1
|
Bello A, Hirth G, Voigt S, Tepper S, Jungnickel B. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle 2023; 22:2070-2087. [PMID: 37909747 PMCID: PMC10761156 DOI: 10.1080/15384101.2023.2275397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize the current knowledge on the mechanism and regulation of secondary immunoglobulin diversification and discuss known mechanisms of physiological targeting to immunoglobulin genes and mistargeting to other cellular genes. We summarize open questions in the field and provide an outlook on future research.
Collapse
Affiliation(s)
- Amanda Bello
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Gianna Hirth
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefanie Voigt
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sandra Tepper
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
2
|
Gurwicz N, Stoler-Barak L, Schwan N, Bandyopadhyay A, Meyer-Hermann M, Shulman Z. Tingible body macrophages arise from lymph node-resident precursors and uptake B cells by dendrites. J Exp Med 2023; 220:213834. [PMID: 36705667 PMCID: PMC9900388 DOI: 10.1084/jem.20222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown. Here, we demonstrate that TBMs originate from pre-existing lymph node-resident precursors that enter the lymph node follicles in a GC-dependent manner. Intravital imaging shows that TBMs are stationary cells that selectively phagocytose GC B cells via highly dynamic protrusions and accommodate the final stages of B cell apoptosis. Cell-specific depletion and chimeric mouse models revealed that GC B cells drive TBM formation from bone marrow-derived precursors stationed within lymphoid organs prior to the immune challenge. Understanding TBM dynamics and function may explain the emergence of various antibody-mediated autoimmune conditions.
Collapse
Affiliation(s)
- Neta Gurwicz
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Niklas Schwan
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig, Germany
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|
3
|
Amirifar P, Mehrmohamadi M, Ranjouri MR, Akrami SM, Rezaei N, Saberi A, Yazdani R, Abolhassani H, Aghamohammadi A. Genetic Risk Variants for Class Switching Recombination Defects in Ataxia-Telangiectasia Patients. J Clin Immunol 2021; 42:72-84. [PMID: 34628594 PMCID: PMC8821084 DOI: 10.1007/s10875-021-01147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/04/2022]
Abstract
Background Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. A-T patients manifest considerable variability in clinical and immunological features, suggesting the presence of genetic modifying factors. A striking heterogeneity has been observed in class switching recombination (CSR) in A-T patients which cannot be explained by the severity of ATM mutations. Methods To investigate the cause of variable CSR in A-T patients, we applied whole-exome sequencing (WES) in 20 A-T patients consisting of 10 cases with CSR defect (CSR-D) and 10 controls with normal CSR (CSR-N). Comparative analyses on modifier variants found in the exomes of these two groups of patients were performed. Results For the first time, we identified some variants in the exomes of the CSR-D group that were significantly associated with antigen processing and presentation pathway. Moreover, in this group of patients, the variants in four genes involved in DNA double-strand breaks (DSB) repair signaling, in particular, XRCC3 were observed, suggesting an association with CSR defect. Conclusion Additional impact of certain variants, along with ATM mutations, may explain the heterogeneity in CSR defect phenotype among A-T patients. It can be concluded that genetic modulators play an important role in the course of A-T disease and its clinical severity. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01147-8.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Saberi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Division of Clinical Immunology, Department of Biosciences and Nutrition, NEO, Karolinska Institute, Blickagangen 16, 14157, Stockholm, Sweden. .,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Children's Medical Center Hospital, 62 Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
4
|
Saha T, Sundaravinayagam D, Di Virgilio M. Charting a DNA Repair Roadmap for Immunoglobulin Class Switch Recombination. Trends Biochem Sci 2020; 46:184-199. [PMID: 33250286 DOI: 10.1016/j.tibs.2020.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.
