1
|
Zhao W, Li M, Song S, Zhi Y, Huan C, Lv G. The role of natural killer T cells in liver transplantation. Front Cell Dev Biol 2024; 11:1274361. [PMID: 38250325 PMCID: PMC10796773 DOI: 10.3389/fcell.2023.1274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Natural killer T cells (NKTs) are innate-like lymphocytes that are abundant in the liver and participate in liver immunity. NKT cells express both NK cell and T cell markers, modulate innate and adaptive immune responses. Type I and Type II NKT cells are classified according to the TCR usage, while they recognize lipid antigen in a non-classical major histocompatibility (MHC) molecule CD1d-restricted manner. Once activated, NKT cells can quickly produce cytokines and chemokines to negatively or positively regulate the immune responses, depending on the different NKT subsets. In liver transplantation (LTx), the immune reactions in a series of processes determine the recipients' long-term survival, including ischemia-reperfusion injury, alloresponse, and post-transplant infection. This review provides insight into the research on NKT cells subpopulations in LTx immunity during different processes, and discusses the shortcomings of the current research on NKT cells. Additionally, the CD56-expressing T cells are recognized as a NK-like T cell population, they were also discussed during these processes.
Collapse
Affiliation(s)
- Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Lee SW, Park HJ, Van Kaer L, Hong S, Hong S. Graphene oxide polarizes iNKT cells for production of TGFβ and attenuates inflammation in an iNKT cell-mediated sepsis model. Sci Rep 2018; 8:10081. [PMID: 29973666 PMCID: PMC6031608 DOI: 10.1038/s41598-018-28396-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Graphene oxide (GO) modulates the functions of antigen-presenting cells including dendritic cells (DCs). Although carbon nanotubes affect expression of the MHC class I-like CD1d molecule, whether GO can influence immune responses of CD1d-dependent invariant natural killer T (iNKT) cells remains unclear. Here, we investigated the impact of GO on inflammatory responses mediated by α-galactosylceramide (α-GalCer), an iNKT cell agonist. We found that in vivo GO treatment substantially inhibited the capacity of α-GalCer to induce the iNKT cell-mediated trans-activation of and cytokine production by innate and innate-like cells, including DCs, macrophages, NK cells, and γδ T cells. Such effects of GO on α-GalCer-induced inflammatory responses closely correlated with iNKT cell polarization towards TGFβ production, which also explains the capacity of GO to expand regulatory T cells. Interestingly, the absence of TLR4, a receptor for GO, failed to downregulate, and instead partially enhanced the anti-inflammatory activity of GO against α-GalCer-elicited responses, implying negative effects of TLR4 signaling on the anti-inflammatory properties of GO. By employing an α-GalCer-induced sepsis model, we further demonstrated that GO treatment significantly protected mice from α-GalCer-induced lethality. Taken together, we provide strong evidence that GO holds promise as an adjuvant to modulate iNKT cell responses for immunotherapy.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Korea
- Graphene Research Institute, Sejong University, Seoul, 05006, Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Suklyun Hong
- Graphene Research Institute, Sejong University, Seoul, 05006, Korea.
- Department of Physics, Sejong University, Seoul, 05006, Korea.
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, 05006, Korea.
| |
Collapse
|
4
|
IL32γ activates natural killer receptor-expressing innate immune cells to produce IFNγ via dendritic cell-derived IL12. Biochem Biophys Res Commun 2015; 461:86-94. [PMID: 25858316 DOI: 10.1016/j.bbrc.2015.03.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022]
Abstract
The inflammatory cytokine IL32γ acts on dendritic cells (DCs) to produce IL12 and IL6, which are involved in the differentiation of Th1 and Th17 cells. Natural killer (NK) and NKT cells play important roles in IL12-mediated adaptive immune responses, such as antitumor immunity. Herein we demonstrate the effect of IL32γ on the activation of NK and NKT cells. Upon IL32γ stimulation, splenic NK and NKT cells could be activated, and this activation was dependent on both IL12 and DCs, which was confirmed by using IL12p35 knockout and CD11c-diphtheria toxin receptor transgenic mouse models. Furthermore, IL32γ could induce the production of proinflammatory cytokines by NKDCs, a subset of DCs expressing NK cell markers, known to enhance NKT cell function. Unlike conventional DCs, NKDCs produced IFNγ and TNFα rather than IL12 upon stimulation with IL32γ. Taken together, IL32γ will be useful as an adjuvant to boost the cytotoxicities of NK and NKT cells that play critical roles in antitumor immunity.
