1
|
Li L, Huang H, Wang H, Pan Y, Tao H, Zhang S, Karmaus PWF, Fessler MB, Sleasman JW, Zhong XP. DGKα and ζ Deficiency Causes Regulatory T-Cell Dysregulation, Destabilization, and Conversion to Pathogenic T-Follicular Helper Cells to Trigger IgG1-Predominant Autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625360. [PMID: 39651265 PMCID: PMC11623591 DOI: 10.1101/2024.11.26.625360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Regulatory T cells (Tregs) actively engage in immune suppression to prevent autoimmune diseases but also inhibit anti-tumor immunity. Although Tregs express a TCR repertoire with relatively high affinities to self, they are normally quite stable and their inflammatory programs are intrinsically suppressed. We report here that diacylglycerol (DAG) kinases (DGK) ( and ( are crucial for homeostasis, suppression of proinflammatory programs, and stability of Tregs and for enforcing their dependence on CD28 costimulatory signal. Treg-specific deficiency of both DGK( and ( derails signaling, metabolic, and transcriptional programs in Tregs to cause dysregulated phenotypic and functional properties and to unleash conversion to pathogenic exTregs, especially exTreg-T follicular helper (Tfh) 2 cells, leading to uncontrolled effector T cell differentiation, deregulated germinal center (GC) B-cell responses and IgG1/IgE predominant antibodies/autoantibodies, and multiorgan autoimmune diseases. Our data not only illustrate the crucial roles of DGKs in Tregs to maintain self-tolerance but also unveil a Treg-to-self-reactive-pathogenic-exTreg-Tfh-cell program that is suppressed by DGKs and that could exert broad pathogenic roles in autoimmune diseases if unchecked.
Collapse
|
2
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|
3
|
Onset of Senescence and Steatosis in Hepatocytes as a Consequence of a Shift in the Diacylglycerol/Ceramide Balance at the Plasma Membrane. Cells 2021; 10:cells10061278. [PMID: 34064003 PMCID: PMC8224046 DOI: 10.3390/cells10061278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ceramide and diacylglycerol (DAG) are bioactive lipids and mediate many cellular signaling pathways. Sphingomyelin synthase (SMS) is the single metabolic link between the two, while SMS2 is the only SMS form located at the plasma membrane. SMS2 functions were investigated in HepG2 cell lines stably expressing SMS2. SMS2 overexpression did not alter sphingomyelin (SM), phosphatidylcholine (PC), or ceramide levels. DAG content increased by approx. 40% and led to downregulation of DAG-dependent protein kinase C (PKC). SMS2 overexpression also induced senescence, characterized by positivity for β-galactosidase activity and heterochromatin foci. HepG2-SMS2 cells exhibited protruded mitochondria and suppressed mitochondrial respiration rates. ATP production and the abundance of Complex V were substantially lower in HepG2-SMS2 cells as compared to controls. SMS2 overexpression was associated with inflammasome activation based on increases in IL-1β and nlpr3 mRNA levels. HepG2-SMS2 cells exhibited lipid droplet accumulation, constitutive activation of AMPK based on elevated 172Thr phosphorylation, increased AMPK abundance, and insensitivity to insulin suppression of AMPK. Thus, our results show that SMS2 regulates DAG homeostasis and signaling in hepatocytes and also provide proof of principle for the concept that offset in bioactive lipids’ production at the plasma membrane can drive the senescence program in association with steatosis and, seemingly, by cell-autonomous mechanisms.
Collapse
|
4
|
Tao H, Pan Y, Chu S, Li L, Xie J, Wang P, Zhang S, Reddy S, Sleasman JW, Zhong XP. Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals. Nat Commun 2021; 12:2029. [PMID: 33795689 PMCID: PMC8016978 DOI: 10.1038/s41467-021-22162-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have important functions in immune responses against pathogens and in diseases, but mechanisms controlling MAIT cell development and effector lineage differentiation remain unclear. Here, we report that IL-2/IL-15 receptor β chain and inducible costimulatory (ICOS) not only serve as lineage-specific markers for IFN-γ-producing MAIT1 and IL-17A-producing MAIT17 cells, but are also important for their differentiation, respectively. Both IL-2 and IL-15 induce mTOR activation, T-bet upregulation, and subsequent MAIT cell, especially MAIT1 cell, expansion. By contrast, IL-1β induces more MAIT17 than MAIT1 cells, while IL-23 alone promotes MAIT17 cell proliferation and survival, but synergizes with IL-1β to induce strong MAIT17 cell expansion in an mTOR-dependent manner. Moreover, mTOR is dispensable for early MAIT cell development, yet pivotal for MAIT cell effector differentiation. Our results thus show that mTORC2 integrates signals from ICOS and IL-1βR/IL-23R to exert a crucial role for MAIT17 differentiation, while the IL-2/IL-15R-mTORC1-T-bet axis ensures MAIT1 differentiation.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Yun Pan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Shuai Chu
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Jinhai Xie
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Peng Wang
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Shimeng Zhang
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Srija Reddy
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
- Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
5
|
Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021; 12:623280. [PMID: 33732245 PMCID: PMC7957058 DOI: 10.3389/fimmu.2021.623280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kimberly S Schluns
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
6
|
Potential role of diacylglycerol kinases in immune-mediated diseases. Clin Sci (Lond) 2021; 134:1637-1658. [PMID: 32608491 DOI: 10.1042/cs20200389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
The mechanism promoting exacerbated immune responses in allergy and autoimmunity as well as those blunting the immune control of cancer cells are of primary interest in medicine. Diacylglycerol kinases (DGKs) are key modulators of signal transduction, which blunt diacylglycerol (DAG) signals and produce phosphatidic acid (PA). By modulating lipid second messengers, DGK modulate the activity of downstream signaling proteins, vesicle trafficking and membrane shape. The biological role of the DGK α and ζ isoforms in immune cells differentiation and effector function was subjected to in deep investigations. DGK α and ζ resulted in negatively regulating synergistic way basal and receptor induced DAG signals in T cells as well as leukocytes. In this way, they contributed to keep under control the immune response but also downmodulate immune response against tumors. Alteration in DGKα activity is also implicated in the pathogenesis of genetic perturbations of the immune function such as the X-linked lymphoproliferative disease 1 and localized juvenile periodontitis. These findings suggested a participation of DGK to the pathogenetic mechanisms underlying several immune-mediated diseases and prompted several researches aiming to target DGK with pharmacologic and molecular strategies. Those findings are discussed inhere together with experimental applications in tumors as well as in other immune-mediated diseases such as asthma.
