1
|
Alarcon B, Schamel WW. Allosteric Changes Underlie the Outside-In Transmission of Activatory Signals in the TCR. Immunol Rev 2025; 329:e13438. [PMID: 39754405 DOI: 10.1111/imr.13438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Rather than being contained in a single polypeptide, and unlike receptor tyrosine kinases, the T cell receptor (TCR) divides its signaling functions among its subunits: TCRα/β bind the extracellular ligand, an antigenic peptide-MHC complex (pMHC), and the CD3 subunits (CD3γ, CD3δ, CD3ε, and CD3ζ) transmit this information to the cytoplasm. How information about the quality of pMHC binding outside is transmitted to the cytoplasm remains a matter of debate. In this review, we compile data generated using a wide variety of experimental systems indicating that TCR engagement by an appropriate pMHC triggers allosteric changes transmitted from the ligand-binding loops in the TCRα and TCRβ subunits to the cytoplasmic tails of the CD3 subunits. We summarize how pMHC and stimulatory antibody binding to TCR ectodomains induces the exposure of a polyproline sequence in the CD3ε cytoplasmic tail for binding to the Nck adapter, the exposure of the RK motif in CD3ε for recruiting the Lck tyrosine kinase, and the induced exposure and phosphorylation of tyrosine residues in all the CD3 cytoplasmic tails. We also review the yet incipient data that help elucidate the structural basis of the Active and Resting conformations of the TCR.
Collapse
Affiliation(s)
- Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Wolfgang W Schamel
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Teyssier V, Williamson CR, Shata E, Rosen SP, Jones N, Bisson N. Adapting to change: resolving the dynamic and dual roles of NCK1 and NCK2. Biochem J 2024; 481:1411-1435. [PMID: 39392452 DOI: 10.1042/bcj20230232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Adaptor proteins play central roles in the assembly of molecular complexes and co-ordinated activation of specific pathways. Through their modular domain structure, the NCK family of adaptor proteins (NCK1 and NCK2) link protein targets via their single SRC Homology (SH) 2 and three SH3 domains. Classically, their SH2 domain binds to phosphotyrosine motif-containing receptors (e.g. receptor tyrosine kinases), while their SH3 domains bind polyproline motif-containing cytoplasmic effectors. Due to these functions being established for both NCK1 and NCK2, their roles were inaccurately assumed to be redundant. However, in contrast with this previously held view, NCK1 and NCK2 now have a growing list of paralog-specific functions, which underscores the need to further explore their differences. Here we review current evidence detailing how these two paralogs are unique, including differences in their gene/protein regulation, binding partners and overall contributions to cellular functions. To help explain these contrasting characteristics, we then discuss SH2/SH3 structural features, disordered interdomain linker regions and post-translational modifications. Together, this review seeks to highlight the importance of distinguishing NCK1 and NCK2 in research and to pave the way for investigations into the origins of their interaction specificity.
Collapse
Affiliation(s)
- Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Casey R Williamson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Erka Shata
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephanie P Rosen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Division Oncologie, Québec, QC, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| |
Collapse
|
3
|
Ding C, Zhang D, Bao S, Zhao X, Yu Y, Zhou Q. Reduced NCK1 participates in unexplained recurrent miscarriage by regulating trophoblast functions and macrophage proliferation at maternal-fetal interface. Genet Mol Biol 2023; 46:e20220297. [PMID: 37366642 DOI: 10.1590/1678-4685-gmb-2022-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Recurrent miscarriage (RM) seriously affects the physical and mental health of women of childbearing age, and 50% of the causes are unknown. Thus, it is valuable to investigate the causes of unexplained recurrent miscarriage (uRM). Similarities between tumor development and embryo implantation make us realize that tumor studies are informative for uRM. The non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1) is highly expressed in some tumors, and can promote tumor growth, invasion and migration. In this present paper, we firstly explore the role of NCK1 in uRM. We find that the NCK1 and PD-L1 are greatly reduced in peripheral blood mononuclear cells (PBMC) and decidua from patients with uRM. Next, we construct NCK1-knockdown HTR-8/SVneo cells, and find that NCK1-knockdown HTR-8/SVneo cells exhibit reduced proliferation and migration ability. Then we demonstrate that the expression of PD-L1 protein is decreased when the NCK1 is knocked down. In co-culture experiments with THP-1 and differently treated HTR-8/SVneo cells, we observe significantly increased proliferation of THP-1 in NCK1-knockdown group. In conclusion, NCK1 may be involved in RM by regulating trophoblast proliferation, migration, and regulating PD-L1-mediated macrophage proliferation at the maternal-fetal interface. Moreover, NCK1 has the potential to be a new predictor and therapeutic target.