Collapse
|
5
|
Nie H, Yang Q, Zhang G, Wang A, He Q, Liu M, Li P, Yang J, Huang Y, Ding X, Yu H, Hu S. Invariant NKT cells act as an adjuvant to enhance Th2 inflammatory response in an OVA-induced mouse model of asthma. PLoS One 2015; 10:e0119901. [PMID: 25830340 PMCID: PMC4382159 DOI: 10.1371/journal.pone.0119901] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/06/2015] [Indexed: 11/21/2022] Open
Abstract
Background Invariant natural killer T cells (iNKT cells) are a unique subset of T lymphocytes and are considered to play an important role in the development of allergic bronchial asthma. Recently, iNKT cells were shown to play an immunoregulatory role in CD4+ and CD8+ T cell-mediated adaptive immune response. Allergen-specific Th2 inflammatory responses are an important part of the adaptive immune response in asthma. However, the regulatory functions of the Th2 inflammatory response in asthma have not been studied in detail. Method In this study, we have investigated the regulatory functions of iNKT cells on the Th2 inflammatory response in an ovalbumin (OVA)-induced murine model of asthma. Results Our results demonstrate that α-Galactosylceramide (α-GalCer) administration activated iNKT cells but could not induce the Th2 inflammatory response in wild-type (WT) mice. In the OVA-induced asthma model, α-GalCer administration and adoptive transfer of iNKT cells significantly augmented the Th2 inflammatory responses, including elevated inflammatory cell infiltration in the lung and bronchoalveolar lavage fluid (BALF); increased levels of IL-4, IL-5, and IL-13 in the BALF and splenocyte culture supernatant; and increased serum levels of OVA-specific IgE and IgG1. In addition, the Th2 inflammatory response was reduced, but not completely abrogated in CD1d-/- mice immunized and challenged with OVA, compared with WT mice. Conclusion These results suggest that iNKT cells may serve as an adjuvant to enhance Th2 inflammatory response in an OVA-induced murine model of asthma.
Collapse
Affiliation(s)
- Hanxiang Nie
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| | - Qiaoyu Yang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guqin Zhang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ailing Wang
- Wuhan University HOPE School of nursing, Wuhan, China
| | - Qing He
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Liu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ping Li
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiong Yang
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Huang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuhong Ding
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongying Yu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Suping Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Li Y, To K, Kanellakis P, Hosseini H, Deswaerte V, Tipping P, Smyth MJ, Toh BH, Bobik A, Kyaw T. CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ Res 2014; 116:245-54. [PMID: 25398236 DOI: 10.1161/circresaha.116.304734] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE CD4(+) natural killer T (NKT) cells augment atherosclerosis in apolipoprotein E-deficient (ApoE)(-/-) mice but their mechanisms of action are unknown. OBJECTIVES We investigated the roles of bystander T, B, and NK cells; NKT cell-derived interferon-γ, interleukin (IL)-4, and IL-21 cytokines; and NKT cell-derived perforin and granzyme B cytotoxins in promoting CD4(+) NKT cell atherogenicity. METHODS AND RESULTS Transfer of CD4(+) NKT cells into T- and B-cell-deficient ApoE(-/-)Rag2(-/-) mice augmented aortic root atherosclerosis by ≈75% that was ≈30% of lesions in ApoE(-/-) mice; macrophage accumulation similarly increased. Transferred NKT cells were identified in the liver and atherosclerotic lesions of recipient mice. Transfer of CD4(+) NKT cells into T-, B-cell-deficient, and NK cell-deficient ApoE(-/-)Rag2(-/-)γC(-/-) mice also augmented atherosclerosis. These data indicate that CD4(+) NKT cells can exert proatherogenic effects independent of other lymphocytes. To investigate the role of NKT cell-derived interferon-γ, IL-4, and IL-21 cytokines and perforin and granzyme B cytotoxins, CD4(+) NKT cells from mice deficient in these molecules were transferred into NKT cell-deficient ApoE(-/-)Jα18(-/-) mice. CD4(+) NKT cells deficient in IL-4, interferon-γ, or IL-21 augmented atherosclerosis in ApoE(-/-)Jα18(-/-) mice by ≈95%, ≈80%, and ≈70%, respectively. Transfer of CD4(+) NKT cells deficient in perforin or granzyme B failed to augment atherosclerosis. Apoptotic cells, necrotic cores, and proinflammatory VCAM-1 (vascular cell adhesion molecule) and MCP-1 (monocyte chemotactic protein) were reduced in mice receiving perforin-deficient NKT cells. CD4(+) NKT cells are twice as potent as CD4(+) T cells in promoting atherosclerosis. CONCLUSIONS CD4(+) NKT cells potently promote atherosclerosis by perforin and granzyme B-dependent apoptosis that increases postapoptotic necrosis and inflammation.