Collapse
|
7
|
The many-sided contributions of NF-κB to T-cell biology in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:245-300. [PMID: 34074496 DOI: 10.1016/bs.ircmb.2020.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cells (or T lymphocytes) exhibit a myriad of functions in immune responses, ranging from pathogen clearance to autoimmunity, cancer and even non-lymphoid tissue homeostasis. Therefore, deciphering the molecular mechanisms orchestrating their specification, function and gene expression pattern is critical not only for our comprehension of fundamental biology, but also for the discovery of novel therapeutic targets. Among the master regulators of T-cell identity, the functions of the NF-κB family of transcription factors have been under scrutiny for several decades. However, a more precise understanding of their pleiotropic functions is only just emerging. In this review we will provide a global overview of the roles of NF-κB in the different flavors of mature T cells. We aim at highlighting the complex and sometimes diverging roles of the five NF-κB subunits in health and disease.
Collapse
|
8
|
Xie D, Zhang S, Chen P, Deng W, Pan Y, Xie J, Wang J, Liao B, Sleasman JW, Zhong XP. Negative control of diacylglycerol kinase ζ-mediated inhibition of T cell receptor signaling by nuclear sequestration in mice. Eur J Immunol 2020; 50:1729-1745. [PMID: 32525220 DOI: 10.1002/eji.201948442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/17/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Diacylglycerol kinases (DGKs) play important roles in restraining diacylglycerol (DAG)-mediated signaling. Within the DGK family, the ζ isoform appears to be the most important isoform in T cells for controlling their development and function. DGKζ has been demonstrated to regulate T cell maturation, activation, anergy, effector/memory differentiation, defense against microbial infection, and antitumor immunity. Given its critical functions, DGKζ function should be tightly regulated to ensure proper signal transduction; however, mechanisms that control DGKζ function are still poorly understood. We report here that DGKζ dynamically translocates from the cytosol into the nuclei in T cells after TCR stimulation. In mice, DGKζ mutant defective in nuclear localization displayed enhanced ability to inhibit TCR-induced DAG-mediated signaling in primary T cells, maturation of conventional αβT and iNKT cells, and activation of peripheral T cells compared with WT DGKζ. Our study reveals for the first time nuclear sequestration of DGKζ as a negative control mechanism to spatially restrain it from terminating DAG mediated signaling in T cells. Our data suggest that manipulation of DGKζ nucleus-cytosol shuttling as a novel strategy to modulate DGKζ activity and immune responses for treatment of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Danli Xie
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Shimeng Zhang
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Pengcheng Chen
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Wenhai Deng
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Yun Pan
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jinhai Xie
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Jinli Wang
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Bryce Liao
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - John W Sleasman
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina.,Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Yang J, Wang HX, Xie J, Li L, Wang J, Wan ECK, Zhong XP. DGK α and ζ Activities Control T H1 and T H17 Cell Differentiation. Front Immunol 2020; 10:3048. [PMID: 32010133 PMCID: PMC6974463 DOI: 10.3389/fimmu.2019.03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
CD4+ T helper (TH) cells are critical for protective adaptive immunity against pathogens, and they also contribute to the pathogenesis of autoimmune diseases. How TH differentiation is regulated by the TCR's downstream signaling is still poorly understood. We describe here that diacylglycerol kinases (DGKs), which are enzymes that convert diacylglycerol (DAG) to phosphatidic acid, exert differential effects on TH cell differentiation in a DGK dosage-dependent manner. A deficiency of either DGKα or ζ selectively impaired TH1 differentiation without obviously affecting TH2 and TH17 differentiation. However, simultaneous ablation of both DGKα and ζ promoted TH1 and TH17 differentiation in vitro and in vivo, leading to exacerbated airway inflammation. Furthermore, we demonstrate that dysregulation of TH17 differentiation of DGKα and ζ double-deficient CD4+ T cells was, at least in part, caused by increased mTOR complex 1/S6K1 signaling.
Collapse
Affiliation(s)
- Jialong Yang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Hong-Xia Wang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Jinhai Xie
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Jinli Wang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Edwin C K Wan
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
10
|
Pan Y, Deng W, Xie J, Zhang S, Wan ECK, Li L, Tao H, Hu Z, Chen Y, Ma L, Gao J, Zhong XP. Graded diacylglycerol kinases α and ζ activities ensure mucosal-associated invariant T-cell development in mice. Eur J Immunol 2019; 50:192-204. [PMID: 31710099 DOI: 10.1002/eji.201948289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells participate in both protective immunity and pathogenesis of diseases. Most murine MAIT cells express an invariant TCRVα19-Jα33 (iVα19) TCR, which triggers signals crucial for their development. However, signal pathways downstream of the iVα19TCR and their regulation in MAIT cells are unknown. Diacylglycerol (DAG) is a critical second messenger that relays the TCR signal to multiple downstream signaling cascades. DAG is terminated by DAG kinase (DGK)-mediated phosphorylation and conversion to phosphatidic acid. We have demonstrated here that downregulation of DAG caused by enhanced DGK activity impairs late-stage MAIT cell maturation in both thymus and spleen. Moreover, deficiency of DGKζ but not DGKα by itself causes modest decreases in MAIT cells, and deficiency of both DGKα and ζ results in severe reductions of MAIT cells in an autonomous manner. Our studies have revealed that DAG signaling is not only critical but also must be tightly regulated by DGKs for MAIT cell development and that both DGKα and, more prominently, DGKζ contribute to the overall DGK activity for MAIT cell development.