Collapse
Affiliation(s)
- Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
5
|
Zhu J, Hay AN, Potter AA, Richwine MW, Sproule T, LeRoith T, Wilson J, Hasham MG, Roopenian DC, Leeth CM. Abrogated AID Function Prolongs Survival and Diminishes Renal Pathology in the BXSB Mouse Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1091-1100. [PMID: 31988182 DOI: 10.4049/jimmunol.1900501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Almost a decade has passed since the approval of belimumab, an mAb directed against B lymphocyte stimulation and the first targeted therapy approved for systemic lupus erythematous (SLE) in over 50 y. Although well tolerated, the efficacy of belimumab remains limited and is not labeled for patients suffering from nephritis, the leading cause of patient mortality. We sought to explore alternative targets of autoreactive B lymphocytes through manipulation of affinity maturation. The BXSB/MpJ mouse, a well-established model of human SLE, develops elevated antinuclear Abs and immune complex-mediated nephritis along with other manifestations of SLE-like disease. To limit interfering with critical background genetics, we used CRISPR-Cas9 to disrupt activation-induced cytidine deaminase (AID; Aicda) directly in BXSB zygotes. Homozygous null mice demonstrated significantly prolonged survival compared with wild-type. Although mice continued to develop plasma cells, splenic follicular structure was restored, and renal pathology was reduced. Mice developed expanded germinal center B lymphocyte populations as in other models of AID deficiency as well as increased populations of CD73+ B lymphocytes. Treatment with the small molecule inhibitor of RAD51, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, resulted in minimal changes in disease markers in BXSB mice. The prolonged survival in AID-deficient BXSB mice appears attributed primarily to the reduced renal pathology, warranting further exploration, as current therapeutics targeting lupus nephritis are limited and, thus, in great demand.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Alayna N Hay
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Ashley A Potter
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Madison W Richwine
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - John Wilson
- The Jackson Laboratory, Bar Harbor, ME 04609; and
| | | | | | - Caroline M Leeth
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
| |
Collapse
|
6
|
Hirth G, Svensson CM, Böttcher K, Ullrich S, Figge MT, Jungnickel B. Regulation of the Germinal Center Reaction and Somatic Hypermutation Dynamics by Homologous Recombination. THE JOURNAL OF IMMUNOLOGY 2019; 203:1493-1501. [DOI: 10.4049/jimmunol.1900483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
|
7
|
Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair (Amst) 2019; 81:102661. [PMID: 31331819 DOI: 10.1016/j.dnarep.2019.102661] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although long overlooked, it is now well understood that DNA does not systematically assemble into a canonical double helix, known as B-DNA, throughout the entire genome but can also accommodate other structures including DNA hairpins, G-quadruplexes and RNA:DNA hybrids. Notably, these non-canonical DNA structures form preferentially at transcriptionally active loci. Acting as replication roadblocks and being targeted by multiple machineries, these structures weaken the genome and render it prone to damage, including DNA double-strand breaks (DSB). In addition, secondary structures also further accumulate upon DSB formation. Here we discuss the potential functions of pre-existing or de novo formed nucleic acid structures, as bona fide repair intermediates or repair roadblocks, especially during Transcription-Coupled DNA Double-Strand Break repair (TC-DSBR), and provide an update on the specialized protein complexes displaying the ability to remove these structures to safeguard genome integrity.
