1
|
Suh MK, Jin JS, Do HE, Kim JS, Eom MK, Kim HS, Lee JS. Adlercreutzia faecimuris sp. nov., producing propionate and acetate isolated from mouse feces. Antonie Van Leeuwenhoek 2024; 117:80. [PMID: 38772982 DOI: 10.1007/s10482-024-01980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
A novel strictly anaerobic bacterium, strain JBNU-10 T, was isolated from BALB/c mouse feces. Cells of the strain JBNU-10 T were Gram-stain positive, non-motile and rod-shaped. Optimum growth occurred at 37℃, with 1% (w/v) NaCl and at pH 7. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain JBNU-10 T belonged to the genus Adlercreutzia and were closely related to Adlercreutzia muris WCA-131-CoC-2 T (95.90%). The genome sequencing of strain JBNU-10 T revealed a genome size of 2,790,983 bp, a DNA G + C content of 69.4 mol%. It contains a total of 2,266 CDSs, 5 rRNA genes and 49 tRNA genes. According to the data obtained strain JBNU-10 T shared ANI value below 77.6- 67.7%, dDDH value below 23.8% with the closely type species. Strain JBNU-10 T possessed iso-C16:0 DMA, C18:1 CIS 9 FAME, and C18:0 DMA as the major fatty acids and had DMMK-6. The major end products of fermentation is propionate and acetate. Based on phylogenetic, physiological and chemotaxonomic characteristics, strain JBNU-10 T represent a novel species of the genus Adlercreutzia. The type strain is JBNU-10 T (= KCTC 25028 T = CCUG 75610 T).
Collapse
Affiliation(s)
- Min Kuk Suh
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, 54596, Jeollabuk-Do, Republic of Korea
| | - Hyo Eun Do
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, 54596, Jeollabuk-Do, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
| | - Han Sol Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Jung- Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea.
- University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions. Front Cell Dev Biol 2020; 8:591348. [PMID: 33195256 PMCID: PMC7609836 DOI: 10.3389/fcell.2020.591348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Dynamic localization of receptors and signaling molecules at the plasma membrane and within intracellular vesicular compartments is crucial for T lymphocyte sensing environmental cues, triggering membrane receptors, recruiting signaling molecules, and fine-tuning of intracellular signals. The orchestrated action of actin and microtubule cytoskeleton and intracellular vesicle traffic plays a key role in all these events that together ensure important steps in T cell physiology. These include extravasation and migration through lymphoid and peripheral tissues, T cell interactions with antigen-presenting cells, T cell receptor (TCR) triggering by cognate antigen-major histocompatibility complex (MHC) complexes, immunological synapse formation, cell activation, and effector functions. Cytoskeletal and vesicle traffic dynamics and their interplay are coordinated by a variety of regulatory molecules. Among them, polarity regulators and membrane-cytoskeleton linkers are master controllers of this interplay. Here, we review the various ways the T cell plasma membrane, receptors, and their signaling machinery interplay with the actin and microtubule cytoskeleton and with intracellular vesicular compartments. We highlight the importance of this fine-tuned crosstalk in three key stages of T cell biology involving cell polarization: T cell migration in response to chemokines, immunological synapse formation in response to antigen cues, and effector functions. Finally, we discuss two examples of perturbation of this interplay in pathological settings, such as HIV-1 infection and mutation of the polarity regulator and tumor suppressor adenomatous polyposis coli (Apc) that leads to familial polyposis and colorectal cancer.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Marie Juzans
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Andrés Alcover
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| | - Vincenzo Di Bartolo
- Ligue Nationale Contre le Cancer – Equipe Labellisée LIGUE 2018, Lymphocyte Cell Biology Unit, INSERM-U1221, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
4
|
Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci 2020; 11:372. [PMID: 31998119 PMCID: PMC6965030 DOI: 10.3389/fnagi.2019.00372] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD), the main risk factor of which is age, is one of the most common neurodegenerative diseases, thus presenting a substantial burden on the health of affected individuals as well as an economic burden. Sirtuin 2 (SIRT2), a subtype in the family of sirtuins, belongs to class III histone deacetylases (HDACs). It is known that SIRT2 levels increase with aging, and a growing body of evidence has been accumulating, showing that the activity of SIRT2 mediates various processes involved in PD pathogenesis, including aggregation of α-synuclein (α-syn), microtubule function, oxidative stress, inflammation, and autophagy. There have been conflicting reports about the role of SIRT2 in PD, in that some studies indicate its potential to induce the death of dopaminergic (DA) neurons, and that inhibition of SIRT2 may, therefore, have protective effects in PD. Other studies suggest a protective role of SIRT2 in the context of neuronal damage. As current treatments for PD are directed at alleviating symptoms and are very limited, a comprehensive understanding of the enzymology of SIRT2 in PD may be essential for developing novel therapeutic agents for the treatment of this disease. This review article will provide an update on our knowledge of the structure, distribution, and biological characteristics of SIRT2, and highlight its role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Konghua Zhu
