1
|
Wolf EW, Howard ZP, Duan L, Tam H, Xu Y, Cyster JG. GPR174 signals via G αs to control a CD86-containing gene expression program in B cells. Proc Natl Acad Sci U S A 2022; 119:e2201794119. [PMID: 35639700 PMCID: PMC9191659 DOI: 10.1073/pnas.2201794119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
GPR174 is abundantly expressed in B and T lymphocytes and has a role in restraining T cell responses, but the function of GPR174 in B cells is less clear. Here we report that upon in vitro culture B cells undergo a spontaneous GPR174-dependent activation process that is associated with marked changes in gene expression, including up-regulation of Cd86, Nr4a1, Ccr7, and phosphodiesterases. B cells lacking Gαs show a block in induction of the GPR174-dependent program. Spontaneous up-regulation of CD86 in cultured B cells is dependent on protein kinase A. Both GPR174- and Gαs-deficient B cells show enhanced survival in culture. In vivo, GPR174 contributes to NUR77 expression in follicular B cells and is needed for establishing a marginal zone compartment of normal size. Treatment of mice with lysophosphatidylserine (lysoPS), a GPR174 ligand, is sufficient to promote CD86 up-regulation by follicular B cells. These findings demonstrate that GPR174 can signal via Gαs to modulate B cell gene expression and show this can occur in vivo in response to lysoPS. Additionally, the findings illuminate a pathway that might be targeted to improve systems for the in vitro study of B cell responses.
Collapse
Affiliation(s)
- Elise W. Wolf
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Zachary P. Howard
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Lihui Duan
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Hanson Tam
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Ying Xu
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Jason G. Cyster
- HHMI, University of California, San Francisco, CA 94143
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
2
|
Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, Lukáč N. Inflammation, It's Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin. Molecules 2021; 26:5972. [PMID: 34641516 PMCID: PMC8512454 DOI: 10.3390/molecules26195972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
The inflammatory reaction accompanies in part or in full any disease process in the vascularized metazoan. This complicated reaction is controlled by regulatory mechanisms, some of which produce unpleasant symptomatic manifestations of inflammation. Therefore, there has been an effort to develop selective drugs aimed at removing pain, fever, or swelling. Gradually, however, serious adverse side effects of such inhibitors became apparent. Scientific research has therefore continued to explore new possibilities, including naturally available substances. Amygdalin is a cyanogenic glycoside present, e.g., in bitter almonds. This glycoside has already sparked many discussions among scientists, especially about its anticancer potential and related toxic cyanides. However, toxicity at different doses made it generally unacceptable. Although amygdalin given at the correct oral dose may not lead to poisoning, it has not yet been accurately quantified, as its action is often affected by different intestinal microbial consortia. Its pharmacological activities have been studied, but its effects on the body's inflammatory response are lacking. This review discusses the chemical structure, toxicity, and current knowledge of the molecular mechanism of amygdalin activity on immune functions, including the anti-inflammatory effect, but also discusses inflammation as such, its mediators with diverse functions, which are usually targeted by drugs.
Collapse
Affiliation(s)
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; (D.F.); (H.G.); (N.K.); (A.K.); (N.L.)
| | | | | | | | | |
Collapse
|
3
|
Zheng HL, Xu WN, Zhou WS, Yang RZ, Chen PB, Liu T, Jiang LS, Jiang SD. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis 2021; 12:497. [PMID: 33993186 PMCID: PMC8124066 DOI: 10.1038/s41419-021-03784-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Bone health requires adequate bone mass, which is maintained by a critical balance between bone resorption and formation. In our study, we identified beraprost as a pivotal regulator of bone formation and resorption. The administration of beraprost promoted differentiation of mouse bone mesenchymal stem cells (M-BMSCs) through the PI3K–AKT pathway. In co-culture, osteoblasts stimulated with beraprost inhibited osteoclastogenesis in a rankl-dependent manner. Bone mass of p53 knockout mice remained stable, regardless of the administration of beraprost, indicating that p53 plays a vital role in the bone mass regulation by beraprost. Mechanistic in vitro studies showed that p53 binds to the promoter region of neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) to promote its transcription. As a ubiquitinating enzyme, Nedd4 binds to runt-related transcription factor 2 (Runx2), which results in its ubiquitination and subsequent degradation. These data indicate that the p53–Nedd4–Runx2 axis is an effective regulator of bone formation and highlight the potential of beraprost as a therapeutic drug for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Peng-Bo Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Tao Liu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China.