Collapse
Affiliation(s)
- Yun Pan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenhai Deng
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinhai Xie
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shimeng Zhang
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Edwin C K Wan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Microbiology, Immunology, & Cell Biology and Department of Neuroscience, West Virginia University, Morgantown, WV
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Breast and Thyroid Surgery and Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Hu
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongping Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Immunology and Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Duke University Medical Center, Durham, NC
| |
Collapse
|
11
|
Tao H, Li L, Gao Y, Wang Z, Zhong XP. Differential Control of iNKT Cell Effector Lineage Differentiation by the Forkhead Box Protein O1 (Foxo1) Transcription Factor. Front Immunol 2019; 10:2710. [PMID: 31824499 PMCID: PMC6881238 DOI: 10.3389/fimmu.2019.02710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
The invariant NKT (iNKT) cells recognize glycolipid antigens presented by the non-classical MHC like molecule CD1d. They represent an innate T-cell lineage with the ability to rapidly produce a variety of cytokines in response to agonist stimulation to bridge innate and adaptive immunity. In thymus, most iNKT cells complete their maturation and differentiate to multiple effector lineages such as iNKT-1, iNKT-2, and iNKT-17 cells that possess the capability to produce IFNγ, IL-4, and IL-17A, respectively, and play distinct roles in immune responses and diseases. Mechanisms that control iNKT lineage fate decisions are still not well understood. Evidence has revealed critical roles of Foxo1 of the forkhead box O1 subfamily of transcription factors in the immune system. However, its role in iNKT cells has been unknown. In this report, we demonstrate that deletion of Foxo1 causes severe decreases of iNKT cell total numbers due to impairment of late but not early iNKT cell development. Deficiency of Foxo1 results in decreases of iNKT-1 but increases of iNKT-17 cells. Our data reveal that Foxo1 controls iNKT effector lineage fate decision by promoting iNKT-1 but suppressing iNKT-17 lineages.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,The Hematologic Malignancies and Cellular Therapy Research Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Chen P, Wang S, Janardhan KS, Zemans RL, Deng W, Karmaus P, Shen S, Sunday M, Que LG, Fessler MB, Zhong XP. Efficient CD4Cre-Mediated Conditional KRas Expression in Alveolar Macrophages and Alveolar Epithelial Cells Causes Fatal Hyperproliferative Pneumonitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1208-1217. [PMID: 31315887 PMCID: PMC6702086 DOI: 10.4049/jimmunol.1900566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
The CD4Cre transgenic model has been widely used for T cell-specific gene manipulation. We report unexpected highly efficient Cre-mediated recombination in alveolar macrophages (AMFs), bronchial epithelial cells (BECs), and alveolar epithelial cells (AECs) in this strain of mice. Different from CD4 T cells, AMFs, AECs, and BECs do not express detectable Cre protein, suggesting that Cre protein is either very transiently expressed in these cells or only expressed in their precursors. Mice carrying a conditional constitutively active KRas (caKRas) allele and the CD4Cre transgene contain not only hyperactivated T cells but also develop severe AMF accumulation, AEC and BEC hyperplasia, and adenomas in the lung, leading to early lethality correlated with caKRas expression in these cells. We propose that caKRas-CD4Cre mice represent, to our knowledge, a novel model of proliferative pneumonitis involving macrophages and epithelial cells and that the CD4Cre model may offer unique usefulness for studying gene functions simultaneously in multilineages in the lung. Our observations, additionally, suggest that caution in data interpretation is warranted when using the CD4Cre transgenic model for T cell-specific gene manipulation, particularly when lung pathophysiological status is being examined.
Collapse
Affiliation(s)
- Pengcheng Chen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Shang Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Kyathanahalli S Janardhan
- Integrated Laboratory Systems, Inc., and National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Wenhai Deng
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Peer Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Shudan Shen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Mary Sunday
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Loretta G Que
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710;
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
13
|
Shissler SC, Webb TJ. The ins and outs of type I iNKT cell development. Mol Immunol 2018; 105:116-130. [PMID: 30502719 DOI: 10.1016/j.molimm.2018.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 01/07/2023]
Abstract
Natural killer T (NKT) cells are innate-like lymphocytes that bridge the gap between the innate and adaptive immune responses. Like innate immune cells, they have a mature, effector phenotype that allows them to rapidly respond to threats, compared to adaptive cells. NKT cells express T cell receptors (TCRs) like conventional T cells, but instead of responding to peptide antigen presented by MHC class I or II, NKT cell TCRs recognize glycolipid antigen in the context of CD1d. NKT cells are subdivided into classes based on their TCR and antigen reactivity. This review will focus on type I iNKT cells that express a semi invariant Vα14Jα18 TCR and respond to the canonical glycolipid antigen, α-galactosylceramide. The innate-like effector functions of these cells combined with their T cell identity make their developmental path quite unique. In addition to the extrinsic factors that affect iNKT cell development such as lipid:CD1d complexes, co-stimulation, and cytokines, this review will provide a comprehensive delineation of the cell intrinsic factors that impact iNKT cell development, differentiation, and effector functions - including TCR rearrangement, survival and metabolism signaling, transcription factor expression, and gene regulation.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA.
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF-1 Room 380, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Yang G, Driver JP, Van Kaer L. The Role of Autophagy in iNKT Cell Development. Front Immunol 2018; 9:2653. [PMID: 30487800 PMCID: PMC6246678 DOI: 10.3389/fimmu.2018.02653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/29/2018] [Indexed: 01/04/2023] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T cells that express an invariant T cell receptor (TCR) α-chain and recognize self and foreign glycolipid antigens. They can rapidly respond to agonist activation and stimulate an extensive array of immune responses. Thymic development and function of iNKT cells are regulated by many different cellular processes, including autophagy, a self-degradation mechanism. In this mini review, we discuss the current understanding of how autophagy regulates iNKT cell development and effector lineage differentiation. Importantly, we propose that iNKT cell development is tightly controlled by metabolic reprogramming.