- Department of Neurology, The Eighth People Hospital of Qingdao City, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Kappelmann-Fenzl M, Kuphal S, Krupar R, Schadendorf D, Umansky V, Vardimon L, Hellerbrand C, Bosserhoff AK. Complex Formation with Monomeric α-Tubulin and Importin 13 Fosters c-Jun Protein Stability and Is Required for c-Jun's Nuclear Translocation and Activity. Cancers (Basel) 2019; 11:cancers11111806. [PMID: 31744174 PMCID: PMC6895814 DOI: 10.3390/cancers11111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers. They are essential for a number of cellular processes, including intracellular trafficking and mitosis. Tubulin-binding chemotherapeutics are used to treat different types of tumors, including malignant melanoma. The transcription factor c-Jun is a central driver of melanoma development and progression. Here, we identify the microtubule network as a main regulator of c-Jun activity. Monomeric α-tubulin fosters c-Jun protein stability by protein-protein interaction. In addition, this complex formation is necessary for c-Jun's nuclear localization sequence binding to importin 13, and consequent nuclear import and activity of c-Jun. A reduction in monomeric α-tubulin levels by treatment with the chemotherapeutic paclitaxel resulted in a decline in the nuclear accumulation of c-Jun in melanoma cells in an experimental murine model and in patients' tissues. These findings add important knowledge to the mechanism of the action of microtubule-targeting drugs and indicate the newly discovered regulation of c-Jun by the microtubule cytoskeleton as a novel therapeutic target for melanoma and potentially also other types of cancer.
Collapse
Affiliation(s)
- Melanie Kappelmann-Fenzl
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Faculty of Applied Health Care Sciences, University of Applied Science Deggendorf, 94469 Deggendorf, Germany
| | - Silke Kuphal
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
| | - Rosemarie Krupar
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23566 Lübeck, Germany;
| | - Dirk Schadendorf
- Department of Dermatology, University Duisburg-Essen, 45355 Essen, Germany;
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 69117 Heidelberg, Germany;
| | - Lily Vardimon
- Department of Biochemistry and Molecular Biology, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8524191
| |
Collapse
|
6
|
Development and Function of the Intestinal Microbiome and Potential Implications for Pig Production. Animals (Basel) 2019; 9:ani9030076. [PMID: 30823381 PMCID: PMC6466301 DOI: 10.3390/ani9030076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Piglet preweaning mortality is a major economic loss and welfare concern for the global pork industry, with the industry average sitting at approximately 15%. As such, novel methods for reducing this mortality are needed. Since research into the intestinal microbiota has provided advances in human health, in particular the impact of early life factors, it was the logical next step to synthesise the existing literature to determine the potential relevance to the pig industry. It is evident from the literature that this area of research provides promising results. However, a large gap within the literature currently exists within the lactation period in pigs. Since optimal development within early life is proving to be critical for human infants, it is crucial that further research is invested into understanding the impact of early life events on a piglet’s microbiome. It is hoped that this review will enable access to critical information for those interested in the microbiome and its potential for improving herd health on the farm. Abstract The intestinal microbiota has received a lot of attention in recent times due to its essential role in the immune system development and function. Recent work in humans has demonstrated that the first year of life is the most critical time period for microbiome development with perturbations during this time being proven to have long term health consequences. In this review, we describe the literature surrounding early life events in humans and mice that contribute to intestinal microbiota development and function, and compare this to piglets predominantly during their lactation period, which focuses on the impact lactation management practices may have on the intestinal microbiota. Although extensive research has been conducted in this area in humans and mice, little research exists in pigs during perceivably the most critical time period of development, which is the lactation period. The research reviewed outlines the importance of appropriate intestinal microbiota development. However, further research is needed in order to understand the full extent routine farm practices have on a piglet’s intestinal microbiota.
Collapse
|
7
|
Hopp SC, Bihlmeyer NA, Corradi JP, Vanderburg C, Cacace AM, Das S, Clark TW, Betensky RA, Hyman BT, Hudry E. Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain. J Neurochem 2018; 147:24-39. [PMID: 29806693 DOI: 10.1111/jnc.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023]
Abstract
Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-β plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-β synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.