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 200082, Shanghai, China.
| |
Collapse
|
4
|
Kim J, Choe J. A paracrine effect of 15 (S)-hydroxyeicosatetraenoic acid revealed in prostaglandin production by human follicular dendritic cell-like cells. Prostaglandins Other Lipid Mediat 2020; 151:106487. [PMID: 33007445 DOI: 10.1016/j.prostaglandins.2020.106487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
Lipid mediators play active roles in each stage of inflammation under physiological and pathologic conditions. We have investigated the cellular source and functions of several prostanoids in the immune inflammatory responses using follicular dendritic cell (FDC)-like cells. In this study, we report a novel finding on the role of 15(S)- hydroxyeicosatetraenoic acid (HETE). Our observation of 15(S)-HETE uptake by FDC-like cells prompted to hypothesize that 15(S)-HETE might have a regulatory role in the other branch of eicosanoid production. The effects of 15(S)-HETE on COX-2 expression and prostaglandin (PG) production were analyzed by immunoblotting and specific enzyme immunoassays. The addition of 15(S)-HETE resulted in elevated levels of COX-2 expression and PG production. The enhanced PG production was not due to growth stimulation of FDC-like cells since 15(S)-HETE did not modulate FDC-like cell proliferation by the culture period of PG measurement. Peroxisome proliferator-activated receptor gamma (PPARγ) seems to mediate the augmenting activity as the antagonist GW9662 dose- dependently prevented 15(S)-HETE from increasing PG production. In addition, PPARγ protein expression was readily detected in FDC-like cells. These effects of 15(S)-HETE were displayed in the combined addition with IL-1β. Based on these results, we suggest that 15(S)-HETE is an inflammatory costimulator of FDC acting in a paracrine fashion.
Collapse
Affiliation(s)
- Jini Kim
- Institute of Life Sciences, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | - Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
5
|
Cho W, Choe J. Prostaglandin E2 stimulates COX-2 expression via mitogen-activated protein kinase p38 but not ERK in human follicular dendritic cell-like cells. BMC Immunol 2020; 21:20. [PMID: 32303181 PMCID: PMC7165408 DOI: 10.1186/s12865-020-00347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background Prostaglandin E2 (PGE2) is an endogenous lipid mediator of inflammation. Its production is regulated by the rate-limiting upstream enzyme cyclooxygenase-2 (COX-2). We have recently demonstrated that the major cell type expressing COX-2 in the germinal center is follicular dendritic cell (FDC). In this study, to elucidate the molecular mechanism of PGE2 in COX-2 production, we asked whether mitogen-activated protein kinases ERK and p38 might regulate COX-2 expression. Results FDC-like cells were used to analyze the phosphorylation kinetics of ERK and p38 and the impact of genetic knockdown. PGE2 stimulation gave rise to a rapid increase of p38 but not ERK phosphorylation. In contrast, IL-1β induced phosphorylation of both MAPKs. Knockdown of p38 resulted in a marked suppression of COX-2 expression induced by either PGE2 or IL-1β. ERK knockdown did not significantly affect the effect of PGE2 and IL-1β on COX-2 induction. The differential results of p38 and ERK siRNA transfection were reproduced in the production of prostaglandins and in experiments performed with pharmacologic inhibitors. Conclusions Our data indicate that p38 is essentially required for PGE2 to induce COX-2 expression in FDC-like cells. The current study helps to expand our understanding of the biological function of FDC at the molecular level and provides a potential rationale for the pharmacologic or genetic approaches to regulate p38 MAPK in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Whajung Cho
- Research Center, Scripps Korea Antibody Institute, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Activated human B cells stimulate COX-2 expression in follicular dendritic cell-like cells via TNF-α. Mol Immunol 2017; 94:1-6. [PMID: 29241029 DOI: 10.1016/j.molimm.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023]
Abstract
In spite of the potential importance of cyclooxygenase (COX)-2 expression in the germinal center, its underlying cellular and molecular mechanisms are largely unknown. COX-2 is the key enzyme generating pleiotropic prostaglandins. Based on our previous findings, we hypothesized that lymphocytes would stimulate COX-2 expression in follicular dendritic cell (FDC) by liberating cytokines. In this study, we examined the effect of tonsillar lymphocytes on COX-2 expression in FDC-like cells by immunoblotting. B but not T cells induced COX-2 protein in a time- and dose-dependent manner. Sub-fractionation analysis of B cell subsets revealed that activated but not resting B cells were responsible for the COX-2 induction. Confocal microscopy of frozen tonsils demonstrated that FDCs indeed express COX-2 in situ, in line with the in vitro results. To identify the stimulating molecule, we added neutralizing antibodies to the coculture of FDC-like cells and B cells. COX-2 induction in FDC-like cells was markedly inhibited by TNF-α neutralizing antibody. Finally, the actual production of TNF-α by activated B cells was confirmed by an enzyme immunoassay. The current study implies an unrecognized cellular interaction between FDC and B cells leading to COX-2 expression during immune inflammatory responses.
