1
|
Parween F, Singh SP, Zhang HH, Kathuria N, Otaizo-Carrasquero FA, Shamsaddini A, Gardina PJ, Ganesan S, Kabat J, Lorenzi HA, Myers TG, Farber JM. Chemokine positioning determines mutually exclusive roles for their receptors in extravasation of pathogenic human T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525561. [PMID: 36789428 PMCID: PMC9928044 DOI: 10.1101/2023.01.25.525561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pro-inflammatory T cells co-express multiple chemokine receptors, but the distinct functions of individual receptors on these cells are largely unknown. Human Th17 cells uniformly express the chemokine receptor CCR6, and we discovered that the subgroup of CD4+CCR6+ cells that co-express CCR2 possess a pathogenic Th17 signature, can produce inflammatory cytokines independent of TCR activation, and are unusually efficient at transendothelial migration (TEM). The ligand for CCR6, CCL20, was capable of binding to activated endothelial cells (ECs) and inducing firm arrest of CCR6+CCR2+ cells under conditions of flow - but CCR6 could not mediate TEM. By contrast, CCL2 and other ligands for CCR2, despite being secreted from both luminal and basal sides of ECs, failed to bind to the EC surfaces - and CCR2 could not mediate arrest. Nonetheless, CCR2 was required for TEM. To understand if CCR2's inability to mediate arrest was due solely to an absence of EC-bound ligands, we generated a CCL2-CXCL9 chimeric chemokine that could bind to the EC surface. Although display of CCL2 on the ECs did indeed lead to CCR2-mediated arrest of CCR6+CCR2+ cells, activating CCR2 with surface-bound CCL2 blocked TEM. We conclude that mediating arrest and TEM are mutually exclusive activities of chemokine receptors and/or their ligands that depend, respectively, on chemokines that bind to the EC luminal surfaces versus non-binding chemokines that form transendothelial gradients under conditions of flow. Our findings provide fundamental insights into mechanisms of lymphocyte extravasation and may lead to novel strategies to block or enhance their migration into tissue.
Collapse
Affiliation(s)
- Farhat Parween
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Satya P. Singh
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hongwei H Zhang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Nausheen Kathuria
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Francisco A. Otaizo-Carrasquero
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Paul J. Gardina
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Juraj Kabat
- Research Technologies Branch, Biological Imaging, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Hernan A. Lorenzi
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Timothy G. Myers
- Research Technologies Branch, Genomic Technologies, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Joshua M. Farber
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
2
|
Zhang G, Liu X, Jian A, Zheng K, Wang H, Hao J, Zhi S, Zhang X. CHST4 might promote the malignancy of cholangiocarcinoma. PLoS One 2022; 17:e0265069. [PMID: 35294478 PMCID: PMC8926211 DOI: 10.1371/journal.pone.0265069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is reported as an aggressive cancer which leads to high mortality and no effective therapeutic target has yet been discovered. Surgical resection is the main method to treat patients with CCA. However, only one-third of CCA patients have the opportunity to accept the operation, leading to poor prognosis for CCA patients. Therefore, it is necessary to search for new therapeutic targets of CCA or core genes involved in the happening and growth of CCA. Aim In this study, we utilized bioinformatics technology and accessed to several medical databases trying to find the core genes of CCA for the purpose of intervening CCA through figuring out an effective curative target. Methods Firstly, three differentially expressed genes (DEGs) were discovered from GEPIA, and by further observing the distribution and gene expression, CHST4 was obtained as the core gene. Afterwards, correlated genes of CHST4 in CCA were identified using UALCAN to construct a gene expression profile. We obtained PPI network by Search Tool for the Retrieval of Interacting Networks Genes (STRING) and screened core genes using cytoscape software. Functional enrichment analyses were carried out and the expression of CHST in human tissues and tumors was observed. Finally, a CCA model was established for qPCR and staining validation. Results Three differentially expressed genes (DEGs), CHST4, MBOAT4 and RP11-525K10.3, were obtained. All were more over-expressed in CCA samples than the normal, among which the change multiple and the gene expression difference of CHST4 was the most obvious. Therefore, CHST4 was selected as the core gene. We can see in our established protein–protein interaction (PPI) network that CHST4 had the highest degree of connectivity, demonstrating its close association with CCA. We found that genes were mainly enriched in CCs in the PPI networks genes which shows functional enrichment analysis results, including golgi lumen, extracellular space and extracellular region. CHST4 was found very specifically expressed in the bile duct and was significantly different from that in normal tissues. The overexpression of CHST4 was further verified in the established animal model of TAA-induced CCA in rats. Quantitative PCR (qPCR) demonstrated that CHST4 was significantly overexpressed in tumor tissues, verifying the role of CHST4 as the core gene of CCA. Conclusion CHST4 was increasingly expressed in CCA and CHST4 is worth being studied much further in the intervention of CCA.