Collapse
|
8
|
Barbour JA, Wong JWH. Dysregulation of Cis-Regulatory Elements in Cancer. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Mu Y, McBride KM. Targeting mutagenesis in B cells: Phosphorylation goes beyond AID association. Mol Cell Oncol 2018; 5:e1432259. [PMID: 30263937 PMCID: PMC6154841 DOI: 10.1080/23723556.2018.1432259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 10/29/2022]
Abstract
The mutations induced by activation-induced cytidine deaminase (AID) trigger antibody diversification but can cause genome instability. We find that AID phosphorylation is an important determinant of "off-target" mutagenesis and identify a drug that increases this activity. These studies demonstrate how dysregulating AID phosphorylation can promote oncogenesis.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| |
Collapse
|
10
|
Wilson JJ, Chow KH, Labrie NJ, Branca JA, Sproule TJ, Perkins BRA, Wolf EE, Costa M, Stafford G, Rosales C, Mills KD, Roopenian DC, Hasham MG. Enhancing the efficacy of glycolytic blockade in cancer cells via RAD51 inhibition. Cancer Biol Ther 2018; 20:169-182. [PMID: 30183475 PMCID: PMC6343731 DOI: 10.1080/15384047.2018.1507666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Targeting the early steps of the glycolysis pathway in cancers is a well-established therapeutic strategy; however, the doses required to elicit a therapeutic effect on the cancer can be toxic to the patient. Consequently, numerous preclinical and clinical studies have combined glycolytic blockade with other therapies. However, most of these other therapies do not specifically target cancer cells, and thus adversely affect normal tissue. Here we first show that a diverse number of cancer models – spontaneous, patient-derived xenografted tumor samples, and xenografted human cancer cells – can be efficiently targeted by 2-deoxy-D-Glucose (2DG), a well-known glycolytic inhibitor. Next, we tested the cancer-cell specificity of a therapeutic compound using the MEC1 cell line, a chronic lymphocytic leukemia (CLL) cell line that expresses activation induced cytidine deaminase (AID). We show that MEC1 cells, are susceptible to 4,4ʹ-Diisothiocyano-2,2ʹ-stilbenedisulfonic acid (DIDS), a specific RAD51 inhibitor. We then combine 2DG and DIDS, each at a lower dose and demonstrate that this combination is more efficacious than fludarabine, the current standard- of- care treatment for CLL. This suggests that the therapeutic blockade of glycolysis together with the therapeutic inhibition of RAD51-dependent homologous recombination can be a potentially beneficial combination for targeting AID positive cancer cells with minimal adverse effects on normal tissue. Implications: Combination therapy targeting glycolysis and specific RAD51 function shows increased efficacy as compared to standard of care treatments in leukemias.
Collapse
Affiliation(s)
- John J Wilson
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Kin-Hoe Chow
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Nathan J Labrie
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Jane A Branca
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Thomas J Sproule
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Bryant R A Perkins
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Elise E Wolf
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Mauro Costa
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Grace Stafford
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Christine Rosales
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | | | - Derry C Roopenian
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| | - Muneer G Hasham
- a Research Department , The Jackson Laboratory , Bar Harbor , Maine , USA
| |
Collapse
|
11
|
Nicolas L, Cols M, Choi JE, Chaudhuri J, Vuong B. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination. F1000Res 2018; 7:458. [PMID: 29744038 PMCID: PMC5904731 DOI: 10.12688/f1000research.13247.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jee Eun Choi
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bao Vuong
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
12
|
DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-Loop-Dependent Manner. Cell Rep 2017; 17:2927-2942. [PMID: 27974207 DOI: 10.1016/j.celrep.2016.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
Class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) locus generates antibody isotypes. CSR depends on double-strand breaks (DSBs) induced by activation-induced cytidine deaminase (AID). Although DSB formation and repair machineries are active in G1 phase, efficient CSR is dependent on cell proliferation and S phase entry; however, the underlying mechanisms are obscure. Here, we show that efficient CSR requires the replicative helicase, the Mcm complex. Mcm proteins are enriched at IgH switch regions during CSR, leading to assembly of facultative replication origins that require Mcm helicase function for productive CSR. Assembly of CSR-associated origins is facilitated by R loops and promotes the physical proximity (synapsis) of recombining switch regions, which is reduced by R loop inhibition or Mcm complex depletion. Thus, R loops contribute to replication origin specification that promotes DSB resolution in CSR. This suggests a mechanism for the dependence of CSR on S phase and cell division.