Collapse
|
7
|
Choe J, Yoon Y, Kim J, Jung YJ. Positive feedback effect of PGE 2 on cyclooxygenase-2 expression is mediated by inhibition of Akt phosphorylation in human follicular dendritic cell-like cells. Mol Immunol 2017; 87:60-66. [PMID: 28407559 DOI: 10.1016/j.molimm.2017.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 02/04/2023]
Abstract
Prostaglandins (PGs) are bioactive lipid mediators generated from the phospholipids of cell membrane in response to various inflammatory signals. To understand the potential role of PGs in PG production itself during immune inflammatory responses, we examined the effect of PGE2, PGF2α, and beraprost on COX-2 expression using follicular dendritic cell (FDC)-like HK cells isolated from human tonsils. Those three PGs specifically augmented COX-2 protein expression in a dose-dependent manner after 4 or 8h of treatment. The enhancing effect was also reflected in the actual production of PGs and the viable cell recovery of germinal center B-cells. To investigate the underlying molecular mechanism, we examined the impact of PI3K inhibitors on PG-induced COX-2 expression. Interestingly, COX-2 induction by PGE2 and beraprost, but not PGF2α, was enhanced by wortmannin and LY294002. In line with this result, Akt phosphorylation was inhibited by PGE2 and beraprost but not by PGF2α. The distinct effect of PGE2 and beraprost from PGF2α was reproduced in Akt-knockdowned HK cells. Our current findings imply that PGE2 and PGI2 stimulate COX-2 expression in FDC by inhibiting Akt phosphorylation. Additional studies are warranted to determine the potential role of Akt as a therapeutic target in patients with inflammatory disorders.
Collapse
Affiliation(s)
- Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Yongdae Yoon
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jini Kim
- Institute of Life Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
8
|
Choe J, Park J, Lee S, Kim YM, Jeoung D. Opposing roles of TGF-β in prostaglandin production by human follicular dendritic cell-like cells. Mol Immunol 2016; 76:41-8. [PMID: 27344616 DOI: 10.1016/j.molimm.2016.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 01/22/2023]
Abstract
Prostaglandins (PGs) are recognized as important immune regulators. Using human follicular dendritic cell (FDC)-like HK cells, we have investigated the immunoregulatory role of PGs and their production mechanisms. The present study was aimed at determining the role of TGF-β in IL-1β-induced cyclooxygenase-2 (COX-2) expression by immunoblotting. COX-2 is the key enzyme responsible for PG production in HK cells. TGF-β, when added simultaneously with IL-1β, gave rise to an additive effect on COX-2 expression in a dose-dependent manner. However, TGF-β inhibited IL-1β-stimulated COX-2 expression when it was added at least 12h before IL-1β addition. The inhibitory effect of TGF-β was specific to IL-1β-induced COX-2 expression in HK cells. The stimulating and inhibitory effects of TGF-β were reproduced in IL-1β-stimulated PG production. Based on our previous results of the essential requirement of ERK and p38 MAPKs in TGF-β-induced COX-2 expression, we examined whether the differential activation of these MAPKs would underlie the opposing activities of TGF-β. The phosphorylation of ERK and p38 MAPKs was indeed enhanced or suppressed by the simultaneous treatment or pre-treatment, respectively. These results suggest that TGF-β exerts opposing effects on IL-1β-induced COX-2 expression in HK cells by differentially regulating activation of ERK and p38 MAPKs.