Collapse
Affiliation(s)
- Sarah C Hopp
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathan A Bihlmeyer
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - John P Corradi
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Charles Vanderburg
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Angela M Cacace
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Sudeshna Das
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Timothy W Clark
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eloise Hudry
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
8
|
Agüera-González S, Burton OT, Vázquez-Chávez E, Cuche C, Herit F, Bouchet J, Lasserre R, Del Río-Iñiguez I, Di Bartolo V, Alcover A. Adenomatous Polyposis Coli Defines Treg Differentiation and Anti-inflammatory Function through Microtubule-Mediated NFAT Localization. Cell Rep 2018; 21:181-194. [PMID: 28978472 DOI: 10.1016/j.celrep.2017.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022] Open
Abstract
Adenomatous polyposis coli (APC) is a polarity regulator and tumor suppressor associated with familial adenomatous polyposis and colorectal cancer development. Although extensively studied in epithelial transformation, the effect of APC on T lymphocyte activation remains poorly defined. We found that APC ensures T cell receptor-triggered activation through Nuclear Factor of Activated T cells (NFAT), since APC is necessary for NFAT's nuclear localization in a microtubule-dependent fashion and for NFAT-driven transcription leading to cytokine gene expression. Interestingly, NFAT forms clusters juxtaposed with microtubules. Ultimately, mouse Apc deficiency reduces the presence of NFAT in the nucleus of intestinal regulatory T cells (Tregs) and impairs Treg differentiation and the acquisition of a suppressive phenotype, which is characterized by the production of the anti-inflammatory cytokine IL-10. These findings suggest a dual role for APC mutations in colorectal cancer development, where mutations drive the initiation of epithelial neoplasms and also reduce Treg-mediated suppression of the detrimental inflammation that enhances cancer growth.
Collapse
Affiliation(s)
- Sonia Agüera-González
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France.
| | - Oliver T Burton
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Vázquez-Chávez
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Céline Cuche
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Floriane Herit
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Jérôme Bouchet
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Rémi Lasserre
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Iratxe Del Río-Iñiguez
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Vincenzo Di Bartolo
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France
| | - Andrés Alcover
- Institut Pasteur, Department of Immunology, Lymphocyte Cell Biology Unit, 75015 Paris, France; CNRS URA1961, 75015 Paris, France; INSERM U1221, 75015 Paris, France.
| |
Collapse
|
9
|
An ELISA for the study of calcineurin-NFAT unstructured region interaction. Anal Biochem 2018; 549:66-71. [DOI: 10.1016/j.ab.2018.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022]
|
10
|
Lin KC, Lin MW, Hsu MN, Yu-Chen G, Chao YC, Tuan HY, Chiang CS, Hu YC. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Am J Cancer Res 2018; 8:2477-2487. [PMID: 29721093 PMCID: PMC5928903 DOI: 10.7150/thno.24173] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/20/2018] [Indexed: 01/08/2023] Open
Abstract
Rationale: Cisplatin (CDDP) is a broad-spectrum anticancer drug but chemoresistance to CDDP impedes its wide use for cancer therapy. Autophagy is an event occurring in the cytoplasm and cytoplasmic LC3 puncta formation is a hallmark of autophagy. Graphene oxide (GO) is a nanomaterial that provokes autophagy in CT26 colon cancer cells and confers antitumor effects. Here we aimed to evaluate whether combined use of GO with CDDP (GO/CDDP) overcomes chemoresistance in different cancer cells and uncover the underlying mechanism. Methods: We treated different cancer cells with GO/CDDP and evaluated the cytotoxicity, death mechanism, autophagy induction and nuclear entry of CDDP. We further knocked down genes essential for autophagic flux and deciphered which step is critical to nuclear import and cell death. Finally, we performed immunoprecipitation, mass spectrometry and immunofluorescence labeling to evaluate the association of LC3 and CDDP. Results: We uncovered that combination of GO and CDDP (GO/CDDP) promoted the killing of not only CT26 cells, but also ovarian, cervical and prostate cancer cells. In the highly chemosensitized Skov-3 cells, GO/CDDP significantly enhanced concurrent nuclear import of CDDP and autophagy marker LC3 and elevated cell necrosis, which required autophagy initiation and progression but did not necessitate late autophagy events (e.g., autophagosome completion and autolysosome formation). The GO/CDDP-elicited nuclear trafficking and cell death also required importin α/β, and LC3 also co-migrated with CDDP and histone H1/H4 into the nucleus. In particular, GO/CDDP triggered histone H4 acetylation in the nucleus, which could decondense the chromosome and enable CDDP to more effectively access chromosomal DNA to trigger cell death. Conclusion: These findings shed light on the mechanisms of GO/CDDP-induced chemosensitization and implicate the potential applications of GO/CDDP to treat multiple cancers.
