1
|
Pre-immunization of donor lymphocytes with GITR agonistic antibody enhances antitumor immunity in autologous hematopoietic stem cell transplantation. Biochem Biophys Res Commun 2019; 509:96-101. [PMID: 30579597 DOI: 10.1016/j.bbrc.2018.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 01/24/2023]
Abstract
The lymphopenic condition following autologous hematopoietic stem cell transplantation (HSCT) enhances the proliferation of T cells by engaging tumor-associated antigens, leading to the alteration of the T-cell repertoire towards antitumor immunity. However, cure by autologous HSCT alone have rarely occurred in the clinical setting. Since tumor-reactive lymphocytes preferentially proliferate during reconstitution of the immune system, we examined whether the priming of donor lymphocytes can strengthen the antitumor effect by HSCT in a CT26 murine colon cancer model. The systemic administration of an anti-glucocorticoid-induced TNF receptor (GITR) agonistic antibody (Ab) significantly increased the number of CT26-responsive T cells but not that of auto-reactive lymphocytes in donor mice. The infusion of non-primed and GITR Ab-primed donor lymphocytes suppressed the CT26 tumor growth, and only the primed lymphocytes eliminated tumors in all the treated mice. The frequency of CT26-responsive T cells was elevated in recipient mice infused with both primed and non-primed lymphocytes until 4 weeks after transplantation, while the frequency in recipients with primed lymphocytes was markedly elevated compared with that in mice harboring non-primed lymphocytes at 2 weeks. The frequencies of regulatory T cells and myeloid-derived suppressor cells were elevated in recipient mice infused with primed and non-primed lymphocytes 2 weeks after transplantation, and returned to normal levels by week 4. The combination of autologous HSCT with pre-immunization of donor lymphocytes is a promising strategy to induce strong antitumor immunity.
Collapse
|
2
|
Honkanen HK, Izzi V, Petäistö T, Holopainen T, Harjunen V, Pihlajaniemi T, Alitalo K, Heljasvaara R. Elevated VEGF-D Modulates Tumor Inflammation and Reduces the Growth of Carcinogen-Induced Skin Tumors. Neoplasia 2017; 18:436-46. [PMID: 27435926 PMCID: PMC4954931 DOI: 10.1016/j.neo.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial growth factor D (VEGF-D) promotes the lymph node metastasis of cancer by inducing the growth of lymphatic vasculature, but its specific roles in tumorigenesis have not been elucidated. We monitored the effects of VEGF-D in cutaneous squamous cell carcinoma (cSCC) by subjecting transgenic mice overexpressing VEGF-D in the skin (K14-mVEGF-D) and VEGF-D knockout mice to a chemical skin carcinogenesis protocol involving 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate treatments. In K14-mVEGF-D mice, tumor lymphangiogenesis was significantly increased and the frequency of lymph node metastasis was elevated in comparison with controls. Most notably, the papillomas regressed more often in K14-mVEGF-D mice than in littermate controls, resulting in a delay in tumor incidence and a remarkable reduction in the total tumor number. Skin tumor growth and metastasis were not obviously affected in the absence of VEGF-D; however, the knockout mice showed a trend for reduced lymphangiogenesis in skin tumors and in the untreated skin. Interestingly, K14-mVEGF-D mice showed an altered immune response in skin tumors. This consisted of the reduced accumulation of macrophages, mast cells, and CD4+ T-cells and an increase of cytotoxic CD8+ T-cells. Cytokine profiling by flow cytometry and quantitative real time PCR revealed that elevated VEGF-D expression results in an attenuated Th2 response and promotes M1/Th1 and Th17 polarization in the early stage of skin carcinogenesis, leading to an anti-tumoral immune environment and the regression of primary tumors. Our data suggest that VEGF-D may be beneficial in early-stage tumors since it suppresses the pro-tumorigenic inflammation, while at later stages VEGF-D-induced tumor lymphatics provide a route for metastasis.
Collapse
Affiliation(s)
- Hanne-Kaisa Honkanen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, FIN-90014, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, FIN-90014, University of Oulu, Oulu, Finland
| | - Tiina Petäistö
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, FIN-90014, University of Oulu, Oulu, Finland
| | - Tanja Holopainen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FIN-00290, Helsinki, Finland
| | - Vanessa Harjunen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, FIN-90014, University of Oulu, Oulu, Finland; Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FIN-00290, Helsinki, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, FIN-90014, University of Oulu, Oulu, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FIN-00290, Helsinki, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, FIN-90014, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Ueda R, Narumi K, Hashimoto H, Miyakawa R, Okusaka T, Aoki K. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients. Cancer Med 2015; 5:49-60. [PMID: 26589884 PMCID: PMC4708905 DOI: 10.1002/cam4.550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning‐induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil‐derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell‐mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation‐induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.
Collapse
Affiliation(s)
- Ryosuke Ueda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenta Narumi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hisayoshi Hashimoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Reina Miyakawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuji Okusaka
- Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazunori Aoki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
4
|
Suzuki K, Aida K, Miyakawa R, Narumi K, Udagawa T, Yoshida T, Ohshima Y, Aoki K. Preimmunization of donor lymphocytes enhances antitumor immunity of autologous hematopoietic stem cell transplantation. Cancer Med 2014; 2:636-45. [PMID: 24403229 PMCID: PMC3892795 DOI: 10.1002/cam4.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 01/10/2023] Open
Abstract
Lymphopenia-induced homeostatic proliferation (HP) of T cells following autologous hematopoietic stem cell transplantation (HSCT) skews the T-cell repertoire by engaging tumor-associated antigens (TAAs), leading to an induction of antitumor immunity. Here, as the tumor-reactive lymphocytes preferentially proliferate during the condition of HP, we examined whether the priming of a donor lymphocytes to TAAs could enhance HP-induced antitumor immunity in autologous HSCT recipients. First, to examine whether the tumor-bearing condition of donor influences the antitumor effect of HSCT, the lymphocytes isolated from CT26 tumor-bearing mice were infused into lethally irradiated mice. The growth of tumors was substantially suppressed in the mice that received HSCT from a tumor-bearing donor compared with a naïve donor, suggesting that a fraction of donor lymphocytes from tumor-bearing mice are primed in response to TAAs and remain responsive upon transplantation. We previously reported that type I interferon (IFN) maturates the dendritic cells and promotes the priming of T cells. We then investigated whether the further priming of donor cells by IFN-α can strengthen the antitumor effect of HSCT. The intratumoral IFN-α gene transfer significantly increased the number of IFN-γ-positive lymphocytes in response to CT26 cells but not the syngeneic lymphocytes in donor mice. The infusion of primed donor lymphocytes markedly suppressed the tumor growth in recipient mice, and cured 64% of the treated mice. Autologous HSCT with the infusion of primed donor lymphocytes is a promising strategy to induce an effective antitumor immunity for solid cancers.
Collapse
Affiliation(s)
- Koji Suzuki
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Department of Pediatrics, Fukui University School of Medicine, 23-3 Shimoaizuki, Matsuoka, Yoshida-gun, Fukui, 910-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|