatively low level) by flow cytometry for approximately 5 days in vitro. Anti-CRT Abs were able to inhibit AKT phosphorylation, proliferation, and cytokine production by activated murine T cells. We propose that cell surface CRT could play a role in the function of effector T cells and may be considered a target for immunological manipulation.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, Trylcova J, Strnad H, Krepela E, Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol 2012; 44:738-47. [DOI: 10.1016/j.biocel.2012.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 11/16/2022]
|
26
|
Schwaiger E, Klaus C, Matheeussen V, Baranyi U, Pilat N, Ramsey H, Korom S, De Meester I, Wekerle T. Dipeptidyl peptidase IV (DPPIV/CD26) inhibition does not improve engraftment of unfractionated syngeneic or allogeneic bone marrow after nonmyeloablative conditioning. Exp Hematol 2011; 40:97-106. [PMID: 22085453 PMCID: PMC3265670 DOI: 10.1016/j.exphem.2011.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/26/2011] [Accepted: 10/31/2011] [Indexed: 12/30/2022]
Abstract
In order to develop minimally toxic bone marrow transplantation (BMT) protocols suitable for use in a wider range of indications, it is important to identify ways to enhance BM engraftment at a given level of recipient conditioning. CXCL12/stromal cell-derived factor-1α plays a crucial physiological role in homing of hematopoietic stem cells to BM. It is regulated by the ectopeptidase dipeptidyl peptidase IV (DPPIV; DPP4) known as CD26, which cleaves dipeptides from the N-terminus of polypeptide chains. Blocking DPPIV enzymatic activity had a beneficial effect on hematopoietic stem cell engraftment in various but very specific experimental settings. Here we investigated whether inhibition of DPPIV enzymatic activity through Diprotin A or sitagliptin (Januvia) improves BM engraftment in nonmyeloablative murine models of syngeneic (i.e., CD45-congenic) and allogeneic (i.e., Balb/c to B6) BMT (1 Gy total body irradiation, 10–15 × 106 unseparated BM cells/mouse). Neither Diprotin A administered in vivo at the time of BMT and/or used for in vitro pretreatment of BM nor sitagliptin administered in vivo had a detectable effect on the level of multilineage chimerism (follow-up >20 weeks). Similarly, sitagliptin did not enhance chimerism after allogeneic BMT, even though DPPIV enzymatic activity measured in serum was profoundly inhibited (>98% inhibition at peak exposure). Our results provide evidence that DPPIV inhibition via Diprotin A or sitagliptin does not improve engraftment of unseparated BM in a nonmyeloablative BMT setting.
Collapse
Affiliation(s)
- Elisabeth Schwaiger
- Division of Transplantation, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Molecular mechanism and structural basis of interactions of dipeptidyl peptidase IV with adenosine deaminase and human immunodeficiency virus type-1 transcription transactivator. Eur J Cell Biol 2011; 91:265-73. [PMID: 21856036 DOI: 10.1016/j.ejcb.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/31/2011] [Accepted: 06/11/2011] [Indexed: 11/21/2022] Open
Abstract
Dipeptidyl peptidase IV (DPPIV or CD26) is a multifunctional membrane glycoprotein. As an exopeptidase it regulates the activity of a series of biologically important peptides. Through its interaction with specific proteins and peptides, DPPIV is also involved in a wide range of biologically relevant processes such as cell adhesion, T cell activation and apoptosis. In this paper, we review our recent studies on the interactions of DPPIV with adenosine deaminase (ADA) and the transcription transactivator of the human immunodeficiency virus type-1 (HIV-1 Tat) as revealed by three-dimensional structure reconstructed by single particle analysis of cryo-electron microscopy (EM) and crystal structures of the human DPPIV-bovine ADA complex as well as the crystal structures of DPPIV in complex with HIV-1 Tat-derived nonapeptides. These results contribute importantly to the clarification of the molecular mechanisms of this multifunctional protein. The biological relevance of these interactions is discussed.