Collapse
Affiliation(s)
- Chuanfeng Ding
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai, China
| | - Donghai Zhang
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai, China
| | - Shihua Bao
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Reproductive Immunology, Shanghai, China
| | - Xin Zhao
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai, China
| | - Yongsheng Yu
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai, China
- University of Chinese Academy of Sciences, Chongqing School, Chongqing, China
- Chinese Academy of Sciences, Chongqing Institute of Green and Intelligent Technology, Chongqing, China
| | - Qian Zhou
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai, China
- Tongji University, School of Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Reproductive Immunology, Shanghai, China
| |
Collapse
|
4
|
A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Rep 2022; 38:110522. [PMID: 35294890 DOI: 10.1016/j.celrep.2022.110522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 12/20/2022] Open
Abstract
A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.
Collapse
|
5
|
New Label-Free Biosensing for the Evaluation of the AX-024 Inhibitor: Case Study for the Development of New Drugs in Autoimmune Diseases. SENSORS 2022; 22:s22031218. [PMID: 35161965 PMCID: PMC8839007 DOI: 10.3390/s22031218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022]
Abstract
We developed a new label-free assay to evaluate the inhibition capacity of AX-024 by means of a new Point-of-Care (PoC) device for application in the development of new drugs in autoimmune diseases. The technology of PoC is based on interferometric optical detection method (IODM). For this purpose, we have optimized and developed an assay protocol whereby a Glutathione S-Transferase modified protein (GST-SH3.1), which contains a functional domain of a protein involved in T-cell activation, together with the AX-024 inhibitor has been studied. The chips used are a sensing surface based on nitrocellulose. We used streptavidin and a biotinylated peptide as links for the immobilization process on the sensing surface. The biotinylated peptide and AX-024 inhibitor compete for the same functional group of the GST-SH3.1 modified protein. When the inhibitor binds its binding site on GST-SH3.1, the biotinylated peptide cannot bind to its pocket on the protein. This competition reduces the total molecular mass of protein fixed onto the biosensor. In order to quantify the inhibition capacity of AX-024, several Ax-024:GST-SH3.1 ratios have been studied. We have compared the read-out signal for GST-SH3.1 protein not interfered by the drug, which served as a positive blank, and the response of the GST-SH3.1 modified protein blocked by the inhibitor. The technology has been correlated with confocal fluorescence microscopy.
Collapse
|
6
|
Morath A, Schamel WW. αβ and γδ T cell receptors: Similar but different. J Leukoc Biol 2020; 107:1045-1055. [DOI: 10.1002/jlb.2mr1219-233r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/15/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Anna Morath
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM) University of Freiburg Freiburg Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
- Institute of Biology III Faculty of Biology University of Freiburg Freiburg Germany
- Center for Chronic Immunodeficiency (CCI) Medical Center Freiburg and Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
7
|
Kefalas G, Jouvet N, Baldwin C, Estall JL, Larose L. Peptide-based sequestration of the adaptor protein Nck1 in pancreatic β cells enhances insulin biogenesis and protects against diabetogenic stresses. J Biol Chem 2018; 293:12516-12524. [PMID: 29941454 DOI: 10.1074/jbc.ra118.002728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/16/2018] [Indexed: 01/14/2023] Open
Abstract
One feature of diabetes is the failure of pancreatic β cells to produce insulin, but the molecular mechanisms leading to this failure remain unclear. Increasing evidence supports a role for protein kinase R-like endoplasmic reticulum kinase (PERK) in the development and function of healthy pancreatic β cells. Previously, our group identified the adaptor protein Nck1 as a negative regulator of PERK. Indeed, we demonstrated that Nck1, by directly binding PERK autophosphorylated on Tyr561, limits PERK activation and signaling. Accordingly, we found that stable depletion of Nck1 in β cells promotes PERK activation and signaling, increases insulin biosynthesis, and improves cell viability in response to diabetes-related stresses. Herein, we explored the therapeutic potential of abrogating the interaction between Nck and PERK to improve β-cell function and survival. To do so, we designed and used a peptide containing the minimal PERK sequence involved in binding Nck1 conjugated to the cell-permeable protein transduction domain from the HIV protein TAT. In the current study, we confirm that the synthetic TAT-Tyr(P)561 phosphopeptide specifically binds the SH2 domain of Nck and prevents Nck interaction with PERK, thereby promoting basal PERK activation. Moreover, we report that treatment of β cells with TAT-Tyr(P)561 inhibits glucolipotoxicity-induced apoptosis, whereas it enhances insulin production and secretion. Taken together, our results support the potential of sequestering Nck using a synthetic peptide to enhance basal PERK activation and create more robust β cells.