Collapse
Affiliation(s)
- Guanran Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xuyue Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Aiwen Jian
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Kexin Zheng
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haiyan Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Sujuan Zhi
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiaoli Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology & Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
3
|
Endothelial Heparan Sulfate Mediates Hepatic Neutrophil Trafficking and Injury during Staphylococcus aureus Sepsis. mBio 2021; 12:e0118121. [PMID: 34544271 PMCID: PMC8546592 DOI: 10.1128/mbio.01181-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic failure is an important risk factor for poor outcome in septic patients. Using a chemical tagging workflow and high-resolution mass spectrometry, we demonstrate that rapid proteome remodeling of the vascular surfaces precedes hepatic damage in a murine model of Staphylococcus aureus sepsis. These early changes include vascular deposition of neutrophil-derived proteins, shedding of vascular receptors, and altered levels of heparin/heparan sulfate-binding factors. Modification of endothelial heparan sulfate, a major component of the vascular glycocalyx, diminishes neutrophil trafficking to the liver and reduces hepatic coagulopathy and organ damage during the systemic inflammatory response to infection. Modifying endothelial heparan sulfate likewise reduces neutrophil trafficking in sterile hepatic injury, reflecting a more general role of heparan sulfate contribution to the modulation of leukocyte behavior during inflammation. IMPORTANCE Vascular glycocalyx remodeling is critical to sepsis pathology, but the glycocalyx components that contribute to this process remain poorly characterized. This article shows that during Staphylococcus aureus sepsis, the liver vascular glycocalyx undergoes dramatic changes in protein composition associated with neutrophilic activity and heparin/heparan sulfate binding, all before organ damage is detectable by standard circulating liver damage markers or histology. Targeted manipulation of endothelial heparan sulfate modulates S. aureus sepsis-induced hepatotoxicity by controlling the magnitude of neutrophilic infiltration into the liver in both nonsterile and sterile injury. These data identify an important vascular glycocalyx component that impacts hepatic failure during nonsterile and sterile injury.
Collapse
|
4
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
5
|
Contribution of Heparan Sulphate Binding in CCL21-Mediated Migration of Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13143462. [PMID: 34298676 PMCID: PMC8306094 DOI: 10.3390/cancers13143462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Breast cancer is a leading cause of cancer-related deaths worldwide, predominantly caused by metastasis. Chemokine receptor CCR7 and its ligand CCL21 are implicated in the metastasis of breast cancer to the lymph nodes. Chemokine function is dependent upon binding to their specific chemokine receptors and negatively charged molecules on the cell surface (heparan sulphate). The role of heparan sulphate in CCR7-mediated lymph node metastasis was investigated by creating a non-heparan sulphate binding mutant chemokine CCL21. Mutant-CCL21 was tested in vitro in a range of assays, including cell migration, calcium flux and surface plasmon resonance spectroscopy. Mutant-CCL21 induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration of breast cancer cells. A murine model was used to assess the potential of mutant-CCL21 to prevent lymph node metastasis in vivo. Lymph node metastasis was significantly reduced by the administration of mutant-CCL21 compared to the control. Targeting chemokine–heparan sulphate interactions may be a promising approach to inhibit chemokine activity and metastasis. Abstract Chemokine receptor CCR7 is implicated in the metastasis of breast cancer to the lymph nodes. Chemokine function is dependent upon their binding to both cell-surface heparan sulphate (HS) and to their specific receptors; thus, the role of HS in CCR7-mediated lymph node metastasis was investigated by creating a non-HS binding chemokine CCL21 (mut-CCL21). Mut-CCL21 (Δ103–134) induced leukocyte chemotaxis in diffusion gradients but did not stimulate trans-endothelial migration of PBMCs (p < 0.001) and 4T1-Luc cells (p < 0.01). Furthermore, the effect of heparin and HS on the chemotactic properties of wild-type (WT) and mut-CCL21 was examined. Interestingly, heparin and HS completely inhibit the chemotaxis mediated by WT-CCL21 at 250 and 500 µg/mL, whereas minimal effect was seen with mut-CCL21. This difference could potentially be attributed to reduced HS binding, as surface plasmon resonance spectroscopy showed that mut-CCL21 did not significantly bind HS compared to WT-CCL21. A murine model was used to assess the potential of mut-CCL21 to prevent lymph node metastasis in vivo. Mice were injected with 4T1-Luc cells in the mammary fat pad and treated daily for a week with 20 µg mut-CCL21. Mice were imaged weekly with IVIS and sacrificed on day 18. Luciferase expression was significantly reduced in lymph nodes from mice that had been treated with mut-CCL21 compared to the control (p = 0.0148), suggesting the potential to target chemokine binding to HS as a therapeutic option.