Collapse
Affiliation(s)
- Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Jihoon Park
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seungkoo Lee
- Department of Anatomic Pathology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
9
|
Cho W, Kim Y, Kim J, Park S, Park D, Kim BC, Jeoung D, Kim YM, Choe J. Suppressor of cytokine signaling 1 is a positive regulator of TGF-β-induced prostaglandin production in human follicular dendritic cell-like cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4287-97. [PMID: 25825445 DOI: 10.4049/jimmunol.1401615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
PGs are emerging as important immune modulators. Since our report on the expression of PG synthases in human follicular dendritic cells, we investigated the potential immunoregulatory function of PGs and their production mechanisms. In this study, we explored the intracellular signaling molecules mediating TGF-β-induced cyclooxygenase (COX)-2 augmentation in follicular dendritic cell-like cells. TGF-β triggered phosphorylation of Smad3 and ERK, which were essential for the increase in COX-2 protein. Interestingly, depletion of suppressor of cytokine signaling 1 (SOCS1) resulted in an almost complete inhibition of Smad3 phosphorylation and COX-2 induction. Nuclear translocation of Smad3 was inhibited in SOCS1-depleted cells. SOCS1 knockdown also downregulated TGF-β-stimulated Snail expression and its binding to the Cox-2 promoter. In contrast, overexpression of SOCS1 gave rise to a significant increase in Snail and COX-2 proteins. SOCS1 was reported to be a negative regulator of cytokine signaling by various investigators. However, our current data suggest that SOCS1 promotes TGF-β-induced COX-2 expression and PG production by facilitating Smad3 phosphorylation and Snail binding to the Cox-2 promoter. The complete understanding of the biological function of SOCS1 might be obtained via extensive studies with diverse cell types.
Collapse
Affiliation(s)
- Whajung Cho
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Jini Kim
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Seongji Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Byung-Chul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea; and
| | - Jongseon Choe
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea; Bioinformation Technology Medical Convergence Graduate Program, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| |
Collapse
|
10
|
Kim J, Yoon Y, Jeoung D, Kim YM, Choe J. Interferon-γ stimulates human follicular dendritic cell-like cells to produce prostaglandins via the JAK-STAT pathway. Mol Immunol 2015; 66:189-96. [PMID: 25818476 DOI: 10.1016/j.molimm.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/17/2022]
Abstract
IFN-γ plays a critical role in the regulation of innate and adaptive immunity. Paying attention to the emerging role of prostaglandins (PGs) as immune regulators, we attempted to establish the effect of IFN-γ on PG production in human follicular dendritic cell-like HK cells and the underlying signaling pathway by using RNA interference technology. IFN-γ induced COX-2 protein expression in HK cells in a time- and dose-dependent manner, which was not observed in peripheral blood monocytes. Although IFN-γ induced phosphorylation of STAT1, STAT3, and STAT5, only STAT1 was essential for the COX-2 augmentation. The JAK kinases responsible for IFN-γ-triggered STAT1 phosphorylation were JAK1 and JAK2, which were also required for the COX-2 induction. The essential requirement of JAK1 and JAK2 was verified by confocal microscopic analysis, since STAT1 phosphorylation and nuclear translocation were impaired in HK cells with these two kinases knocked down. Finally, we demonstrated that JAK1, JAK2, and STAT1 were indispensable for the actual enhancement of PG production in response to IFN-γ stimulation. These results provide a novel insight into our understanding of IFN-γ under inflammatory conditions and support the emerging concept of PGs as important immune regulators.
Collapse
Affiliation(s)
- Jini Kim
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Yongdae Yoon
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 200-701, Republic of Korea.
| |
Collapse
|
11
|
Retinoic acid acts as a selective human IgA switch factor. Hum Immunol 2014; 75:923-9. [DOI: 10.1016/j.humimm.2014.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/10/2014] [Accepted: 06/23/2014] [Indexed: 11/22/2022]
|
12
|
Kim J, Lee S, Kim YM, Jeoung DI, Choe J. Human follicular dendritic cells promote germinal center B cell survival by providing prostaglandins. Mol Immunol 2013; 55:418-23. [DOI: 10.1016/j.molimm.2013.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/15/2013] [Accepted: 03/23/2013] [Indexed: 12/11/2022]
|
13
|
Cho W, Hong SH, Choe J. IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 Expression in Human Follicular Dendritic Cells. Immune Netw 2013; 13:75-9. [PMID: 23700398 PMCID: PMC3659259 DOI: 10.4110/in.2013.13.2.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022] Open
Abstract
Evidence for immunoregulatory roles of prostaglandins (PGs) is accumulating. Since our observation of PG production by human follicular dendritic cells (FDCs), we investigated the regulatory mechanism of PG production in FDC and attempted to understand the functions of released PGs in the responses of adjacent lymphocytes. Here, using FDC-like cells, HK cells, we analyzed protein expression alterations in cyclooxygenase-2 (COX-2) in the presence of IL-4 or histone deacetylase (HDAC) inhibitors. Both IL-4 and HDAC inhibitors suppressed COX-2 expression in dose-dependent manners. Their effect was specific to COX-2 and did not reach to COX-1 expression. Interestingly, HDAC inhibitors gave rise to an opposing effect on COX-2 expression in peripheral blood monocytes. Our results suggest that IL-4 may regulate COX-2 expression in FDCs by affecting chromatin remodeling and provide insight into the role of cellular interactions between T cells and FDC during the GC reaction. Given the growing interests in wide-spectrum HDAC inhibitors, the differential results on COX-2 expression in HK cells and monocytes raise cautions on their clinical use.