Collapse
|
11
|
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0012-2016. [PMID: 28984235 PMCID: PMC5873327 DOI: 10.1128/microbiolspec.bad-0012-2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children's Hospital, Houston, TX 77030
| |
Collapse
|
12
|
Kar P, Mirams GR, Christian HC, Parekh AB. Control of NFAT Isoform Activation and NFAT-Dependent Gene Expression through Two Coincident and Spatially Segregated Intracellular Ca 2+ Signals. Mol Cell 2016; 64:746-759. [PMID: 27863227 PMCID: PMC5128683 DOI: 10.1016/j.molcel.2016.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/22/2016] [Accepted: 11/03/2016] [Indexed: 01/25/2023]
Abstract
Excitation-transcription coupling, linking stimulation at the cell surface to changes in nuclear gene expression, is conserved throughout eukaryotes. How closely related coexpressed transcription factors are differentially activated remains unclear. Here, we show that two Ca2+-dependent transcription factor isoforms, NFAT1 and NFAT4, require distinct sub-cellular InsP3 and Ca2+ signals for physiologically sustained activation. NFAT1 is stimulated by sub-plasmalemmal Ca2+ microdomains, whereas NFAT4 additionally requires Ca2+ mobilization from the inner nuclear envelope by nuclear InsP3 receptors. NFAT1 is rephosphorylated (deactivated) more slowly than NFAT4 in both cytoplasm and nucleus, enabling a more prolonged activation phase. Oscillations in cytoplasmic Ca2+, long considered the physiological form of Ca2+ signaling, play no role in activating either NFAT protein. Instead, effective sustained physiological activation of NFAT4 is tightly linked to oscillations in nuclear Ca2+. Our results show how gene expression can be controlled by coincident yet geographically distinct Ca2+ signals, generated by a freely diffusible InsP3 message.
Collapse
Affiliation(s)
- Pulak Kar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Gary R Mirams
- Computational Biology, Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD, UK
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
13
|
Li L, Yang XJ. Tubulin acetylation: responsible enzymes, biological functions and human diseases. Cell Mol Life Sci 2015; 72:4237-55. [PMID: 26227334 PMCID: PMC11113413 DOI: 10.1007/s00018-015-2000-5] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 12/28/2022]
Abstract
Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada
- Department of Medicine, Montreal, QC, H3A 1A3, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center, Montreal, QC, H3A 1A3, Canada.
- Department of Medicine, Montreal, QC, H3A 1A3, Canada.
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada.
- McGill University Health Center, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
14
|
Shukla SD, Restrepo R, Fish P, Lim RW, Ibdah JA. Different Mechanisms for Histone Acetylation by Ethanol and Its Metabolite Acetate in Rat Primary Hepatocytes. J Pharmacol Exp Ther 2015; 354:18-23. [DOI: 10.1124/jpet.115.223867] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
15
|
Gal M, Li S, Luna RE, Takeuchi K, Wagner G. The LxVP and PxIxIT NFAT motifs bind jointly to overlapping epitopes on calcineurin's catalytic domain distant to the regulatory domain. Structure 2014; 22:1016-27. [PMID: 24954618 DOI: 10.1016/j.str.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/22/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
Abstract
The serine/threonine phosphatase calcineurin (Cn) targets the nuclear factors of activated T cells (NFATs) that activate cytokine genes. Calcium influx activates Cn to dephosphorylate multiple serine residues within the ∼200 residue NFAT regulatory domain, which triggers joint nuclear translocation of NFAT and Cn. The dephosphorylation process relies on the interaction between Cn and the conserved motifs PxIxIT and LxVP, which are located N- and C-terminal to the phosphorylation sites in NFAT's regulatory domain. Here, we show that an NFATc1-derived 15-residue peptide segment containing the conserved LxVP motif binds to an epitope on Cn's catalytic domain (CnA), which overlaps with the previously established PxIxIT binding site on CnA and is distant to the regulatory domain (CnB). Both NFAT motifs partially compete for binding but do not fully displace each other on the CnA epitope, revealing that both segments bind simultaneously to the same epitope on the catalytic domain.