Collapse
|
13
|
Gole B, Mian E, Rall M, Wiesmüller L. Base excision repair proteins couple activation-induced cytidine deaminase and endonuclease G during replication stress-induced MLL destabilization. Leukemia 2017. [PMID: 28626219 DOI: 10.1038/leu.2017.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The breakpoint cluster region of the MLL gene (MLLbcr) is frequently rearranged in therapy-related and infant acute leukaemia, but the destabilizing mechanism is poorly understood. We recently proposed that DNA replication stress results in MLLbcr cleavage via endonuclease G (EndoG) and represents the common denominator of genotoxic therapy-induced MLL destabilization. Here we performed a siRNA screen for new factors involved in replication stress-induced MLL rearrangements employing an enhanced green fluorescent protein-based reporter system. We identified 10 factors acting in line with EndoG in MLLbcr breakage or further downstream in the repair of the MLLbcr breaks, including activation-induced cytidine deaminase (AID), previously proposed to initiate MLLbcr rearrangements in an RNA transcription-dependent mechanism. Further analysis connected AID and EndoG in MLLbcr destabilization via base excision repair (BER) components. We show that replication stress-induced recruitment of EndoG to the MLLbcr and cleavage are AID/BER dependent. Notably, inhibition of the core BER factor Apurinic-apyrimidinic endonuclease 1 protects against MLLbcr cleavage in tumour and human cord blood-derived haematopoietic stem/progenitor cells, harbouring the cells of origin of leukaemia. We propose that off-target binding of AID to the MLLbcr initiates BER-mediated single-stranded DNA cleavage, which causes derailed EndoG activity ultimately resulting in leukaemogenic MLLbcr rearrangements.
Collapse
Affiliation(s)
- B Gole
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - E Mian
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - M Rall
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - L Wiesmüller
- Gynaecological Oncology, Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
15
|
Balestrini A, Nicolas L, Yang-Lott K, Guryanova OA, Levine RL, Bassing CH, Chaudhuri J, Petrini JHJ. Defining ATM-Independent Functions of the Mre11 Complex with a Novel Mouse Model. Mol Cancer Res 2015; 14:185-95. [PMID: 26538284 DOI: 10.1158/1541-7786.mcr-15-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
Abstract
UNLABELLED The Mre11 complex (Mre11, Rad50, and Nbs1) occupies a central node of the DNA damage response (DDR) network and is required for ATM activation in response to DNA damage. Hypomorphic alleles of MRE11 and NBS1 confer embryonic lethality in ATM-deficient mice, indicating that the complex exerts ATM-independent functions that are essential when ATM is absent. To delineate those functions, a conditional ATM allele (ATM(flox)) was crossed to hypomorphic NBS1 mutants (Nbs1(ΔB/ΔB) mice). Nbs1(ΔB/ΔB) Atm(-/-) hematopoietic cells derived by crossing to vav(cre) were viable in vivo. Nbs1(ΔB/ΔB) Atm(-/-) (VAV) mice exhibited a pronounced defect in double-strand break repair and completely penetrant early onset lymphomagenesis. In addition to repair defects observed, fragile site instability was noted, indicating that the Mre11 complex promotes genome stability upon replication stress in vivo. The data suggest combined influences of the Mre11 complex on DNA repair, as well as the responses to DNA damage and DNA replication stress. IMPLICATIONS A novel mouse model was developed, by combining a vav(cre)-inducible ATM knockout mouse with an NBS1 hypomorphic mutation, to analyze ATM-independent functions of the Mre11 complex in vivo. These data show that the DNA repair, rather than DDR signaling functions of the complex, is acutely required in the context of ATM deficiency to suppress genome instability and lymphomagenesis.
Collapse
Affiliation(s)
- Alessia Balestrini
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York
| | - Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine Yang-Lott
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Olga A Guryanova
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H J Petrini
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York.
| |
Collapse
|
16
|
Davari K, Frankenberger S, Schmidt A, Tomi NS, Jungnickel B. Checkpoint kinase 2 is required for efficient immunoglobulin diversification. Cell Cycle 2015; 13:3659-69. [PMID: 25483076 DOI: 10.4161/15384101.2014.964112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Maintenance of genome integrity relies on multiple DNA repair pathways as well as on checkpoint regulation. Activation of the checkpoint kinases Chk1 and Chk2 by DNA damage triggers cell cycle arrest and improved DNA repair, or apoptosis in case of excessive damage. Chk1 and Chk2 have been reported to act in a complementary or redundant fashion, depending on the physiological context. During secondary immunoglobulin (Ig) diversification in B lymphocytes, DNA damage is abundantly introduced by activation-induced cytidine deaminase (AID) and processed to mutations in a locus-specific manner by several error-prone DNA repair pathways. We have previously shown that Chk1 negatively regulates Ig somatic hypermutation by promoting error-free homologous recombination and Ig gene conversion. We now report that Chk2 shows opposite effects to Chk1 in the regulation of these processes. Chk2 inactivation in B cells leads to decreased Ig hypermutation and Ig class switching, and increased Ig gene conversion activity. This is linked to defects in non-homologous end joining and increased Chk1 activation upon interference with Chk2 function. Intriguingly, in the context of physiological introduction of substantial DNA damage into the genome during Ig diversification, the 2 checkpoint kinases thus function in an opposing manner, rather than redundantly or cooperatively.