Collapse
Affiliation(s)
- George Kefalas
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| | - Nathalie Jouvet
- the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Cindy Baldwin
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Jennifer L Estall
- the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and .,the Institut de Recherches Cliniques de Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Louise Larose
- From the Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada, .,the Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada, and
| |
Collapse
|
8
|
Borroto A, Reyes-Garau D, Jiménez MA, Carrasco E, Moreno B, Martínez-Pasamar S, Cortés JR, Perona A, Abia D, Blanco S, Fuentes M, Arellano I, Lobo J, Heidarieh H, Rueda J, Esteve P, Cibrián D, Martinez-Riaño A, Mendoza P, Prieto C, Calleja E, Oeste CL, Orfao A, Fresno M, Sánchez-Madrid F, Alcamí A, Bovolenta P, Martín P, Villoslada P, Morreale A, Messeguer A, Alarcon B. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Sci Transl Med 2017; 8:370ra184. [PMID: 28003549 DOI: 10.1126/scitranslmed.aaf2140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Diana Reyes-Garau
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Esther Carrasco
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Beatriz Moreno
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Sara Martínez-Pasamar
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - José R Cortés
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Almudena Perona
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - David Abia
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Fuentes
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Juan Lobo
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Haleh Heidarieh
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Javier Rueda
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Danay Cibrián
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Martinez-Riaño
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Mendoza
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Cristina Prieto
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Alberto Orfao
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Martín
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Villoslada
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)-Hospital Clinic, Barcelona, Spain
| | - Antonio Morreale
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Angel Messeguer
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
9
|
Zhang F, Lu YX, Chen Q, Zou HM, Zhang JM, Hu YH, Li XM, Zhang WJ, Zhang W, Lin C, Li XN. Identification of NCK1 as a novel downstream effector of STAT3 in colorectal cancer metastasis and angiogenesis. Cell Signal 2017; 36:67-78. [PMID: 28455144 DOI: 10.1016/j.cellsig.2017.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qing Chen
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hui-Mei Zou
- School of Nursing, University of South China, Hengyang 421001, China.
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Min Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
11
|
Protein kinase D regulates positive selection of CD4 + thymocytes through phosphorylation of SHP-1. Nat Commun 2016; 7:12756. [PMID: 27670070 PMCID: PMC5052653 DOI: 10.1038/ncomms12756] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Thymic selection shapes an appropriate T cell antigen receptor (TCR) repertoire during T cell development. Here, we show that a serine/threonine kinase, protein kinase D (PKD), is crucial for thymocyte positive selection. In T cell-specific PKD-deficient (PKD2/PKD3 double-deficient) mice, the generation of CD4 single positive thymocytes is abrogated. This defect is likely caused by attenuated TCR signalling during positive selection and incomplete CD4 lineage specification in PKD-deficient thymocytes; however, TCR-proximal tyrosine phosphorylation is not affected. PKD is activated in CD4+CD8+ double positive (DP) thymocytes on stimulation with positively selecting peptides. By phosphoproteomic analysis, we identify SH2-containing protein tyrosine phosphatase-1 (SHP-1) as a direct substrate of PKD. Substitution of wild-type SHP-1 by phosphorylation-defective mutant (SHP-1S557A) impairs generation of CD4+ thymocytes. These results suggest that the PKD–SHP-1 axis positively regulates TCR signalling to promote CD4+ T cell development. The three isoforms of protein kinase D (PKD) have important but often redundant roles in cell signalling. Here the authors show, by generating PKD2/3 double-deficient mice, that PKD is essential for TCR signalling in thymocytes, and identify SHP-1 as a PKD target critical for development of CD4+ T cells.
