2
|
Aubrey M, Warburg ZJ, Murre C. Helix-Loop-Helix Proteins in Adaptive Immune Development. Front Immunol 2022; 13:881656. [PMID: 35634342 PMCID: PMC9134016 DOI: 10.3389/fimmu.2022.881656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The E/ID protein axis is instrumental for defining the developmental progression and functions of hematopoietic cells. The E proteins are dimeric transcription factors that activate gene expression programs and coordinate changes in chromatin organization. Id proteins are antagonists of E protein activity. Relative levels of E/Id proteins are modulated throughout hematopoietic development to enable the progression of hematopoietic stem cells into multiple adaptive and innate immune lineages including natural killer cells, B cells and T cells. In early progenitors, the E proteins promote commitment to the T and B cell lineages by orchestrating lineage specific programs of gene expression and regulating VDJ recombination of antigen receptor loci. In mature B cells, the E/Id protein axis functions to promote class switch recombination and somatic hypermutation. E protein activity further regulates differentiation into distinct CD4+ and CD8+ T cells subsets and instructs mature T cell immune responses. In this review, we discuss how the E/Id proteins define the adaptive immune system lineages, focusing on their role in directing developmental gene programs.
Collapse
Affiliation(s)
| | | | - Cornelis Murre
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
5
|
Hauser J, Grundström C, Grundström T. Allelic exclusion of IgH through inhibition of E2A in a VDJ recombination complex. THE JOURNAL OF IMMUNOLOGY 2014; 192:2460-70. [PMID: 24470503 DOI: 10.4049/jimmunol.1302216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A key feature of the immune system is the paradigm that one lymphocyte has only one Ag specificity that can be selected for or against. This requires that only one of the alleles of genes for AgR chains is made functional. However, the molecular mechanism of this allelic exclusion has been an enigma. In this study, we show that B lymphocytes with E2A that cannot be inhibited by calmodulin are dramatically defective in allelic exclusion of the IgH locus. Furthermore, we provide data supporting that E2A, PAX5, and the RAGs are in a VDJ recombination complex bound to key sequences on the Igh gene. We show that pre-BCR activation releases the VDJ recombination complex through calmodulin binding to E2A. We also show that pre-BCR signaling downregulates several components of the recombination machinery, including RAG1, RAG2, and PAX5, through calmodulin inhibition of E2A.
Collapse
Affiliation(s)
- Jannek Hauser
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
6
|
Speedy HE, Di Bernardo MC, Sava GP, Dyer MJS, Holroyd A, Wang Y, Sunter NJ, Mansouri L, Juliusson G, Smedby KE, Roos G, Jayne S, Majid A, Dearden C, Hall AG, Mainou-Fowler T, Jackson GH, Summerfield G, Harris RJ, Pettitt AR, Allsup DJ, Bailey JR, Pratt G, Pepper C, Fegan C, Rosenquist R, Catovsky D, Allan JM, Houlston RS. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet 2014; 46:56-60. [PMID: 24292274 DOI: 10.1038/ng.2843] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/06/2013] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) of chronic lymphocytic leukemia (CLL) have shown that common genetic variation contributes to the heritable risk of CLL. To identify additional CLL susceptibility loci, we conducted a GWAS and performed a meta-analysis with a published GWAS totaling 1,739 individuals with CLL (cases) and 5,199 controls with validation in an additional 1,144 cases and 3,151 controls. A combined analysis identified new susceptibility loci mapping to 3q26.2 (rs10936599, P = 1.74 × 10(-9)), 4q26 (rs6858698, P = 3.07 × 10(-9)), 6q25.2 (IPCEF1, rs2236256, P = 1.50 × 10(-10)) and 7q31.33 (POT1, rs17246404, P = 3.40 × 10(-8)). Additionally, we identified a promising association at 5p15.33 (CLPTM1L, rs31490, P = 1.72 × 10(-7)) and validated recently reported putative associations at 5p15.33 (TERT, rs10069690, P = 1.12 × 10(-10)) and 8q22.3 (rs2511714, P = 2.90 × 10(-9)). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CLL.
Collapse
Affiliation(s)
- Helen E Speedy
- 1] Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK. [2]
| | | | - Georgina P Sava
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Martin J S Dyer
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK
| | - Amy Holroyd
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Yufei Wang
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Nicola J Sunter
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gunnar Juliusson
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Hematology and Transplantation, Lund University, Lund, Sweden
| | - Karin E Smedby
- Unit of Clinical Epidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sandrine Jayne
- Medical Research Council Toxicology Unit, Leicester University, Leicester, UK
| | - Aneela Majid
- Medical Research Council Toxicology Unit, Leicester University, Leicester, UK
| | - Claire Dearden
- Haemato-Oncology, Division of Molecular Pathology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew G Hall
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Graham H Jackson
- Department of Haematology, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Geoffrey Summerfield
- Department of Haematology, Queen Elizabeth Hospital, Gateshead, Newcastle-upon-Tyne, UK
| | - Robert J Harris
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - David J Allsup
- Department of Haematology, Hull Royal Infirmary, Hull, UK
| | - James R Bailey
- Hull York Medical School and University of Hull, Hull, UK
| | - Guy Pratt
- Department of Haematology, Birmingham Heartlands Hospital, Birmingham, UK
| | - Chris Pepper
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Chris Fegan
- Cardiff and Vale National Health Service Trust, Heath Park, Cardiff, UK
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Daniel Catovsky
- Haemato-Oncology, Division of Molecular Pathology, Institute of Cancer Research, Sutton, Surrey, UK
| | - James M Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|