Collapse
|
6
|
Li W, Xu M, Sun X, Yang S, Tarique I, Shi Y, Yang P, Chen Q. Morphologic Study on Lymphocyte Homing in Duck Tembusu Virus-Infected Duck Spleen. Avian Dis 2021; 64:286-293. [PMID: 33205173 DOI: 10.1637/aviandiseases-d-20-00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/16/2020] [Indexed: 11/05/2022]
Abstract
The present study was designed to analyze the histologic and cytologic changes of lymphocyte homing in noninfected and duck Tembusu virus (DTMUV)-infected duck spleens. At first, we investigated the noninfected structure that facilitates lymphocyte homing. Under light and electron microscopy, results showed that sheath capillaries were located in the white pulp of the spleen, and the endothelial cells of sheath capillaries were cuboidal in shape, which is a typical characteristic of high endothelial venules. To monitor the lymphocyte homing, 5,6-carboxy fluoresceindiacetate succinimidyl ester (CFSE)-labeled lymphocytes that were intravenously injected into noninfected ducks appeared in the periellipsoidal sheaths (PELS), which proved that lymphocytes can return to the spleen through sheath capillaries. Furthermore, proteoglycans (PGs) associated with homing factors were positively observed in sheath capillaries and PELS by colloidal iron staining. This suggests that PGs are associated with lymphocyte homing. The results of the DTMUV infection experiment showed that PELS appeared vacuolized at 3 dpi. The spleen tissue gradually recovered at 5 and 7 dpi. In addition, the lymphocytes increased around sheath capillaries, and the expression of PGs in sheath capillaries increased after virus infection. Meanwhile, the gaps between endothelial cells were enlarged, and the lymphocytes were mainly in the lumen and basement membrane. In conclusion, lymphocytes could recruit into the spleen through sheath capillaries, and PGs participated and promoted the lymphocyte homing, suggesting that the unique high endothelial capillaries favor lymphocyte homing, which promotes tissue repair and antigen clearance in the duck.
Collapse
Affiliation(s)
- Wenqian Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Mengdi Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xuejing Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Sheng Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Imran Tarique
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Quisheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|
7
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Hsu HP, Chen YT, Chen YY, Lin CY, Chen PY, Liao SY, Lim CCY, Yamaguchi Y, Hsu CL, Dzhagalov IL. Heparan sulfate is essential for thymus growth. J Biol Chem 2021; 296:100419. [PMID: 33600795 PMCID: PMC7974028 DOI: 10.1016/j.jbc.2021.100419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Thymus organogenesis and T cell development are coordinated by various soluble and cell-bound molecules. Heparan sulfate (HS) proteoglycans can interact with and immobilize many soluble mediators, creating fields or gradients of secreted ligands. While the role of HS in the development of many organs has been studied extensively, little is known about its function in the thymus. Here, we examined the distribution of HS in the thymus and the effect of its absence on thymus organogenesis and T cell development. We found that HS was expressed most abundantly on the thymic fibroblasts and at lower levels on endothelial, epithelial, and hematopoietic cells. To study the function of HS in the thymus, we eliminated most of HS in this organ by genetically disrupting the glycosyltransferase Ext1 that is essential for its synthesis. The absence of HS greatly reduced the size of the thymus in fetal thymic organ cultures and in vivo, in mice, and decreased the production of T cells. However, no specific blocks in T cell development were observed. Wild-type thymic fibroblasts were able to physically bind the homeostatic chemokines CCL19, CCL21, and CXCL12 ex vivo. However, this binding was abolished upon HS degradation, disrupting the CCL19/CCL21 chemokine gradients and causing impaired migration of dendritic cells in thymic slices. Thus, our results show that HS plays an essential role in the development and growth of the thymus and in regulating interstitial cell migration.