Collapse
|
12
|
Lu KH, Keppler S, Leithäuser F, Mattfeldt T, Castello A, Kostezka U, Küblbeck G, Schmitt S, Klevenz A, Prokosch S, Pougialis G, Pawson T, Batista F, Tafuri A, Arnold B. Nck adaptor proteins modulate differentiation and effector function of T cells. J Leukoc Biol 2015; 98:301-11. [PMID: 25995205 DOI: 10.1189/jlb.1hi1114-565r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/02/2015] [Indexed: 11/24/2022] Open
Abstract
Understanding the molecular mechanisms regulating T cell reactivity is required for successful reprogramming of immune responses in medical conditions, characterized by dysfunctions of the immune system. Nck proteins are cytoplasmic adaptors mediating diverse cellular functions, including TCR signaling. By enhancing TCR signal strength, Nck proteins influence thymic selection and regulate the size and sensitivity of the peripheral T cell repertoire. Here, we investigated the contribution of Nck proteins to CD4(+) T cell differentiation and effector function using Nck.T(-/-) mice. Impaired GC formation and reduced Tfh were observed in Nck.T(-/-) mice after immunization with T cell-dependent antigens. Th2/Tfh-related cytokines, such as IL-4, IL-10, and IL-21, were decreased in Nck.T(-/-) mice T cells. Moreover, an increased susceptibility to cell death of Tfh cells in Nck.T(-/-) mice was associated with decreased levels of Akt phosphorylation. As a result of this dysregulation in Tfh cells of Nck.T(-/-) mice, we found impaired production and affinity maturation of antibodies against T cell-dependent antigens. Thus, Nck proteins not only participate in thymic selection and generation of the peripheral T cell repertoire but also are involved in the differentiation and effector functions of CD4(+) T cells.
Collapse
Affiliation(s)
- Kun-Hui Lu
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Selina Keppler
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Frank Leithäuser
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Torsten Mattfeldt
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Angelo Castello
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ulrike Kostezka
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Günter Küblbeck
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sabine Schmitt
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra Klevenz
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Prokosch
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Georg Pougialis
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tony Pawson
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Facundo Batista
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Tafuri
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernd Arnold
- *Molecular Immunology, German Cancer Research Center, Heidelberg, Germany; Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom; Department of Pathology, Universitätsklinikum, Ulm, Germany; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Chen J, Leskov IL, Yurdagul A, Thiel B, Kevil CG, Stokes KY, Orr AW. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation. Sci Signal 2015; 8:ra20. [PMID: 25714462 DOI: 10.1126/scisignal.2005648] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress stimulates nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We found that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidative stress-induced activation of NF-κB through the classic IκB kinase-dependent pathway. Depletion of Nck prevented oxidative stress induced by exogenous hydrogen peroxide or hypoxia/reoxygenation injury from activating NF-κB in endothelial cells, increasing the abundance of the proinflammatory molecules ICAM-1 (intracellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) and recruiting leukocytes. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors but not those encoding antioxidants. Nck promoted oxidative stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of PECAM-1 (platelet endothelial cell adhesion molecule-1) to the activation of p21-activated kinase, which mediates oxidative stress-induced NF-κB signaling. Consistent with this mechanism, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide blocked leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidative stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Igor L Leskov
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Arif Yurdagul
- Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Bonnie Thiel
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA
| | - A Wayne Orr
- Department of Pathology, Louisiana State University (LSU) Health Sciences Center Shreveport, Shreveport, LA 71130, USA. Department Cell Biology and Anatomy, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
14
|
Blanco R, Borroto A, Schamel W, Pereira P, Alarcon B. Conformational changes in the T cell receptor differentially determine T cell subset development in mice. Sci Signal 2014; 7:ra115. [DOI: 10.1126/scisignal.2005650] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Borroto A, Abia D, Alarcón B. Crammed signaling motifs in the T-cell receptor. Immunol Lett 2014; 161:113-7. [PMID: 24877875 DOI: 10.1016/j.imlet.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering.