Collapse
Key Words
- AID, activation-induced cytidine deaminase
- APE1, apurinic endonuclease 1
- ATM, ataxia telangiectasia mutated
- ATR, ataxia telangiectasia and rad3 related
- Chk, checkpoint kinase
- DNA repair
- HR, homologous recombination
- Ig, immunoglobulin
- MMR mismatch repair
- MMS, methyl methansulfonate
- NHEJ, non-homologous end joining
- UNG, uracil N-glycosilase
- checkpoint signaling
- germinal center
- immunoglobulin diversification
Collapse
Affiliation(s)
- Kathrin Davari
- a Department of Cell Biology; Institute of Biochemistry and Biophysics; Center for Molecular Biomedicine ; Friedrich-Schiller University Jena ; Jena , Germany
| | | | | | | | | |
Collapse
|
17
|
Khair L, Baker RE, Linehan EK, Schrader CE, Stavnezer J. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells. PLoS Genet 2015; 11:e1005438. [PMID: 26263206 PMCID: PMC4532491 DOI: 10.1371/journal.pgen.1005438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. Activation-induced cytidine deaminase (AID) is required for diversifying antibodies during immune responses, and it does this by introducing mutations and DNA breaks into antibody genes. How AID is targeted is not understood, and it induces chromosomal translocations, mutations, and double-strand breaks (DSBs) at sites other than antibody genes in activated B cells. To determine what makes an off-target DNA site a target for AID-induced DSBs, we identify and characterize hundreds of genome-wide DSBs induced by AID during B cell activation. Interestingly, many of the DSBs are within or adjacent to two types of tandemly repeated simple sequences, which have characteristics that might explain why they are targeted. We find that most of the DSBs are two-ended, consistent with their generation during G1 phase of the cell cycle, which is when AID induces DNA breaks in antibody genes. However, a minority is one-ended, consistent with replication encountering an AID-induced single-strand break, thereby creating a DSB. Both types of off-target DSBs, but especially those present during S phase of the cell cycle, lead to chromosomal translocations, deletions and gene amplifications that can promote B cell lymphomagenesis.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Carol E. Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells. Proc Natl Acad Sci U S A 2015; 112:2157-62. [PMID: 25646469 DOI: 10.1073/pnas.1418947112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have studied the role of BRCA1 in the repair of DSBs in switch (S) regions during immunoglobulin class switch recombination, a physiological, deletion/recombination process that relies on the classical NHEJ machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism underlying BRCA1's function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis.
Collapse
|
19
|
Vaidyanathan B, Yen WF, Pucella JN, Chaudhuri J. AIDing Chromatin and Transcription-Coupled Orchestration of Immunoglobulin Class-Switch Recombination. Front Immunol 2014; 5:120. [PMID: 24734031 PMCID: PMC3975107 DOI: 10.3389/fimmu.2014.00120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/07/2014] [Indexed: 12/29/2022] Open
Abstract
Secondary diversification of the antibody repertoire upon antigenic challenge, in the form of immunoglobulin heavy chain (IgH) class-switch recombination (CSR) endows mature, naïve B cells in peripheral lymphoid organs with a limitless ability to mount an optimal humoral immune response, thus expediting pathogen elimination. CSR replaces the default constant (CH) region exons (Cμ) of IgH with any of the downstream CH exons (Cγ, Cε, or Cα), thereby altering effector functions of the antibody molecule. This process depends on, and is orchestrated by, activation-induced deaminase (AID), a DNA cytidine deaminase that acts on single-stranded DNA exposed during transcription of switch (S) region sequences at the IgH locus. DNA lesions thus generated are processed by components of several general DNA repair pathways to drive CSR. Given that AID can instigate DNA lesions and genomic instability, stringent checks are imposed that constrain and restrict its mutagenic potential. In this review, we will discuss how AID expression and substrate specificity and activity is rigorously enforced at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and how the DNA-damage response is choreographed with precision to permit targeted activity while limiting bystander catastrophe.
