1
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Chu EP, Elso CM, Pollock AH, Alsayb MA, Mackin L, Thomas HE, Kay TW, Silveira PA, Mansell AS, Gaus K, Brodnicki TC. Disruption of Serinc1, which facilitates serine-derived lipid synthesis, fails to alter macrophage function, lymphocyte proliferation or autoimmune disease susceptibility. Mol Immunol 2017; 82:19-33. [DOI: 10.1016/j.molimm.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
|
5
|
Collin R, Dugas V, Chabot-Roy G, Salem D, Zahn A, Di Noia JM, Rauch J, Lesage S. Autoimmunity and antibody affinity maturation are modulated by genetic variants on mouse chromosome 12. J Autoimmun 2015; 58:90-9. [PMID: 25623266 DOI: 10.1016/j.jaut.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
Abstract
Autoimmune diseases result from a break in immune tolerance leading to an attack on self-antigens. Autoantibody levels serve as a predictive tool for the early diagnosis of many autoimmune diseases, including type 1 diabetes. We find that a genetic locus on mouse chromosome 12 influences the affinity maturation of antibodies as well as autoantibody production. Thus, we generated a NOD.H2(k) congenic strain bearing B10 alleles at the locus comprised within the D12Mit184 and D12Mit12 markers, which we named NOD.H2(k)-Chr12. We determined the biological relevance of the Chr12 locus on the autoimmune process using an antigen-specific TCR transgenic autoimmune mouse model. Specifically, the 3A9 TCR transgene, which recognizes a peptide from hen egg lysozyme (HEL) in the context of I-A(k), and the HEL transgene, which is expressed under the rat-insulin promoter (iHEL), were bred into the NOD.H2(k)-Chr12 congenic strain. In the resulting 3A9 TCR:iHEL NOD.H2(k)-Chr12 mice, we observed a significant decrease in diabetes incidence as well as a decrease in both the quantity and affinity of HEL-specific IgG autoantibodies relative to 3A9 TCR:iHEL NOD.H2(k) mice. Notably, the decrease in autoantibodies due to the Chr12 locus was not restricted to the TCR transgenic model, as it was also observed in the non-transgenic NOD.H2(k) setting. Of importance, antibody affinity maturation upon immunization and re-challenge was also impeded in NOD.H2(k)-Chr12 congenic mice relative to NOD.H2(k) mice. Together, these results demonstrate that a genetic variant(s) present within the Chr12 locus plays a global role in modulating antibody affinity maturation.
Collapse
Affiliation(s)
- Roxanne Collin
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| | - Véronique Dugas
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Mitacs, Computer Research Institute of Montreal, Montréal, Québec, H3N 1M3, Canada.
| | - Geneviève Chabot-Roy
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada.
| | - David Salem
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada.
| | - Astrid Zahn
- Division of Immunology and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.
| | - Javier M Di Noia
- Division of Immunology and Viral Infections, Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada; Département de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| | - Joyce Rauch
- Division of Rheumatology, Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada.
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1T 2M4, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
6
|
Pelletier AN, Guimont-Desrochers F, Ashton MP, Brodnicki TC, Lesage S. The Size of the Plasmacytoid Dendritic Cell Compartment Is a Multigenic Trait Dominated by a Locus on Mouse Chromosome 7. THE JOURNAL OF IMMUNOLOGY 2012; 188:5561-70. [DOI: 10.4049/jimmunol.1102136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Delaleu N, Nguyen CQ, Peck AB, Jonsson R. Sjögren's syndrome: studying the disease in mice. Arthritis Res Ther 2011; 13:217. [PMID: 21672284 PMCID: PMC3218871 DOI: 10.1186/ar3313] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sjögren's syndrome (SS), a systemic autoimmune disease, is characterized by inflammation of exocrine tissues accompanied by a significant loss of their secretory function. Clinical symptoms develop late and there are no diagnostic tests enabling early diagnosis of SS. Thus, particularly to study these covert stages, researchers turn to studying animal models where mice provide great freedom for genetic manipulation and testing the effect of experimental intervention. The present review summarizes current literature pertaining to both spontaneous and extrinsic-factor induced SS-like diseases in mouse models, discussing advantages and disadvantages related to the use of murine models in SS research.
Collapse
Affiliation(s)
- Nicolas Delaleu
- Broegelmann Research Laboratory, The Gade Institute, University of Bergen, New Laboratory Building, 5th floor, #5305, 5021 Bergen, Norway.
| | | | | | | |
Collapse
|