Collapse
Affiliation(s)
- Yi Li
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Kelly To
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Peter Kanellakis
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Hamid Hosseini
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Virginie Deswaerte
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Peter Tipping
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Mark J Smyth
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Ban-Hock Toh
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Alexander Bobik
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.)
| | - Tin Kyaw
- From the BakerIDI Heart and Diabetes Institute, Melbourne, Australia (L.Y., K.T., P.K., H.H., V.D., A.B., T.K.); Department of Medicine, Centre for Inflammatory Diseases, Southern Clinical School (L.Y., K.T., P.T., B.-H.T., T.K.) and Department of Immunology, Central Clinical School, Faculty of Medicine Nursing and Health Sciences (A.B.), Monash University, Melbourne, Australia; Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia (M.J.S.); and School of Medicine, University of Queensland, Herston, Queensland, Australia (M.J.S.).
| |
Collapse
|
7
|
Shin JH, Park SH. B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction. Immune Netw 2013; 13:218-21. [PMID: 24198748 PMCID: PMC3817304 DOI: 10.4110/in.2013.13.5.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 09/26/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022] Open
Abstract
CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.
Collapse
Affiliation(s)
- Jung Hoon Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | |
Collapse
|
8
|
Innate and adaptive immune responses to the major Parietaria allergen Par j 1 in healthy subjects. Immunobiology 2012; 218:995-1004. [PMID: 23332216 DOI: 10.1016/j.imbio.2012.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 12/17/2022]
Abstract
In this study we wanted to analyse the pattern of the immune response to the Parietaria major allergen Par j 1 in freshly purified peripheral blood mononuclear cell (PBMC) from healthy subjects. We observed that Par j 1 was capable of inducing IFN-γ production by CD3⁻ and CD16⁺/CD56⁺ cells exclusively in healthy individuals. Furthermore, a multiparametric analysis allowed us a better definition of two IFN-γ-Par j 1 specific populations (IFN-γ(dim) and IFN-γ(high)) characterized by the presence of different proportions of NKT and NK cells. We also identified the concomitant presence of a subset of IL-10⁺ NK cells. Moreover, CFSE staining showed that the Par j 1 preferentially induced the proliferation of CD3⁻/CD56⁺/CD335⁺ cells. Finally, a subset of CD4⁺/CD25⁺/FoxP3⁺/IL-10⁻ T cells was identified. The result of this pilot study suggest that during a tolerogenic response, the major allergen of the Parietaria pollen works as an activator of both the innate and the adaptive human immune system.