Collapse
Affiliation(s)
- Bharat Vaidyanathan
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Wei-Feng Yen
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Joseph N Pucella
- Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| | - Jayanta Chaudhuri
- Weill Cornell Graduate School of Medical Sciences , New York, NY , USA ; Immunology Program, Memorial Sloan Kettering Cancer Center, Gerstner Sloan Kettering Graduate School , New York, NY , USA
| |
Collapse
|
20
|
Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 2014; 122:1-57. [PMID: 24507154 PMCID: PMC4150736 DOI: 10.1016/b978-0-12-800267-4.00001-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as "Ch genes", e.g., Cγ, Cɛ, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming.
Collapse
Affiliation(s)
- Allysia J Matthews
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Simin Zheng
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lauren J DiMenna
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
21
|
A DNA break- and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol 2013; 14:1183-1189. [PMID: 24097111 DOI: 10.1038/ni.2732] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022]
Abstract
The ability of activation-induced cytidine deaminase (AID) to efficiently mediate class-switch recombination (CSR) is dependent on its phosphorylation at Ser38; however, the trigger that induces AID phosphorylation and the mechanism by which phosphorylated AID drives CSR have not been elucidated. Here we found that phosphorylation of AID at Ser38 was induced by DNA breaks. Conversely, in the absence of AID phosphorylation, DNA breaks were not efficiently generated at switch (S) regions in the immunoglobulin heavy-chain locus (Igh), consistent with a failure of AID to interact with the endonuclease APE1. Additionally, deficiency in the DNA-damage sensor ATM impaired the phosphorylation of AID at Ser38 and the interaction of AID with APE1. Our results identify a positive feedback loop for the amplification of DNA breaks at S regions through the phosphorylation- and ATM-dependent interaction of AID with APE1.
Collapse
|
22
|
Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination. Proc Natl Acad Sci U S A 2013; 110:15770-5. [PMID: 24019479 DOI: 10.1073/pnas.1221661110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Preceding antibody constant regions are switch (S) regions varying in length and repeat density that are targets of activation-induced cytidine deaminase. We asked how participating S regions influence each other to orchestrate rearrangements at the IgH locus by engineering mice in which the weakest S region, Sε, is replaced with prominent recombination hotspot Sμ. These mice produce copious polyclonal IgE upon challenge, providing a platform to study IgE biology and therapeutic interventions. The insertion enhances ε germ-line transcript levels, shows a preference for direct vs. sequential switching, and reduces intraswitch recombination events at native Sμ. These results suggest that the sufficiency of Sμ to mediate IgH rearrangements may be influenced by context-dependent cues.
Collapse
|
23
|
Lamont KR, Hasham MG, Donghia NM, Branca J, Chavaree M, Chase B, Breggia A, Hedlund J, Emery I, Cavallo F, Jasin M, Rüter J, Mills KD. Attenuating homologous recombination stimulates an AID-induced antileukemic effect. ACTA ACUST UNITED AC 2013; 210:1021-33. [PMID: 23589568 PMCID: PMC3646491 DOI: 10.1084/jem.20121258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inhibition of the RAD51 homologous recombination factor prevents the repair of AID-initiated DNA breaks and induces apoptosis preferentially in AID-expressing human CLL. Activation-induced cytidine deaminase (AID) is critical in normal B cells to initiate somatic hypermutation and immunoglobulin class switch recombination. Accumulating evidence suggests that AID is also prooncogenic, inducing cancer-promoting mutations or chromosome rearrangements. In this context, we find that AID is expressed in >40% of primary human chronic lymphocytic leukemia (CLL) cases, consistent with other reports. Using a combination of human B lymphoid leukemia cells and mouse models, we now show that AID expression can be harnessed for antileukemic effect, after inhibition of the RAD51 homologous recombination (HR) factor with 4,4′-diisothiocyanatostilbene-2-2′-disulfonic acid (DIDS). As a proof of principle, we show that DIDS treatment inhibits repair of AID-initiated DNA breaks, induces apoptosis, and promotes cytotoxicity preferentially in AID-expressing human CLL. This reveals a novel antineoplastic role of AID that can be triggered by inhibition of HR, suggesting a potential new paradigm to treat AID-expressing tumors. Given the growing list of tumor types with aberrant AID expression, this novel therapeutic approach has potential to impact a significant patient population.