Collapse
Affiliation(s)
- Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
15
|
Niu L, Xuan X, Wang J, Li L, Yang D, Jing Y, Westerberg LS, Liu C. Akt2 Regulates the Differentiation and Function of NKT17 Cells via FoxO-1-ICOS Axis. Front Immunol 2018; 9:1940. [PMID: 30258434 PMCID: PMC6143662 DOI: 10.3389/fimmu.2018.01940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
As a critical linker between mTORC1 and mTORC2, Akt is important for the cell metabolism. The role of Akt in the function and development of B and T cells is well characterized, however, the role of Akt for development and function of iNKT cells is unknown. iNKT cells bridge the adaptive and innate immunity, and in this study, we found that the differentiation of NKT17 cells and IL17 production of NKT17 cells were disrupted in Akt2 KO mice. ICOS has been demonstrated to be critical for the differentiation of NKT17 cells and we found that ICOS mRNA and protein expression was reduced in Akt2 KO iNKT cells. As a consequence, phosphorylation of FoxO-1 was downregulated in Akt2 KO thymocytes but the sequestration of FoxO-1 in the nucleus of Akt2 KO iNKT cells was increased. The negative feedback loop between ICOS and FoxO-1 has been demonstrated in CD4+T follicular helper cells. Therefore our study has revealed a new intracellular mechanism in which Akt2 regulates ICOS expression via FoxO-1 and this signaling axis regulates the differentiation and function of NKT17 cells. This study provides a new linker between cell metabolism and function of iNKT cells.
Collapse
Affiliation(s)
- LinLin Niu
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xingtian Xuan
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jinzhi Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Liling Li
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Di Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Unexpected positive control of NFκB and miR-155 by DGKα and ζ ensures effector and memory CD8+ T cell differentiation. Oncotarget 2018; 7:33744-64. [PMID: 27014906 PMCID: PMC5085116 DOI: 10.18632/oncotarget.8164] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
Signals from the T-cell receptor (TCR) and γ-chain cytokine receptors play crucial roles in initiating activation and effector/memory differentiation of CD8 T-cells. We report here that simultaneous deletion of both diacylglycerol kinase (DGK) α and ζ (DKO) severely impaired expansion of CD8 effector T cells and formation of memory CD8 T-cells after Listeria monocytogenes infection. Moreover, ablation of both DGKα and ζ in preformed memory CD8 T-cells triggered death and impaired homeostatic proliferation of these cells. DKO CD8 T-cells were impaired in priming due to decreased expression of chemokine receptors and migration to the draining lymph nodes. Moreover, DKO CD8 T-cells were unexpectedly defective in NFκB-mediated miR-155 transcript, leading to excessive SOCS1 expression and impaired γ-chain cytokine signaling. Our data identified a DGK-NFκB-miR-155-SOCS1 axis that bridges TCR and γ-chain cytokine signaling for robust CD8 T-cell primary and memory responses to bacterial infection.
Collapse
|
17
|
Liu J, Gallo RM, Khan MA, Renukaradhya GJ, Brutkiewicz RR. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma. Front Immunol 2018; 8:1901. [PMID: 29354122 PMCID: PMC5760513 DOI: 10.3389/fimmu.2017.01901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromin 1 (NF1) is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT) cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair) host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT) littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard M Gallo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Masood A Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,College of Applied Medical Sciences, Al-Qassim University, Buraidah, Saudi Arabia
| | - Gourapura J Renukaradhya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Food Animal Health Research Program (FAHRP), Ohio Agricultural Research and Development Center (OARDC), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
18
|
Li J, Roy S, Kim YM, Li S, Zhang B, Love C, Reddy A, Rajagopalan D, Dave S, Diehl AM, Zhuang Y. Id2 Collaborates with Id3 To Suppress Invariant NKT and Innate-like Tumors. THE JOURNAL OF IMMUNOLOGY 2017; 198:3136-3148. [PMID: 28258199 DOI: 10.4049/jimmunol.1601935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Inhibitor of DNA binding (Id) proteins, including Id1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins is associated with a broad spectrum of tumors, recent studies have identified that Id3 plays a tumor-suppressor role in the development of Burkitt's lymphoma in humans and hepatosplenic T cell lymphomas in mice. In this article, we report rapid lymphoma development in Id2/Id3 double-knockout mice that is caused by unchecked expansion of invariant NKT (iNKT) cells or a unique subset of innate-like CD1d-independent T cells. These populations began to expand in neonatal mice and, upon malignant transformation, resulted in mortality between 3 and 11 mo of age. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability along with upregulation of several signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-κB pathway were found to be shared between Id2/Id3 double-knockout lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumorigenic pathways caused by loss of function of Id2 and Id3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas.
Collapse
Affiliation(s)
- Jia Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Young-Mi Kim
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Shibo Li
- Department of Pediatrics, Oklahoma University Health Sciences Center, Oklahoma City, OK 73014
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Cassandra Love
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anupama Reddy
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Deepthi Rajagopalan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Sandeep Dave
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710; and
| | - Anna Mae Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
19
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
20
|
Riese MJ, Moon EK, Johnson BD, Albelda SM. Diacylglycerol Kinases (DGKs): Novel Targets for Improving T Cell Activity in Cancer. Front Cell Dev Biol 2016; 4:108. [PMID: 27800476 PMCID: PMC5065962 DOI: 10.3389/fcell.2016.00108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the metabolism of diacylglycerol (DAG). Two isoforms of DGK, DGKα, and DGKζ, specifically regulate the pool of DAG that is generated as a second messenger after stimulation of the T cell receptor (TCR). Deletion of either isoform in mouse models results in T cells bearing a hyperresponsive phenotype and enhanced T cell activity against malignancy. Whereas, DGKζ appears to be the dominant isoform in T cells, rationale exists for targeting both isoforms individually or coordinately. Additional work is needed to rigorously identify the molecular changes that result from deletion of DGKs in order to understand how DAG contributes to T cell activation, the effect of DGK inhibition in human T cells, and to rationally develop combined immunotherapeutic strategies that target DGKs.