Collapse
|
9
|
Pilones KA, Aryankalayil J, Demaria S. Invariant NKT cells as novel targets for immunotherapy in solid tumors. Clin Dev Immunol 2012; 2012:720803. [PMID: 23118781 PMCID: PMC3483734 DOI: 10.1155/2012/720803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/02/2012] [Accepted: 09/02/2012] [Indexed: 12/15/2022]
Abstract
Natural killer T (NKT) cells are a small population of lymphocytes that possess characteristics of both innate and adaptive immune cells. They are uniquely poised to respond rapidly to infection and inflammation and produce cytokines that critically shape the ensuing adaptive cellular response. Therefore, they represent promising therapeutic targets. In cancer, NKT cells are attributed a role in immunosurveillance. NKT cells also act as potent activators of antitumor immunity when stimulated with a synthetic agonist in experimental models. However, in some settings, NKT cells seem to act as suppressors and regulators of antitumor immunity. Here we briefly review current data supporting these paradoxical roles of NKT cells and their regulation. Increased understanding of the signals that determine the function of NKT cells in cancer will be essential to improve current strategies for NKT-cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karsten A. Pilones
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| | - Joseph Aryankalayil
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| | - Sandra Demaria
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| |
Collapse
|
10
|
Shimoda S, Tsuneyama K, Kikuchi K, Harada K, Nakanuma Y, Nakamura M, Ishibashi H, Hisamoto S, Niiro H, Leung PSC, Ansari AA, Gershwin ME, Akashi K. The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol 2012. [PMID: 22519590 DOI: 10.1111/j.1365-2249.2012.04581.x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
One of the major obstacles in dissecting the mechanism of pathology in human primary biliary cirrhosis (PBC) has been the absence of animal models. Our laboratory has focused on a model in which mice, following immunization with a xenobiotic chemical mimic of the immunodominant autoepitope of the E2 component of pyruvate dehydrogenase complex (PDC-E2), develop autoimmune cholangitis. In particular, following immunization with 2-octynoic acid (a synthetic chemical mimic of lipoic acid-lysine located within the inner domain of PDC-E2) coupled to bovine serum albumin (BSA), several strains of mice develop typical anti-mitochondrial autoantibodies and portal inflammation. The role of innate immune effector cells, such as natural killer (NK) cells and that NK T cells, was studied in this model based on the hypothesis that early events during immunization play an important role in the breakdown of tolerance. We report herein that, following in-vivo depletion of NK and NK T cells, there is a marked suppression of anti-mitochondrial autoantibodies and cytokine production from autoreactive T cells. However, there was no change in the clinical pathology of portal inflammation compared to controls. These data support the hypothesis that there are probably multiple steps in the natural history of PBC, including a role of NK and NK T cells in initiating the breakdown of tolerance. However, the data suggest that adaptive autoimmune effector mechanisms are required for the progression of clinical disease.
Collapse
Affiliation(s)
- S Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shimoda S, Tsuneyama K, Kikuchi K, Harada K, Nakanuma Y, Nakamura M, Ishibashi H, Hisamoto S, Niiro H, Leung PSC, Ansari AA, Gershwin ME, Akashi K. The role of natural killer (NK) and NK T cells in the loss of tolerance in murine primary biliary cirrhosis. Clin Exp Immunol 2012; 168:279-84. [PMID: 22519590 DOI: 10.1111/j.1365-2249.2012.04581.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the major obstacles in dissecting the mechanism of pathology in human primary biliary cirrhosis (PBC) has been the absence of animal models. Our laboratory has focused on a model in which mice, following immunization with a xenobiotic chemical mimic of the immunodominant autoepitope of the E2 component of pyruvate dehydrogenase complex (PDC-E2), develop autoimmune cholangitis. In particular, following immunization with 2-octynoic acid (a synthetic chemical mimic of lipoic acid-lysine located within the inner domain of PDC-E2) coupled to bovine serum albumin (BSA), several strains of mice develop typical anti-mitochondrial autoantibodies and portal inflammation. The role of innate immune effector cells, such as natural killer (NK) cells and that NK T cells, was studied in this model based on the hypothesis that early events during immunization play an important role in the breakdown of tolerance. We report herein that, following in-vivo depletion of NK and NK T cells, there is a marked suppression of anti-mitochondrial autoantibodies and cytokine production from autoreactive T cells. However, there was no change in the clinical pathology of portal inflammation compared to controls. These data support the hypothesis that there are probably multiple steps in the natural history of PBC, including a role of NK and NK T cells in initiating the breakdown of tolerance. However, the data suggest that adaptive autoimmune effector mechanisms are required for the progression of clinical disease.