Collapse
|
24
|
Activation-Induced Cytidine Deaminase Does Not Impact Murine Meiotic Recombination. G3-GENES GENOMES GENETICS 2013; 3:645-655. [PMID: 23550130 PMCID: PMC3618351 DOI: 10.1534/g3.113.005553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation-induced cytidine deaminase (AID) was first described as the triggering enzyme of the B-cell-specific reactions that edit the immunoglobulin genes, namely somatic hypermutation, gene conversion, and class switch recombination. Over the years, AID was also detected in cells other than lymphocytes, and it has been assigned additional roles in the innate defense against transforming retroviruses, in retrotransposition restriction and in DNA demethylation. Notably, AID expression was found in germline tissues, and in heterologous systems it can induce the double-strand breaks required for the initiation of meiotic recombination and proper gamete formation. However, because AID-deficient mice are fully fertile, the molecule is not essential for meiosis. Thus, the remaining question that we addressed here is whether AID influences the frequency of meiotic recombination in mice. We measured the recombination events in the meiosis of male and female mice F1 hybrids of C57BL/6J and BALB/c, in Aicda+/+ and Aicda-/- background by using a panel of single-nucleotide polymorphisms that distinguishes C57BL/6J from BALB/c genome across the 19 autosomes. In agreement with the literature, we found that the frequency of recombination in the female germline was greater than in male germline, both in the Aicda+/+ and Aicda-/- backgrounds. No statistical difference was found in the average recombination events between Aicda+/+ and Aidca-/- animals, either in females or males. In addition, the recombination frequencies between single-nucleotide polymorphisms flanking the immunoglobulin heavy and immunoglobulin kappa loci was also not different. We conclude that AID has a minor impact, if any, on the overall frequency of meiotic recombination.
Collapse
|
25
|
Yamane A, Robbiani DF, Resch W, Bothmer A, Nakahashi H, Oliveira T, Rommel PC, Brown EJ, Nussenzweig A, Nussenzweig MC, Casellas R. RPA accumulation during class switch recombination represents 5'-3' DNA-end resection during the S-G2/M phase of the cell cycle. Cell Rep 2013; 3:138-47. [PMID: 23291097 PMCID: PMC3563767 DOI: 10.1016/j.celrep.2012.12.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/14/2012] [Accepted: 12/12/2012] [Indexed: 01/15/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) promotes chromosomal translocations by inducing DNA double-strand breaks (DSBs) at immunoglobulin (Ig) genes and oncogenes in the G1 phase. RPA is a single-stranded DNA (ssDNA)-binding protein that associates with resected DSBs in the S phase and facilitates the assembly of factors involved in homologous repair (HR), such as Rad51. Notably, RPA deposition also marks sites of AID-mediated damage, but its role in Ig gene recombination remains unclear. Here, we demonstrate that RPA associates asymmetrically with resected ssDNA in response to lesions created by AID, recombination-activating genes (RAG), or other nucleases. Small amounts of RPA are deposited at AID targets in G1 in an ATM-dependent manner. In contrast, recruitment in the S-G2/M phase is extensive, ATM independent, and associated with Rad51 accumulation. In the S-G2/M phase, RPA increases in nonhomologous-end-joining-deficient lymphocytes, where there is more extensive DNA-end resection. Thus, most RPA recruitment during class switch recombination represents salvage of unrepaired breaks by homology-based pathways during the S-G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Arito Yamane
- Genomics & Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|