Collapse
Affiliation(s)
- Whajung Cho
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
14
|
Beraprost enhances production of antigen-specific IgG isotypes without modulating germinal center B cell generation and the affinity maturation. Int Immunopharmacol 2013; 15:735-42. [DOI: 10.1016/j.intimp.2013.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/22/2013] [Accepted: 03/01/2013] [Indexed: 01/16/2023]
|
15
|
Feng XL, Zhou B, Cao RB, Liu QT, Liu K, Liu XD, Zhang YP, Huang L, Ji XB, Luo J, Zhang G, Chen PY. Immunomodulatory roles and functional analysis of pre-B lymphocyte DT40 cells with the bursal-derived BSP-II treatment. Peptides 2012; 36:292-8. [PMID: 22561065 DOI: 10.1016/j.peptides.2012.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023]
Abstract
The bursa of Fabricius, the acknowledged central humoral immune organ, is vital to B cell differentiation. However, the regulatory function of the bursal-derived peptide on avian B cell proliferation has not been reported. BSP-II is a recently reported bursal-derived bioactive peptide. In this paper, 75 days-old chicks were twice subcutaneously immunized with BSP-II and inactivated avian influenza virus (AIV, H(9)N(2) strain). It was proved that BSP-II induced a strongly AIV-specific HI antibody production in the immunized chicks. Also, BSP-II could enhance avian pre-B lymphocyte DT40 cell viability. To investigate the global patterns of gene expression in DT40 cells after BSP-II treatment, gene microarray was carried out. It was identified that the differentially expressed genes were involved in various pathways, of which six pathways were associated with signaling transductions, including ErbB signaling, MAPK signaling, Toll-like receptor signaling, Notch signaling, mTOR signaling, and Wnt signaling. Finally, RT-qPCR was used to confirm the microarray expression data. These results indicated the molecular basis of pre-B lymphocyte viability with BSP-II treatment, which provided a potential mechanism of the bursa of Fabricius on pre-B lymphocyte viability, differentiation, and development. These results are valid for the mechanism of the bursa of Fabricius on B lymphocytes development.
Collapse
Affiliation(s)
- Xiu-Li Feng
- Department of Agriculture, Nanjing Agriculture University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
PGI2 as a regulator of inflammatory diseases. Mediators Inflamm 2012; 2012:926968. [PMID: 22851816 PMCID: PMC3407649 DOI: 10.1155/2012/926968] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/24/2012] [Indexed: 12/11/2022] Open
Abstract
Prostacyclin, or PGI2, is an end product derived from the sequential metabolism of arachidonic acid via cyclooxygenase and PGI synthase (PGIS). The receptor for PGI2, IP, can be found on a variety of cell types and signaling through this receptor exhibits broad physiological effects. Historically, PGI2 has been understood to play a role in cardiovascular health, specifically having powerful vasodilatory effects via relaxation of smooth muscle and inhibiting of platelet aggregation. For these reasons, PGI2 has a long history of use for the treatment of pulmonary arterial hypertension (PAH). Only recently, its importance as an immunomodulatory agent has been investigated. PGI2 regulates both the innate and adaptive immune systems and its effects are, for the most part, thought to be anti-inflammatory or immunosuppressive in nature, which may have implications for its further clinical use.