Collapse
Affiliation(s)
- Hsuan-Po Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Tzu Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ying Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yu Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Po-Yu Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shio-Yi Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
9
|
Zhang L, Fan Y, Wang X, Yang M, Wu X, Huang W, Lan J, Liao L, Huang W, Yuan L, Pan H, Wu Y, Chen L, Guan J. Carbohydrate Sulfotransferase 4 Inhibits the Progression of Hepatitis B Virus-Related Hepatocellular Carcinoma and Is a Potential Prognostic Marker in Several Tumors. Front Oncol 2020; 10:554331. [PMID: 33178582 PMCID: PMC7593664 DOI: 10.3389/fonc.2020.554331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate sulfotransferase 4 (CHST4) plays an important role in lymphocyte homing and is abnormally expressed in several cancer types; however, its precise function in tumor development and progression is unknown. Here we confirm that CHST4 is aberrantly expressed in various tumor subtypes. In particular, we found that CHST4 expression was downregulated in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) tumors compared to paired normal tissue. We also showed that CHST4 overexpression inhibited the proliferation and metastasis of HCC cells in vitro. Clinically, CHST4 was identified as an independent prognostic factor for HBV-HCC patients. We further illuminated the anti-tumor role and mechanism of CHST4 in HBV-HCC by constructing a FENDRR–miR-10b-5p–CHST4 competing endogenous RNA network. We found that downregulation of CHST4 expression may promote HBV expression and regulate ribonucleoprotein complex biogenesis to promote malignant behaviors in HBV-HCC. CHST4 may also recruit CD4+ T cells, macrophages, dendritic cells, and neutrophils into the tumor microenvironment to inhibit the progression of HBV-HCC. Overall, our findings suggest that CHST4 acts as a tumor suppressor in HCC-HBV and represents a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Fan
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - XiXi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Lan
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqi Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Nerviani A, Pitzalis C. Role of chemokines in ectopic lymphoid structures formation in autoimmunity and cancer. J Leukoc Biol 2018; 104:333-341. [PMID: 29947426 PMCID: PMC6099300 DOI: 10.1002/jlb.3mr0218-062r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Ectopic (or tertiary) lymphoid structures (ELS) are organized aggregates of lymphocytes resembling secondary lymphoid organs and developing in chronically inflamed nonlymphoid tissues during persistent infections, graft rejection, autoimmune conditions, and cancer. In this review, we will first depict the mechanisms regulating ELS generation, focusing on the role played by lymphoid chemokines. We will then characterize ELS forming in target organs during autoimmune conditions, here exemplified by rheumatoid arthritis, and cancer, highlighting the relevance of the tissue-specific factors. Finally, we will discuss the clinical significance of ELS and the therapeutic potential of their inhibition and/or enhancement depending on the disease considered.
Collapse
Affiliation(s)
- Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Phan AQ, Pacifici M, Esko JD. Advances in the pathogenesis and possible treatments for multiple hereditary exostoses from the 2016 international MHE conference. Connect Tissue Res 2018; 59:85-98. [PMID: 29099240 PMCID: PMC7604901 DOI: 10.1080/03008207.2017.1394295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple hereditary exostoses (MHE) is an autosomal dominant disorder that affects about 1 in 50,000 children worldwide. MHE, also known as hereditary multiple exostoses (HME) or multiple osteochondromas (MO), is characterized by cartilage-capped outgrowths called osteochondromas that develop adjacent to the growth plates of skeletal elements in young patients. These benign tumors can affect growth plate function, leading to skeletal growth retardation, or deformations, and can encroach on nerves, tendons, muscles, and other surrounding tissues and cause motion impairment, chronic pain, and early onset osteoarthritis. In about 2-5% of patients, the osteochondromas can become malignant and life threatening. Current treatments consist of surgical removal of the most symptomatic tumors and correction of the major skeletal defects, but physical difficulties and chronic pain usually continue and patients may undergo multiple surgeries throughout life. Thus, there is an urgent need to find new treatments to prevent or reverse osteochondroma formation. The 2016 International MHE Research Conference was convened to provide a forum for the presentation of the most up-to-date and advanced clinical and basic science data and insights in MHE and related fields; to stimulate the forging of new perspectives, collaborations, and venues of research; and to publicize key scientific findings within the biomedical research community and share insights and relevant information with MHE patients and their families. This report provides a description, review, and assessment of all the exciting and promising studies presented at the Conference and delineates a general roadmap for future MHE research targets and goals.