Collapse
Affiliation(s)
- Matthew J. Riese
- Division of Hematology/Oncology, Department of Medicine, Medical College of WisconsinMilwaukee, WI, USA
- Blood Center of Wisconsin, Blood Research InstituteMilwaukee, WI, USA
| | - Edmund K. Moon
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Bryon D. Johnson
- Division of Hematology/Oncology/Transplant, Department of Pediatrics, Medical College of WisconsinMilwaukee, WI, USA
| | - Steven M. Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
21
|
Singh BK, Kambayashi T. The Immunomodulatory Functions of Diacylglycerol Kinase ζ. Front Cell Dev Biol 2016; 4:96. [PMID: 27656643 PMCID: PMC5013040 DOI: 10.3389/fcell.2016.00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of diacylglycerol (DAG) is critical for promoting immune cell activation, regulation, and function. Diacylglycerol kinase ζ (DGKζ) serves as an important negative regulator of DAG by enzymatically converting DAG into phosphatidic acid (PA) to shut down DAG-mediated signaling. Consequently, the loss of DGKζ increases DAG levels and the duration of DAG-mediated signaling. However, while the enhancement of DAG signaling is thought to augment immune cell function, the loss of DGKζ can result in both immunoactivation and immunomodulation depending on the cell type and function. In this review, we discuss how different immune cell functions can be selectively modulated by DGKζ. Furthermore, we consider how targeting DGKζ can be potentially beneficial for the resolution of human diseases by either promoting immune responses important for protection against infection or cancer or dampening immune responses in immunopathologic conditions such as allergy and septic shock.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
22
|
mTOR and its tight regulation for iNKT cell development and effector function. Mol Immunol 2015; 68:536-45. [PMID: 26253278 DOI: 10.1016/j.molimm.2015.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/09/2015] [Accepted: 07/19/2015] [Indexed: 12/26/2022]
Abstract
Invariant NKT (iNKT) cells, which express the invariant Vα14Jα18 TCR that recognizes lipid antigens, have the ability to rapidly respond to agonist stimulation, producing a variety of cytokines that can shape both innate and adaptive immunity. iNKT cells have been implicated in host defense against microbial infection, in anti-tumor immunity, and a multitude of diseases such as allergies, asthma, graft versus host disease, and obesity. Emerging evidence has demonstrated crucial role for mammalian target of rapamycin (mTOR) in immune cells, including iNKT. In this review we will discuss current understanding of how mTOR and its tight regulation control iNKT cell development, effector lineage differentiation, and function.
Collapse
|
23
|
Merida I, Andrada E, Gharbi SI, Avila-Flores A. Redundant and specialized roles for diacylglycerol kinases and in the control of T cell functions. Sci Signal 2015; 8:re6. [DOI: 10.1126/scisignal.aaa0974] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Wu J, Shin J, Xie D, Wang H, Gao J, Zhong XP. Tuberous sclerosis 1 promotes invariant NKT cell anergy and inhibits invariant NKT cell-mediated antitumor immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2643-50. [PMID: 24532578 PMCID: PMC3965184 DOI: 10.4049/jimmunol.1302076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of effective immune therapies for cancer patients requires better understanding of hurdles that prevent the generation of effective antitumor immune responses. Administration of α-galactosylceramide (α-GalCer) in animals enhances antitumor immunity via activation of the invariant NKT (iNKT) cells. However, repeated injections of α-GalCer result in long-term unresponsiveness or anergy of iNKT cells, severely limiting its efficacy in tumor eradication. The mechanisms leading to iNKT cell anergy remain poorly understood. We report in this study that the tuberous sclerosis 1 (TSC1), a negative regulator of mTOR signaling, plays a crucial role in iNKT cell anergy. Deficiency of TSC1 in iNKT cells results in resistance to α-GalCer-induced anergy, manifested by increased expansion of and cytokine production by iNKT cells in response to secondary Ag stimulation. It is correlated with impaired upregulation of programmed death-1, Egr2, and Grail. Moreover, TSC1-deficient iNKT cells display enhanced antitumor immunity in a melanoma lung metastasis model. Our data suggest targeting TSC1/2 as a strategy for boosting antitumor immune therapy.
Collapse
Affiliation(s)
- Jinhong Wu
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Division of Pediatric Pulmonology, Department of Internal Medicine, Shanghai Children’s Medical Center affiliated with Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Jinwook Shin
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Danli Xie
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongxia Wang
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
25
|
Wu J, Yang J, Yang K, Wang H, Gorentla B, Shin J, Qiu Y, Que LG, Foster WM, Xia Z, Chi H, Zhong XP. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. J Clin Invest 2014; 124:1685-98. [PMID: 24614103 DOI: 10.1172/jci69780] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/09/2014] [Indexed: 12/16/2022] Open
Abstract
Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1-) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ-producing (iNKT-1) phenotype; however, some cells develop into IL-17-producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1- lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous sclerosis 1 (TSC1) is an important negative regulator of mTOR signaling, which regulates T cell differentiation, function, and trafficking. Here, we determined that mice lacking TSC1 exhibit a developmental block of iNKT differentiation at stage 2 and skew from a predominantly iNKT-1 population toward a predominantly iNKT-17 population, leading to enhanced airway hypersensitivity. Evaluation of purified iNKT cells revealed that TSC1 promotes T-bet, which regulates iNKT maturation, but downregulates ICOS expression in iNKT cells by inhibiting mTOR complex 1 (mTORC1). Furthermore, mice lacking T-bet exhibited both a terminal maturation defect of iNKT cells and a predominance of iNKT-17 cells, and increased ICOS expression was required for the predominance of iNKT-17 cells in the population of TSC1-deficient iNKT cells. Our data indicate that TSC1-dependent control of mTORC1 is crucial for terminal iNKT maturation and effector lineage decisions, resulting in the predominance of iNKT-1 cells.