Collapse
|
17
|
Cho W, Jeoung DI, Kim YM, Choe J. STAT6 and JAK1 are essential for IL-4-mediated suppression of prostaglandin production in human follicular dendritic cells: opposing roles of phosphorylated and unphosphorylated STAT6. Int Immunopharmacol 2012; 12:635-42. [PMID: 22406175 DOI: 10.1016/j.intimp.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 01/03/2023]
Abstract
Prostaglandins (PGs) are emerging as important immune mediators. Since our first report on the expression of prostacyclin synthase in the germinal centers, we have investigated production mechanisms and biological functions of PG using human follicular dendritic cell (FDC)-like cells. In the previous report, we observed that TGF-β enhances PG production, and IL-4 prevents this upregulation. To elucidate the inhibitory mechanism of IL-4, its effects on the key enzyme leading to PG production were analyzed in this study. IL-4 but not IL-10 inhibited TGF-β-induced COX-2 expression at both mRNA and protein levels. Next the early signaling molecules of IL-4 were identified by siRNA technology. IL-4 induced tyrosine phosphorylation of STAT1, 3, and 6, but only JAK1-STAT6 pathway was responsible for the prevention of COX-2 augmentation and PG production. Phosphorylated STAT6 accumulated in the nucleus rapidly upon IL-4 addition, and the complete inhibition of COX-2 upregulation required 24 h of pretreatment with IL-4, implying that newly transcribed molecules mediate the inhibitory signals downstream of STAT6. Interestingly, unphosphorylated STAT6 proteins were constitutively expressed in the nucleus, and depletion of STAT6 impaired background level expression of COX-2 and PGs. Our results highlight the crucial roles of TGF-β and IL-4 in the regulation of PG production, which lead us to suggest that T cells play an important role in FDC production of PGs.
Collapse
Affiliation(s)
- Whajung Cho
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Kim J, Kim YM, Jeoung DI, Choe J. Human follicular dendritic cells promote the APC capability of B cells by enhancing CD86 expression levels. Cell Immunol 2012; 273:109-14. [PMID: 22321156 DOI: 10.1016/j.cellimm.2012.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/14/2011] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
Follicular dendritic cells (FDCs) are an essential cellular component of the germinal center (GC) and are believed to exert regulatory effects on the various stages of GC reactions. According to our previous reports, human FDCs express prostacyclin synthase, and prostacyclin analogues augment adhesion and co-stimulatory molecules on the surface of activated B cells. These findings prompted us to investigate whether FDCs would contribute to the antigen-presenting capability of B cells by using the well-established FDC-like cells, HK cells, and tonsillar B cells. Our results show that HK cells significantly enhance the expression levels of CD54, CD80, and CD86 on the surface of activated B cells. The enhancing effect of HK cells on CD86 is impeded by indomethacin and an EP4 antagonist, implying that a certain prostaglandin is mediating the up-regulation. Prostacyclin indeed recapitulates the enhancing effect on CD86, which is inhibited by EP4 as well as IP antagonists. B cells co-cultured with HK cells exhibit an augmented APC activity, which is inhibited by CD86 neutralization. These results reveal another unrecognized function of human FDC.
Collapse
Affiliation(s)
- Jini Kim
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Cho W, Kim J, Cho KB, Choe J. Production of prostaglandin e(2) and i(2) is coupled with cyclooxygenase-2 in human follicular dendritic cells. Immune Netw 2011; 11:364-7. [PMID: 22346776 PMCID: PMC3275705 DOI: 10.4110/in.2011.11.6.364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 01/02/2023] Open
Abstract
Background Prostaglandins (PGs) play pathogenic and protective roles in inflammatory diseases. The novel concept of PGs as immune modulators is being documented by several investigators. By establishing an in vitro experimental model containing human follicular dendritic cell-like cells, HK cells, we reported that HK cells produce prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) and that these PGs regulate biological functions of T and B cells. Methods To investigate the respective contribution of cyclooxygenase-1 (COX-1) and COX-2 to PGE2 and PGI2 production in HK cells, we performed siRNA technology to knock down COX enzymes and examined the effect on PG production. Results Both PGE2 and PGI2 productions were almost completely inhibited by the depletion of COX-2. In contrast, COX-1 knockdown did not significantly affect PG production induced by lipopolysaccharide (LPS). Conclusion The current results suggest that mPGES-1 and PGIS are coupled with COX-2 but not with COX-1 in human follicular dendritic cell (FDC) and may help understand the potential effects of selective COX inhibitors on the humoral immunity.
Collapse
Affiliation(s)
- Whajung Cho
- Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | |
Collapse
|