Collapse
|
28
|
Matteucci E, Ghimenti M, Di Beo S, Giampietro O. Altered proportions of naïve, central memory and terminally differentiated central memory subsets among CD4+ and CD8 + T cells expressing CD26 in patients with type 1 diabetes. J Clin Immunol 2011; 31:977-84. [PMID: 21887518 DOI: 10.1007/s10875-011-9573-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/12/2011] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes is an autoimmune process predominantly T-cell mediated. CD26 plays a role in T-cell costimulation, migration, memory development, thymic maturation and emigration patterns. In peripheral blood from 55 patients with type 1 diabetes and 20 healthy controls, CD4(+) and CD8(+) T cells expressing CD26 were differentiated into naïve (N, CD45RA(+)CCR7(+)), central memory (CM, CD45RA(-)CCR7(+)), effector memory (EM, CD45RA(-)CCR7(-)), and terminally differentiated effector memory (TEMRA, CD45RA(+)CCR7(-)). In type 1 diabetes, CD4(+) and CD8(+) T cells expressing CD26 showed a distinctive differentiation profile: percentages and absolute numbers of CM and N cells were reduced, whereas those of TEMRA cells were markedly increased. The indices of intermediate- and long-term glycaemic control were associated negatively with the number of CM and N cells while positively with the number of TEMRA cells. The considerable accumulation of TEMRA T cells in our patients suggests life-long stimulation by protracted antigen exposure (viruses, other agents or residual self-antigens?) or a homeostatic defect in the regulation/contraction of immune responses.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Internal Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | | | | | | |
Collapse
|
29
|
Le Bourhis L, Guerri L, Dusseaux M, Martin E, Soudais C, Lantz O. Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol 2011; 32:212-8. [PMID: 21459674 DOI: 10.1016/j.it.2011.02.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/04/2011] [Accepted: 02/10/2011] [Indexed: 01/03/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a population of T cells that display a semi-invariant T cell receptor (TCR) and are restricted by the evolutionarily conserved major histocompatibility complex related molecule, MR1. Here, we review recent knowledge of this T cell population. MAIT cells are abundant in human blood, gut and liver, and display an effector phenotype. They follow an atypical pathway of development and preferentially locate to peripheral tissues. Human and mouse MAIT cells react to bacterially infected cells in an MR1-dependent manner. They migrate to the infection site and can be protective in experimental infection models. MAIT cells secrete interferon-γ, and interleukin-17 under certain conditions. The species conservation, as well as the wide microbial reactivity, infer an important role for this cell population in immunity.
Collapse
Affiliation(s)
- Lionel Le Bourhis
- Institut Curie, Département de Biologie des Tumeurs, Paris, 75005, France
| | | | | | | | | | | |
Collapse
|
30
|
Lefort EC, Blay J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis 2011; 28:337-49. [PMID: 21298326 DOI: 10.1007/s10585-010-9364-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/29/2010] [Indexed: 12/27/2022]
Abstract
There is accumulating evidence that secondary plant metabolites such as flavonoids may have anti-cancer properties, and yet the molecular pathways that lead to alterations in cancer cell behaviour remain unclear. We investigated the possible actions of apigenin, a flavone present in leafy vegetables like parsley, on the levels of CD26 in carcinoma cells. CD26 is a multifunctional cell-surface protein that through its associated dipeptidyl peptidase (DPPIV) and ecto-adenosine deaminase (eADA) enzyme activities is able to suppress pathways involved in tumour metastasis. CD26 is down-regulated in various cancers including colorectal carcinoma. Apigenin substantially up-regulated cell-surface CD26 on HT-29 and HRT-18 human colorectal cancer cells. Levels of CD26 protein, along with its associated DPPIV enzyme activity, capacity to bind eADA, and ability to link cells to fibronectin, were increased with a maximum after 24-48 h. Elevation of CD26 occurred at concentrations that were at least 10-fold less than those shown to affect cell growth, and 100-fold below those that could affect cell viability. Furthermore, the CD26 effect was enhanced when apigenin was paired with chemotherapeutic agents utilized in the treatment of advanced colorectal cancer including irinotecan, 5-fluorouracil and oxaliplatin. For irinotecan, apigenin caused a 4-fold increase in the potency of the drug. These results demonstrate that apigenin can increase the cellular levels of CD26 and its multiple functions, and may oppose the predicted effect of decreased DPPIV and eADA activities on carcinoma cells, which is to facilitate tumour growth and metastasis.