Collapse
Affiliation(s)
- S Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Specific immunotherapy and turning off the T cell: how does it work? Ann Allergy Asthma Immunol 2011; 107:381-92. [PMID: 22018608 DOI: 10.1016/j.anai.2011.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/08/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To examine T-regulatory (Treg) cell functions in allergic immune responses and their roles during allergen specific immunotherapy based on recent developments and current understanding of immune regulation. DATA SOURCES PubMed search of English-language articles regarding Treg cells and allergen specific immunotherapy. STUDY SELECTION Articles on the subject matter were selected and reviewed. RESULTS Allergen specific immunotherapy is the ultimate treatment modality targeting the immunopathogenic mechanisms of allergic disorders. A diminished allergen-specific T-cell proliferation and suppressed secretion of T(H)1- and T(H)2-type cytokines are the characteristic hallmarks. In addition, Treg cells inhibit the development of allergen-specific T(H)2 and T(H)1 cell responses and therefore exert key roles in healthy immune response to allergens. Treg cells potently suppress IgE production and directly or indirectly control the activity of effector cells of allergic inflammation, such as eosinophils, basophils, and mast cells. CONCLUSION As advancements in the field of allergen specific immunotherapy ensue, they may provide novel progression of more rational and safer approaches for the prevention and treatment of allergic disorders. Currently, the Treg cell field is an open research area to increase our understanding in mechanisms of peripheral tolerance to allergens.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | | | | | | |
Collapse
|
13
|
Garden O, Pinheiro D, Cunningham F. All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 2011; 11:576-88. [DOI: 10.1016/j.intimp.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
|
14
|
Mureithi MW, Cohen K, Moodley R, Poole D, Mncube Z, Kasmar A, Moody DB, Goulder PJ, Walker BD, Altfeld M, Ndung'u T. Impairment of CD1d-restricted natural killer T cells in chronic HIV type 1 clade C infection. AIDS Res Hum Retroviruses 2011; 27:501-9. [PMID: 20942750 DOI: 10.1089/aid.2010.0237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies suggest that natural killer T (NKT) cells play a role in early antiviral pathogenesis and are rapidly depleted in chronic human immunodeficiency virus type 1 (HIV-1) clade B infection. We aimed to characterize the phenotypic and functional characteristics of NKT cells in HIV-1 clade C-infected Africans at different stages of HIV-1 disease. NKT cell frequencies, subsets, and ex vivo effector functions were assessed using multiparametric flow cytometry in a cross-sectional analysis of cryopreserved peripheral blood mononuclear cells from a cohort of 53 HIV-1 clade C chronically infected South African adults with CD4 T cell counts ranging from 94 to 839 cells/μl. We observed a significant decline of NKT cell numbers in advanced HIV-1 disease as well as activation and functional impairment of NKT cells in individuals with low CD4 T cell counts. The loss of NKT cells was largely driven by a reduction in the CD4(+) and CD4(-)CD8(-) NKT cell subsets in advanced disease. These findings demonstrate significant impairment of the NKT cell compartment in progressive HIV-1 clade C disease that might play an important role in the modulation of immune function in HIV-1 infection.
Collapse
Affiliation(s)
- Marianne W. Mureithi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Kristen Cohen
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Ramona Moodley
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Danielle Poole
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Zenele Mncube
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Anne Kasmar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - D. Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip J.R. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Pediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Marcus Altfeld
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| |
Collapse
|
15
|
Jung S, Park YK, Shin JH, Lee H, Kim SY, Lee GR, Park SH. The requirement of natural killer T-cells in tolerogenic APCs-mediated suppression of collagen-induced arthritis. Exp Mol Med 2011; 42:547-54. [PMID: 20610917 DOI: 10.3858/emm.2010.42.8.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
TGF-beta-induced tolerogenic-antigen presenting cells (Tol-APCs) could induce suppression of autoimmune diseases such as collagen-induced arthritis (CIA) and allergic asthma. In contrast, many studies have shown that NKT cells are involved in the pathogenesis of Th1-mediated autoimmune joint inflammation and Th2-mediated allergic pulmonary inflammation. In this study, we investigated the effect of CD1d-restricted NKT cells in the Tol-APCs-mediated suppression of autoimmune disease using a murine CIA model. When CIA-induced mice were treated with Tol-APCs obtained from CD1d+/- or CD1d-/- mice, unlike CD1d+/- APCs, CD1d-/- Tol-APCs failed to suppress CIA. More specifically, CD1d-/- Tol-APCs failed to suppress the production of inflammatory cytokines and the induction of Th2 responses by antigen-specific CD4 T cells both in vitro and in vivo. Our results demonstrate that the presence of CD1d-restricted NKT cells is critical for the induction of Tol-APCs-mediated suppression of CIA.
Collapse
Affiliation(s)
- Sundo Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|