Collapse
|
26
|
Mechanistic target of rapamycin complex 1 is critical for invariant natural killer T-cell development and effector function. Proc Natl Acad Sci U S A 2014; 111:E776-83. [PMID: 24516149 DOI: 10.1073/pnas.1315435111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mechanisms that control invariant natural killer T (iNKT)-cell development and function are still poorly understood. The mechanistic or mammalian target of rapamycin (mTOR) integrates various environmental signals/cues to regulate cell growth, proliferation, metabolism, and survival. We report here that ablation of mTOR complex 1 (mTORC1) signaling by conditionally deleting Raptor causes severe defects in iNKT-cell development at early stages, leading to drastic reductions in iNKT-cell numbers in the thymus and periphery. In addition, loss of Raptor impairs iNKT-cell proliferation and production of cytokines upon α-galactosylceramide stimulation in vitro and in vivo, and inhibits liver inflammation in an iNKT cell-mediated hepatitis model. Furthermore, Raptor deficiency and rapamycin treatment lead to aberrant intracellular localization and functional impairment of promyelocytic leukemia zinc-finger, a transcription factor critical for iNKT-cell development and effector programs. Our findings define an essential role of mTORC1 to direct iNKT-cell lineage development and effector function.
Collapse
|
27
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
28
|
Abstract
Diacylglycerol (DAG), a second messenger generated by phospholipase Cγ1 activity upon engagement of a T-cell receptor, triggers several signaling cascades that play important roles in T cell development and function. A family of enzymes called DAG kinases (DGKs) catalyzes the phosphorylation of DAG to phosphatidic acid, acting as a braking mechanism that terminates DAG-mediated signals. Two DGK isoforms, α and ζ, are expressed predominantly in T cells and synergistically regulate the development of both conventional αβ T cells and invariant natural killer T cells in the thymus. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T-cell hyperactivation upon T cell receptor stimulation and by promoting T-cell anergy. In CD8 cells, reduced DGK activity is associated with enhanced primary responses against viruses and tumors. Recent work also has established an important role for DGK activity at the immune synapse and identified partners that modulate DGK function. In addition, emerging evidence points to previously unappreciated roles for DGK function in directional secretion and T-cell adhesion. This review describes the multitude of roles played by DGKs in T cell development and function and emphasizes recent advances in the field.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
29
|
Diacylglycerol kinase zeta positively controls the development of iNKT-17 cells. PLoS One 2013; 8:e75202. [PMID: 24073253 PMCID: PMC3779165 DOI: 10.1371/journal.pone.0075202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022] Open
Abstract
Invariant natural killer T (iNKT) cells play important roles in bridging innate and adaptive immunity via rapidly producing a variety of cytokines. A small subset of iNKT cells produces IL-17 and is generated in the thymus during iNKT-cell ontogeny. The mechanisms that control the development of these IL-17-producing iNKT-17 cells (iNKT-17) are still not well defined. Diacylglycerol kinase ζ (DGKζ) belongs to a family of enzymes that catalyze the phosphorylation and conversion of diacylglycerol to phosphatidic acid, two important second messengers involved in signaling from numerous receptors. We report here that DGKζ plays an important role in iNKT-17 development. A deficiency of DGKζ in mice causes a significant reduction of iNKT-17 cells, which is correlated with decreased RORγt and IL-23 receptor expression. Interestingly, iNKT-17 defects caused by DGKζ deficiency can be corrected in chimeric mice reconstituted with mixed wild-type and DGKζ-deficient bone marrow cells. Taken together, our data identify DGKζ as an important regulator of iNKT-17 development through iNKT-cell extrinsic mechanisms.
Collapse
|
30
|
Krishna S, Zhong XP. Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function. Front Immunol 2013; 4:178. [PMID: 23847619 PMCID: PMC3701226 DOI: 10.3389/fimmu.2013.00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 01/14/2023] Open
Abstract
Diacylglycerol (DAG) and phosphatidic acid (PA) are bioactive lipids synthesized when the T cell receptor binds to a cognate peptide-MHC complex. DAG triggers signaling by recruiting Ras guanyl-releasing protein 1, PKCθ, and other effectors, whereas PA binds to effector molecules that include mechanistic target of rapamycin, Src homology region 2 domain-containing phosphatase 1, and Raf1. While DAG-mediated pathways have been shown to play vital roles in T cell development and function, the importance of PA-mediated signals remains less clear. The diacylglycerol kinase (DGK) family of enzymes phosphorylates DAG to produce PA, serving as a molecular switch that regulates the relative levels of these critical second messengers. Two DGK isoforms, α and ζ, are predominantly expressed in T lineage cells and play an important role in conventional αβ T cell development. In mature T cells, the activity of these DGK isoforms aids in the maintenance of self-tolerance by preventing T cell hyper-activation and promoting T cell anergy. In this review, we discuss the roles of DAG-mediated pathways, PA-effectors, and DGKs in T cell development and function. We also highlight recent work that has uncovered previously unappreciated roles for DGK activity, for instance in invariant NKT cell development, anti-tumor and anti-viral CD8 responses, and the directional secretion of soluble effectors.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | | |
Collapse
|
31
|
Joshi RP, Koretzky GA. Diacylglycerol kinases: regulated controllers of T cell activation, function, and development. Int J Mol Sci 2013; 14:6649-73. [PMID: 23531532 PMCID: PMC3645659 DOI: 10.3390/ijms14046649] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG), a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA). Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in modulating T cell activation, function, and development. More recently, studies have elucidated factors that control DGK function, suggesting an added complexity to how DGKs act during signaling. This review summarizes the available knowledge of the function and regulation of DGK isoforms in signal transduction with a particular focus on T lymphocytes.