Collapse
Affiliation(s)
- Emilie C Lefort
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
31
|
Abstract
Mucosal-associated invariant T (MAIT) cells are very abundant in humans and have antimicrobial specificity, but their functions remain unclear. MAIT cells are CD161(hi)IL-18Rα(+) and either CD4(-)CD8(-) (DN) or CD8αβ(int) T cells. We now show that they display an effector-memory phenotype (CD45RA(-)CD45RO(+)CD95(hi)CD62L(lo)), and their chemokine receptor expression pattern (CCR9(int)CCR7(-)CCR5(hi)CXCR6(hi)CCR6(hi)) indicates preferential homing to tissues and particularly the intestine and the liver. MAIT cells can represent up to 45% of the liver lymphocytes. They produce interferon-γ and Granzyme-B as well as high levels of interleukin-17 after phorbol myristate acetate + ionomycin stimulation. Most MAIT cells are noncycling cells (< 1% are Ki-67(+)) and express the multidrug resistance transporter (ABCB1). As expected from this phenotype, MAIT cells are more resistant to chemotherapy than other T-cell populations. These features might also allow MAIT cells to resist the xenobiotics potentially secreted by the gut bacteria. We also show that this population does not appear to have antiviral specificity and that CD8 MAIT cells include almost all the ABCB1(+)CD161(hi) CD8 T cells. Together with their already known abundance and antimicrobial specificity, the gut-liver homing characteristics, high expression of ABCB1, and ability to secrete interleukin-17 probably participate in the antibacterial properties of MAIT cells.
Collapse
|
32
|
ERIKSSON CATHARINA, RANTAPÄÄ-DAHLQVIST SOLBRITT, SUNDQVIST KARLGÖSTA. T-cell expression of CD91 - a marker of unresponsiveness to anti-TNF therapy in rheumatoid arthritis. APMIS 2010; 118:837-45. [DOI: 10.1111/j.1600-0463.2010.02677.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH. The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int 2010; 30:795-808. [PMID: 20624207 DOI: 10.1111/j.1478-3231.2010.02264.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a series of hepatic pathologies that begin with relatively benign steatosis and can, with appropriate triggers, lead to the serious entity of non-alcoholic steatohepatitis (NASH). This sets the stage for liver fibrosis and finally the development of cirrhosis in up to 20% of patients with NASH. NAFLD, already among the most common diseases in industrialized countries, is increasing in prevalence and roughly affects 30% of US adults and 10% of US children alone. NAFLD is strongly associated with insulin resistance (IR) and represents the hepatic manifestation of the metabolic syndrome. Indeed, treatments aimed at reducing IR are the current mainstay of therapeutic approaches to NAFLD. While lifestyle interventions may produce limited degrees of success, there remains an urgent need for improved pharmacological therapies. Emerging diagnostic and therapeutic opportunities as well as future developments in NAFLD, NASH and liver fibrosis were discussed by a panel of experts and are presented herein. Promising novel therapeutic targets include inhibitors of dipeptidyl peptidase 4 and the renin-angiotensin system. However, improved non-invasive technologies to diagnose and stage NAFLD are needed. Combined with a better understanding of the pathophysiological processes that underlie the mechanisms of hepatic fibrogenesis in NASH, rapid clinical validation of novel therapies is expected.