Collapse
Affiliation(s)
- Aldo Borroto
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Balbino Alarcón
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Borroto A, Arellano I, Blanco R, Fuentes M, Orfao A, Dopfer EP, Prouza M, Suchànek M, Schamel WW, Alarcón B. Relevance of Nck-CD3 epsilon interaction for T cell activation in vivo. THE JOURNAL OF IMMUNOLOGY 2014; 192:2042-53. [PMID: 24470497 DOI: 10.4049/jimmunol.1203414] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
On TCR ligation, the adaptor Nck is recruited through its src homology 3.1 domain to a proline-rich sequence (PRS) in CD3ε. We have studied the relevance of this interaction for T cell activation in vitro and in vivo by targeting the interaction sites in both partners. The first approach consisted of studying a knockin (KI) mouse line (KI-PRS) bearing a conservative mutation in the PRS that makes the TCR incompetent to recruit Nck. This deficiency prevents T cell activation by Ag in vitro and inhibited very early TCR signaling events including the tyrosine phosphorylation of CD3ζ. Most important, KI-PRS mice are partly protected against the development of neurological symptoms in an experimental autoimmune encephalitis model, and show a deficient antitumoral response after vaccination. The second approach consisted of using a high-affinity peptide that specifically binds the src homology 3.1 domain and prevents the interaction of Nck with CD3ε. This peptide inhibits T cell proliferation in vitro and in vivo. These data suggest that Nck recruitment to the TCR is fundamental to mount an efficient T cell response in vivo, and that the Nck-CD3ε interaction may represent a target for pharmacological modulation of the immune response.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Castello A, Gaya M, Tucholski J, Oellerich T, Lu KH, Tafuri A, Pawson T, Wienands J, Engelke M, Batista FD. Nck-mediated recruitment of BCAP to the BCR regulates the PI(3)K-Akt pathway in B cells. Nat Immunol 2013; 14:966-75. [PMID: 23913047 DOI: 10.1038/ni.2685] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022]
Abstract
The adaptor Nck links receptor signaling to cytoskeleton regulation. Here we found that Nck also controlled the phosphatidylinositol-3-OH kinase (PI(3)K)-kinase Akt pathway by recruiting the adaptor BCAP after activation of B cells. Nck bound directly to the B cell antigen receptor (BCR) via the non-immunoreceptor tyrosine-based activation motif (ITAM) phosphorylated tyrosine residue at position 204 in the tail of the immunoglobulin-α component. Genetic ablation of Nck resulted in defective BCR signaling, which led to hampered survival and proliferation of B cells in vivo. Indeed, antibody responses in Nck-deficient mice were also considerably impaired. Thus, we demonstrate a previously unknown adaptor function for Nck in recruiting BCAP to sites of BCR signaling and thereby modulating the PI(3)K-Akt pathway in B cells.
Collapse
Affiliation(s)
- Angelo Castello
- Lymphocyte Interaction Laboratory, London Research Institute-Cancer Research UK, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
FGF-2 prevents cancer cells from ER stress-mediated apoptosis via enhancing proteasome-mediated Nck degradation. Biochem J 2013; 452:139-45. [PMID: 23448571 DOI: 10.1042/bj20121671] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Induction of ER (endoplasmic reticulum) stress-mediated apoptosis in cancer cells represents an alternative approach for cancer therapy. Whether FGF-2 (fibroblast growth factor 2)-induced survival signals may interact with ER stress signalling in cancer cells remains elusive. In the present study, we showed that pretreatment with FGF-2 decreased the inhibition of DNA synthesis and induction of apoptosis by two different ER stress inducers, TM (tunicamycin) and TG (thapsigargin), in both human hepatoblastoma HepG2 cells and breast cancer MCF-7 cells. Pretreatment with FGF-2 prevented ER stress-mediated apoptosis by decreasing ER stress-induced CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein] expression. We further demonstrated that pretreatment with FGF-2 mediated the decrease in TM-induced CHOP expression and apoptosis through ERK1/2 (extracellular-signal-regulated kinases 1 and 2) pathway. Finally, we demonstrated that FGF-2 promoted proteasome-mediated degradation of Nck (non-catalytic region of tyrosine kinase adaptor protein), an SH (Src homology) 2/SH3-containing adaptor protein. Whereas overexpression of Nck1 decreased FGF-2-induced ERK1/2 phosphorylation to inhibit the effect of FGF-2 on TM-induced CHOP expression and apoptosis, a decrease in Nck expression prevented TM-induced CHOP expression and apoptosis. Taken together, the findings of the present study provide the first evidence that Nck plays a pivotal role in integrating FGF-2 and ER stress signals to counteract the ER stress deleterious effect on cancer cell survival.