Collapse
Affiliation(s)
- Anne Q. Phan
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Weinstein AM, Chen L, Brzana EA, Patil PR, Taylor JL, Fabian KL, Wallace CT, Jones SD, Watkins SC, Lu B, Stroncek DF, Denning TL, Fu YX, Cohen PA, Storkus WJ. Tbet and IL-36γ cooperate in therapeutic DC-mediated promotion of ectopic lymphoid organogenesis in the tumor microenvironment. Oncoimmunology 2017; 6:e1322238. [PMID: 28680760 DOI: 10.1080/2162402x.2017.1322238] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022] Open
Abstract
We have previously reported that direct injection of dendritic cells (DC) engineered to express the Type-1 transactivator Tbet (i.e., DC.Tbet) into murine tumors results in antitumor efficacy in association with the development of structures resembling tertiary lymphoid organs (TLO) in the tumor microenvironment (TME). These TLO contained robust infiltrates of B cells, DC, NK cells, and T cells in proximity to PNAd+ blood vessels; however, they were considered incomplete, since the recruited B cells failed to organize into classic germinal center-like structures. We now report that antitumor efficacy and TLO-inducing capacity of DC.Tbet-based i.t. therapy is operational in peripheral lymph node-deficient LTA-/- mice, and that it is highly dependent upon a direct Tbet target gene product, IL-36γ/IL-1F9. Intratumoral DC.Tbet fails to provide protection to tumor-bearing IL-36R-/- hosts, or to tumor-bearing wild-type recipient mice co-administered rmIL-1F5/IL-36RN, a natural IL-36R antagonist. Remarkably, the injection of tumors with DC engineered to secrete a bioactive form of mIL-36γ (DC.IL36γ) also initiated therapeutic TLO and slowed tumor progression in vivo. Furthermore, DC.IL36γ cells strongly upregulated their expression of Tbet, suggesting that Tbet and IL-36γ cooperate to reinforce each other's expression in DC, rendering them competent to promote TLO formation in an "immunologically normalized," therapeutic TME.
Collapse
Affiliation(s)
- Aliyah M Weinstein
- Department of Immunology, University of Pittsburgh School of Medicine (UPSOM), Pittsburgh, PA, USA
| | - Lu Chen
- Department of Immunology, University of Pittsburgh School of Medicine (UPSOM), Pittsburgh, PA, USA
| | | | | | | | - Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine (UPSOM), Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Physiology, UPSOM, Pittsburgh, PA, USA
| | | | - Simon C Watkins
- Department of Cell Biology and Physiology, UPSOM, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine (UPSOM), Pittsburgh, PA, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, PA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection at Georgia State University, Atlanta, GA, USA
| | - Yang-Xin Fu
- Departments of Pathology and Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Peter A Cohen
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine (UPSOM), Pittsburgh, PA, USA.,Department of Dermatology, UPSOM, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, UPSOM, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Weinstein AM, Storkus WJ. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO. Front Immunol 2016; 7:301. [PMID: 27555845 PMCID: PMC4977569 DOI: 10.3389/fimmu.2016.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer.