Collapse
Affiliation(s)
- Detlef Schuppan
- Beth Israel Deaconess Medical Center, Division of Gastroenterology, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
34
|
Tian L, Gao J, Hao J, Zhang Y, Yi H, O'Brien TD, Sorenson R, Luo J, Guo Z. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 2010; 151:3049-60. [PMID: 20444936 DOI: 10.1210/en.2010-0068] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inhibition of dipeptidyl peptidase IV (DPP-IV) activity by NVP-DPP728, a DPP-IV inhibitor, improves the therapeutic efficacy of glucagon-like peptide-1 (GLP-1). CD26 is a membrane-associated glycoprotein with DPP-IV activity and is expressed on lymphocytes. We investigated the effect of NVP-DPP728 on reversing new-onset diabetes in nonobese diabetic (NOD) mice and modulating the inflammatory response and stimulating beta-cell regeneration. New-onset diabetic NOD mice were treated with NVP-DPP728 for 2, 4, and 6 wk. Blood glucose level was monitored. Regulatory T cells in thymus and secondary lymph nodes, TGF-beta1 and GLP-1 in plasma, and the insulin content in the pancreas were measured. Immunostaining for insulin and bromodeoxyuridine (BrdU) were performed. The correlation of beta-cell replication with inflammation was determined. In NVP-DPP728-treated NOD mice, diabetes could be reversed in 57, 74, and 73% of mice after 2, 4, and 6 wk treatment, respectively. Insulitis was reduced and the percentage of CD4(+)CD25(+)FoxP3(+) regulatory T cells was increased in treated NOD mice with remission. Plasma TGF-beta1 and GLP-1, the insulin content, and both insulin(+) and BrdU(+) beta-cells in pancreas were also significantly increased. No significant correlations were found between numbers of both insulin(+) and BrdU(+) beta-cells in islets and beta-cell area or islets with different insulitis score in NOD mice with remission of diabetes. In conclusion, NVP-DPP728 treatment can reverse new-onset diabetes in NOD mice by reducing insulitis, increasing CD4(+)CD25(+)FoxP3(+) regulatory T cells, and stimulating beta-cell replication. beta-Cell replication is not associated with the degree of inflammation in NVP-DPP728-treated NOD mice.
Collapse
Affiliation(s)
- Lei Tian
- Schulze Diabetes Institute and Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Thrombospondin-1 as a Paradigm for the Development of Antiangiogenic Agents Endowed with Multiple Mechanisms of Action. Pharmaceuticals (Basel) 2010; 3:1241-1278. [PMID: 27713299 PMCID: PMC4034032 DOI: 10.3390/ph3041241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/20/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022] Open
Abstract
Uncontrolled neovascularization occurs in several angiogenesis-dependent diseases, including cancer. Neovascularization is tightly controlled by the balance between angiogenic growth factors and antiangiogenic agents. The various natural angiogenesis inhibitors identified so far affect neovascularization by different mechanisms of action. Thrombospondin-1 (TSP-1) is a matricellular modular glycoprotein that acts as a powerful endogenous inhibitor of angiogenesis. It acts both indirectly, by sequestering angiogenic growth factors and effectors in the extracellular environment, and directly, by inducing an antiangiogenic program in endothelial cells following engagement of specific receptors including CD36, CD47, integrins and proteoglycans (all involved in angiogenesis ). In view of its central, multifaceted role in angiogenesis, TSP-1 has served as a source of antiangiogenic tools, including TSP-1 fragments, synthetic peptides and peptidomimetics, gene therapy strategies, and agents that up-regulate TSP-1 expression. This review discusses TSP-1-based inhibitors of angiogenesis, their mechanisms of action and therapeutic potential, drawing our experience with angiogenic growth factor-interacting TSP-1 peptides, and the possibility of exploiting them to design novel antiangiogenic agents.
Collapse
|