Collapse
Affiliation(s)
- Rohan P. Joshi
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Gary A. Koretzky
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-215-746-5522; Fax: +1-215-746-5525
| |
Collapse
|
32
|
Gorentla BK, Krishna S, Shin J, Inoue M, Shinohara ML, Grayson JM, Fukunaga R, Zhong XP. Mnk1 and 2 are dispensable for T cell development and activation but important for the pathogenesis of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2012; 190:1026-37. [PMID: 23269249 DOI: 10.4049/jimmunol.1200026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
T cell development and activation are usually accompanied by expansion and production of numerous proteins that require active translation. The eukaryotic translation initiation factor 4E (eIF4E) binds to the 5' cap structure of mRNA and is critical for cap-dependent translational initiation. It has been hypothesized that MAPK-interacting kinase 1 and 2 (Mnk1/2) promote cap-dependent translation by phosphorylating eIF4E at serine 209 (S209). Pharmacologic studies using inhibitors have suggested that Mnk1/2 have important roles in T cells. However, genetic evidence supporting such conclusions is lacking. Moreover, the signaling pathways that regulate Mnk1/2 in T cells remain unclear. We demonstrate that TCR engagement activates Mnk1/2 in primary T cells. Such activation is dependent on Ras-Erk1/2 signaling and is inhibited by diacylglycerol kinases α and ζ. Mnk1/2 double deficiency in mice abolishes TCR-induced eIF4E S209 phosphorylation, indicating their absolute requirement for eIF4E S209 phosphorylation. However, Mnk1/2 double deficiency does not affect the development of conventional αβ T cells, regulatory T cells, or NKT cells. Furthermore, T cell activation, in vivo primary and memory CD8 T cell responses to microbial infection, and NKT cell cytokine production were not obviously altered by Mnk1/2 deficiency. Although Mnk1/2 deficiency causes decreased IL-17 and IFN-γ production by CD4 T cells following immunization of mice with myelin oligodendrocyte glycoprotein peptide in complete Freund's adjuvant, correlating with milder experimental autoimmune encephalomyelitis scores, it does not affect Th cell differentiation in vitro. Together, these data suggest that Mnk1/2 has a minimal role in T cell development and activation but may regulate non-T cell lineages to control Th1 and Th17 differentiation in vivo.
Collapse
Affiliation(s)
- Balachandra K Gorentla
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gorentla BK, Zhong XP. T cell Receptor Signal Transduction in T lymphocytes. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; 2012:5. [PMID: 23946894 PMCID: PMC3740441 DOI: 10.4172/2155-9899.s12-005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The T cell receptor (TCR) recognizes self or foreign antigens presented by major histocompatibility complex (MHC) molecules. Engagement of the TCR triggers the formation of multi-molecular signalosomes that lead to the generation of second messengers and subsequent activation of multiple distal signaling cascades, such as the Ca+2-calcineurin-NFAT, RasGRP1-Ras-Erk1/2, PKCθ-IKK-NFκB, and TSC1/2-mTOR pathways. These signaling cascades control many aspects of T cell biology. Mechanisms have been evolved to fine-tune TCR signaling to maintain T cell homeostasis and self-tolerance, and to properly mount effective responses to microbial infection. Defects or deregulation of TCR signaling has been implicated in the pathogenesis of multiple human diseases.
Collapse
Affiliation(s)
- Balachandra K Gorentla
- Pediatric Biology Center, Translational Health Science and Technology Institute, Gurgaon, 122016, India
| | - Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity. EUKARYOTIC CELL 2012; 11:1451-62. [PMID: 23042128 DOI: 10.1128/ec.00268-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When deprived of nitrogen (N), the photosynthetic microalga Chlamydomonas reinhardtii accumulates large quantities of triacylglycerols (TAGs), making it a promising source of biofuel. Prominent transcriptional changes associated with the conditions leading to TAG accumulation have been found, suggesting that the key enzymes for TAG metabolism might be among those that fluctuate in their expression during TAG synthesis and breakdown. Using a Saccharomyces cerevisiae lipase null mutant strain for functional complementation, we identified the CrLIP1 gene from Chlamydomonas based on its ability to suppress the lipase deficiency-related phenotypes of the yeast mutant. In Chlamydomonas, an inverse correlation was found between the CrLIP1 transcript level and TAG abundance when Chlamydomonas cultures were reversibly deprived of N. The CrLIP1 protein expressed and purified from Escherichia coli exhibited lipolytic activity against diacylglycerol (DAG) and polar lipids. The lipase domain of CrLIP1 is most similar to two human DAG lipases, DAGLα and DAGLβ. The involvement of CrLIP1 in Chlamydomonas TAG hydrolysis was corroborated by reducing the abundance of the CrLIP1 transcript with an artificial micro-RNA, which resulted in an apparent delay in TAG lipolysis when N was resupplied. Together, these data suggest that CrLIP1 facilitates TAG turnover in Chlamydomonas primarily by degrading the DAG presumably generated from TAG hydrolysis.