Collapse
Affiliation(s)
- Maayan Gal
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Shuai Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Rafael E Luna
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Koh Takeuchi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Arpaia N. Keeping peace with the microbiome: acetate dampens inflammatory cytokine production in intestinal epithelial cells. Immunol Cell Biol 2014; 92:561-2. [PMID: 24913325 DOI: 10.1038/icb.2014.40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nicholas Arpaia
- Damon Runyon Cancer Research Foundation, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Ishiguro K, Ando T, Maeda O, Watanabe O, Goto H. Suppressive action of acetate on interleukin-8 production via tubulin-α acetylation. Immunol Cell Biol 2014; 92:624-30. [PMID: 24777307 DOI: 10.1038/icb.2014.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/20/2023]
Abstract
Acetate is the major short-chain fatty acid produced by commensal bacteria in the gut and is known as a nutrient source for epithelial cells of the mucosa. Acetate also suppresses interleukin (IL)-2 production in T cells by inhibiting nuclear factor of activated T cells (NFAT) nuclear translocation via tubulin-α acetylation. Using acetylation of tubulin-α as a biomarker, we have examined the influence of acetate in the large intestine. Because of high concentrations of acetate in fecal material, tubulin-α acetylation is dominant in the proximal large intestine relative to other sections of the large intestine and is induced in epithelial cells of the colonic mucosa. Flagellin stimulation induces IL-8 production in epithelial cells and acetate suppresses this IL-8 production via tubulin-α acetylation. Flagellin stimulation activates nuclear factor-κB, CREB and AP-1, but not NFAT. Of these transcription factors, acetate specifically inhibits AP-1 activation. Acetate impairs flagellin-induced activation of the Rap1-MEK-ERK-Elk-1 pathway with acetylation of tubulin-α that is bound to Rap1, resulting in reduced expression of c-Fos, a subunit of AP-1. These findings reveal a novel action of acetate via tubulin-α acetylation in epithelial cells of the colonic mucosa.
Collapse
Affiliation(s)
- Kazuhiro Ishiguro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Ando
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Osamu Maeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Osamu Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
18
|
Lee MN, Koh A, Park D, Jang JH, Kwak D, Jeon H, Kim J, Choi EJ, Jeong H, Suh PG, Ryu SH. Deacetylated αβ-tubulin acts as a positive regulator of Rheb GTPase through increasing its GTP-loading. Cell Signal 2012. [PMID: 23178303 DOI: 10.1016/j.cellsig.2012.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ras homolog enriched in brain (Rheb) regulates diverse cellular functions by modulating its nucleotide-bound status. Although Rheb contains a high basal GTP level, the regulatory mechanism of Rheb is not well understood. In this study, we propose soluble αβ-tubulin acts as a constitutively active Rheb activator, which may explain the reason why Rheb has a high basal GTP levels. We found that soluble αβ-tubulin is a direct Rheb-binding protein and that its deacetylated form has a high binding affinity for Rheb. Modulation of both soluble and acetylated αβ-tubulin levels affects the level of GTP-bound Rheb. This occurs in the mitotic phase in which the level of acetylated αβ-tubulin is increased but that of GTP-bound Rheb is decreased. Constitutively active Rheb-overexpressing cells showed an abnormal mitotic progression, suggesting the deacetylated αβ-tubulin-mediated regulation of Rheb status may be important for proper mitotic progression. Taken together, we propose that deacetylated soluble αβ-tubulin is a novel type of positive regulator of Rheb and may play a role as a temporal regulator for Rheb during the cell cycle.
Collapse
Affiliation(s)
- Mi Nam Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Désy O, Carignan D, de Campos-Lima PO. Short-term immunological effects of non-ethanolic short-chain alcohols. Toxicol Lett 2012; 210:44-52. [PMID: 22266471 DOI: 10.1016/j.toxlet.2012.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
Abstract
Short-chain alcohols are embedded into several aspects of modern life. The societal costs emanating from the long history of use and abuse of the prototypical example of these molecules, ethanol, have stimulated considerable interest in its general toxicology. A much more modest picture exists for other short-chain alcohols, notably as regards their immunotoxicity. A large segment of the general population is potentially exposed to two of these alcohols, methanol and isopropanol. Their ubiquitous nature and their eventual use as ethanol surrogates are predictably associated to accidental or deliberate poisoning. This review addresses the immunological consequences of acute exposure to methanol and isopropanol. It first examines the general mechanisms of short-chain alcohol-induced biological dysregulation and then provides a tentative model to explain the molecular events that underlie the immunological dysfunction produced by methanol and isopropanol. The time-related context of serum alcohol concentrations in acute poisoning, as well as the clinical implications of their short-term immunotoxicity, is also discussed.
Collapse
Affiliation(s)
- Olivier Désy
- Laval University Cancer Research Center, Quebec City, Quebec, Canada
| | | | | |
Collapse
|