Collapse
|
19
|
Borroto A, Arellano I, Dopfer EP, Prouza M, Suchànek M, Fuentes M, Orfao A, Schamel WW, Alarcón B. Nck recruitment to the TCR required for ZAP70 activation during thymic development. THE JOURNAL OF IMMUNOLOGY 2012; 190:1103-12. [PMID: 23267019 DOI: 10.4049/jimmunol.1202055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein Nck is inducibly recruited through its SH3.1 domain to a proline-rich sequence (PRS) in CD3ε after TCR engagement. However, experiments with a knockin mutant bearing an 8-aa replacement of the PRS have indicated that Nck binding to the TCR is constitutive, and that it promotes the degradation of the TCR in preselection double-positive (DP) CD4(+)CD8(+) thymocytes. To clarify these discrepancies, we have generated a new knockin mouse line (KI-PRS) bearing a conservative mutation in the PRS resulting from the replacement of the two central prolines. Thymocytes of KI-PRS mice are partly arrested at each step at which pre-TCR or TCR signaling is required. The mutation prevents the trigger-dependent inducible recruitment of endogenous Nck to the TCR but does not impair TCR degradation. However, KI-PRS preselection DP thymocytes show impaired tyrosine phosphorylation of CD3ζ, as well as impaired recruitment of ZAP70 to the TCR and impaired ZAP70 activation. Our results indicate that Nck is recruited to the TCR in an inducible manner in DP thymocytes, and that this recruitment is required for the activation of early TCR-dependent events. Differences in the extent of PRS mutation could explain the phenotypic differences in both knockin mice.
Collapse
Affiliation(s)
- Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yiemwattana I, Ngoenkam J, Paensuwan P, Kriangkrai R, Chuenjitkuntaworn B, Pongcharoen S. Essential role of the adaptor protein Nck1 in Jurkat T cell activation and function. Clin Exp Immunol 2012; 167:99-107. [PMID: 22132889 PMCID: PMC3248091 DOI: 10.1111/j.1365-2249.2011.04494.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/29/2022] Open
Abstract
The non-catalytic region of tyrosine kinase (Nck) is proposed to play an essential role in T cell activation. However, evidence based on functional and biochemical studies has brought into question the critical function of Nck. Therefore, the aim of the present work was to investigate the role of Nck in T cell activation. To study this, the human Jurkat T cell line was used as a model for human T lymphocytes. The short interfering (si) RNA targeting Nck1 gene was used with electroporation to knock-down Nck1 protein expression in Jurkat T cells. Primary human CD4 T cells were also transfected with the siRNA of Nck1. The results showed that decreased Nck1 protein expression did not affect the apoptosis of the transfected Jurkat T cells compared with control siRNA-transfected cells and non-transfected cells. Upon CD3ε/CD28 stimulation, knock-down of Nck1 in Jurkat T cells caused a decrease in CD69 expression and in interleukin (IL)-2 secretion. Similarly, knock-down of Nck1 in primary CD4 T cells also caused decreased CD69 expression. However, no significant alterations of CD69 and IL-2 expression were found upon phytohaemagglutinin (PHA)/phorbol myristate acetate (PMA) stimulation. Knock-down of Nck1 had no effect on the proliferation of Jurkat T cells stimulated with either PHA or anti-T cell receptor (TCR) monoclonal antibody (C305). The reduced Nck1 expression in Jurkat cells was also associated with a reduced phosphorylation of extracellular regulated kinase (Erk)1 and Erk2 proteins upon CD3ε/CD28 stimulation. In conclusion, the decreased Nck1 protein in Jurkat T cells resulted in an impairment of TCR-CD3-mediated activation involving a defective Erk phosphorylation pathway.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Apoptosis/drug effects
- Apoptosis/immunology
- CD28 Antigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Electroporation
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Jurkat Cells/drug effects
- Jurkat Cells/immunology
- Jurkat Cells/metabolism
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Phosphorylation
- Phytohemagglutinins/pharmacology
- Protein Processing, Post-Translational
- RNA Interference
- RNA, Small Interfering/pharmacology
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Tetradecanoylphorbol Acetate/pharmacology
Collapse
Affiliation(s)
- I Yiemwattana
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | | | | | | | | | | |
Collapse
|