Collapse
|
35
|
Krishna S, Xie D, Gorentla B, Shin J, Gao J, Zhong XP. Chronic activation of the kinase IKKβ impairs T cell function and survival. THE JOURNAL OF IMMUNOLOGY 2012; 189:1209-19. [PMID: 22753932 DOI: 10.4049/jimmunol.1102429] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the transcription factor NF-κB is critical for cytokine production and T cell survival after TCR engagement. The effects of persistent NF-κB activity on T cell function and survival are poorly understood. In this study, using a murine model that expresses a constitutively active form of inhibitor of NF-κB kinase β (caIKKβ) in a T cell-specific manner, we demonstrate that chronic inhibitor of NF-κB kinase β signaling promotes T cell apoptosis, attenuates responsiveness to TCR-mediated stimulation in vitro, and impairs T cell responses to bacterial infection in vivo. caIKKβ T cells showed increased Fas ligand expression and caspase-8 activation, and blocking Fas/Fas ligand interactions enhanced cell survival. T cell unresponsiveness was associated with defects in TCR proximal signaling and elevated levels of B lymphocyte-induced maturation protein 1, a transcriptional repressor that promotes T cell exhaustion. caIKKβ T cells also showed a defect in IL-2 production, and addition of exogenous IL-2 enhanced their survival and proliferation. Conditional deletion of B lymphocyte-induced maturation protein 1 partially rescued the sensitivity of caIKKβ T cells to TCR triggering. Furthermore, adoptively transferred caIKKβ T cells showed diminished expansion and increased contraction in response to infection with Listeria monocytogenes expressing a cognate Ag. Despite their functional defects, caIKKβ T cells readily produced proinflammatory cytokines, and mice developed autoimmunity. In contrast to NF-κB's critical role in T cell activation and survival, our study demonstrates that persistent IKK-NF-κB signaling is sufficient to impair both T cell function and survival.
Collapse
Affiliation(s)
- Sruti Krishna
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
36
|
O'Brien TF, Zhong XP. The role and regulation of mTOR in T-lymphocyte function. Arch Immunol Ther Exp (Warsz) 2012; 60:173-81. [PMID: 22484804 DOI: 10.1007/s00005-012-0171-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
The conversion of naïve T cells into effector T cells is initiated by stimulation through the T-cell receptor (TCR). Upon activation, T cells undergo significant morphological and functional changes, putting new metabolic demands on the cell. Past research has identified the mammalian target of rapamycin (mTOR) as a critical regulator of cell metabolism, and the development of new genetic models has begun to reveal an important role for this pathway in the homeostasis and function of T lymphocytes. In this review, we focus on the most recent findings that demonstrate the ability of mTOR to regulate T-cell activation, CD8(+) memory cell formation and function, and helper T lineage differentiation. Furthermore, we highlight the importance of tight control of mTOR signaling by tuberous sclerosis complex 1 for T-cell homeostasis, and the regulation of mTOR signaling by diacylglycerol kinases and the RasGRP1-Ras-Erk1/2 pathway in the context of TCR signaling.
Collapse
Affiliation(s)
- Thomas F O'Brien
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Engel I, Kronenberg M. Making memory at birth: understanding the differentiation of natural killer T cells. Curr Opin Immunol 2012; 24:184-90. [PMID: 22305304 DOI: 10.1016/j.coi.2012.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/05/2012] [Accepted: 01/15/2012] [Indexed: 01/14/2023]
Abstract
Glycolipid reactive natural killer T cells with an invariant TCR α-chain (iNKT cells) are a conserved population of T lymphocytes with a distinct anatomical distribution and functional properties. The differentiation pathway of iNKT cells branches off from mainstream thymocyte differentiation at the double positive stage, and recent work has revealed how signaling events early in the iNKT cell pathway imprint a memory-like behavior on these cells. Additionally, unique molecular interactions governing iNKT cell development and tissue distribution have been uncovered recently, building up our knowledge of the complex network of interactions that form this population. Novel autologous antigens for these cells have been identified, although it has not yet been resolved if there is single endogenous antigen responsible for both positive selection and/or peripheral activation.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
38
|
Shin J, O'Brien TF, Grayson JM, Zhong XP. Differential regulation of primary and memory CD8 T cell immune responses by diacylglycerol kinases. THE JOURNAL OF IMMUNOLOGY 2012; 188:2111-7. [PMID: 22271650 DOI: 10.4049/jimmunol.1102265] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The manipulation of signals downstream of the TCR can have profound consequences for T cell development, function, and homeostasis. Diacylglycerol (DAG) produced after TCR stimulation functions as a secondary messenger and mediates the signaling to Ras-MEK-Erk and NF-κB pathways in T cells. DAG kinases (DGKs) convert DAG into phosphatidic acid, resulting in termination of DAG signaling. In this study, we demonstrate that DAG metabolism by DGKs can serve a crucial function in viral clearance upon lymphocytic choriomeningitis virus infection. Ag-specific CD8(+) T cells from DGKα(-/-) and DGKζ(-/-) mice show enhanced expansion and increased cytokine production after lymphocytic choriomeningitis virus infection, yet DGK-deficient memory CD8(+) T cells exhibit impaired expansion after rechallenge. Thus, DGK activity plays opposing roles in the expansion of CD8(+) T cells during the primary and memory phases of the immune response, whereas consistently inhibiting antiviral cytokine production.
Collapse
Affiliation(s)
- Jinwook Shin
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
39
|
Shen S, Chen Y, Gorentla BK, Lu J, Stone JC, Zhong XP. Critical roles of RasGRP1 for invariant NKT cell development. THE JOURNAL OF IMMUNOLOGY 2011; 187:4467-73. [PMID: 21957144 DOI: 10.4049/jimmunol.1003798] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The invariant NKT (iNKT) cell lineage contains CD4(+) and CD4(-) subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for TCR-induced activation of the Ras-ERK1/2 pathway, is critical for conventional αβ T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. In this study, we report severe decreases of iNKT cells in RasGRP1(-/-) mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1(-/-) mice, there is a selective absence of the CD4(+) subset. Furthermore, RasGRP1(-/-) iNKT cells are defective in TCR-induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development but also for the generation/maintenance of the CD4(+) iNKT cells. Our data provide genetic evidence that the CD4(+) and CD4(-) iNKT cells are distinct sublineages with differential signaling requirements for their development.
Collapse
Affiliation(s)
- Shudan Shen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|