Collapse
Affiliation(s)
- Aliyah M Weinstein
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
16
|
Harris N, Koppel J, Zsila F, Juhas S, Il’kova G, Kogan FY, Lahmy O, Wildbaum G, Karin N, Zhuk R, Gregor P. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflamm Res 2016; 65:285-94. [DOI: 10.1007/s00011-016-0915-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
|
17
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
18
|
Examining Roles of Glycans in Chemokine-Mediated Dendritic-Endothelial Cell Interactions. Methods Enzymol 2015. [PMID: 26921954 DOI: 10.1016/bs.mie.2015.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Interactions between glycosaminoglycans (GAGs) and chemokines play a critical role in multiple physiological and pathological processes, including tumor metastasis and immune-cell trafficking. During our studies examining the genetic importance of the GAG subtype known as heparan sulfate (HS) on lymphatic endothelial cells (LECs), we established a repertoire of methods to assess how HS affects chemokine-mediated cell-cell interactions. In this chapter, we describe methods for monitoring migration and adhesion interactions of dendritic cells (DCs), the most potent antigen-presenting cells, with LECs. We will also report a methodology to assess chemokine-receptor interactions while incorporating approaches to target HS in the system. This includes in situ methods to visualize and quantify direct interactions between chemokines and chemokine receptors on DC surfaces, and how targeting HS produced by LECs or even DCs affects these interactions. These methods enable the mechanistic and functional characterization of GAG-chemokine interactions in cell-based studies that model physiologic interactions ex vivo. They may also be used to obtain novel insights into GAG-mediated biological processes.
Collapse
|
19
|
Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics. Transplantation 2015; 99:668-77. [PMID: 25606800 DOI: 10.1097/tp.0000000000000561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. METHODS CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. RESULTS Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. CONCLUSIONS Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.
Collapse
|
20
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
21
|
Stoler-Barak L, Moussion C, Shezen E, Hatzav M, Sixt M, Alon R. Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects. PLoS One 2014; 9:e85699. [PMID: 24465652 PMCID: PMC3899079 DOI: 10.1371/journal.pone.0085699] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients.
Collapse
Affiliation(s)
- Liat Stoler-Barak
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | | | - Elias Shezen
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Miki Hatzav
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
| | - Michael Sixt
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Ronen Alon
- Department of Immunology, the Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
22
|
Kawashima H. Analysis of L-selectin-mediated cellular interactions under flow conditions. Methods Mol Biol 2014; 1200:401-12. [PMID: 25117254 DOI: 10.1007/978-1-4939-1292-6_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lymphocyte homing is mediated by a specific interaction between L-selectin expressed on lymphocytes and its ligands expressed on high endothelial venules (HEVs) in lymph nodes under physiological flow conditions. In this chapter, two methods for detecting L-selectin-mediated cellular interactions under shear stress mimicking physiological flow conditions are described. First, a modified Stamper-Woodruff cell-binding assay using leukocytes labeled with a fluorescent orange dye, CMTMR, is introduced. In this method, leukocytes are allowed to bind to frozen lymph node sections under shear stress and their binding to HEVs can be clearly visualized by fluorescence microscopy. Second, a parallel flow chamber assay is described. In this assay, leukocytes are allowed to roll on L-selectin ligand-expressing cells under various levels of shear stress and their adhesive interactions are recorded by a video camera equipped with an inverted microscope. These methods can be applied to determine the effects of various agents that might affect L-selectin-mediated lymphocyte homing and recruitment.
Collapse
Affiliation(s)
- Hiroto Kawashima
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan,
| |
Collapse
|
23
|
Simon Davis DA, Parish CR. Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 2013; 4:470. [PMID: 24391644 PMCID: PMC3866581 DOI: 10.3389/fimmu.2013.00470] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022] Open
Abstract
Heparan sulfate (HS) is a highly acidic linear polysaccharide with a very variable structure. It is ubiquitously expressed on cell surfaces and in the extracellular matrix and basement membrane of mammalian tissues. Synthesized attached to various core proteins to form HS-proteoglycans, HS is capable of interacting with various polypeptides and exerting diverse functions. In fact, a bioinformatics analysis of mammalian proteins that express a heparin/HS-binding motif and are associated with the immune system identified 235 candidate proteins, the majority having an intracellular location. This simple analysis suggests that HS may, in fact, interact with many more components of the immune system than previously realized. Numerous studies have also directly demonstrated that HS plays multiple prominent functional roles in the immune system that are briefly reviewed in this article. In particular, the molecule has been shown to regulate leukocyte development, leukocyte migration, immune activation, and inflammatory processes.
Collapse
Affiliation(s)
- David Anak Simon Davis
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| |
Collapse
|
24
|
Magkrioti C, Aidinis V. Autotaxin and lysophosphatidic acid signalling in lung pathophysiology. World J Respirol 2013; 3:77-103. [DOI: 10.5320/wjr.v3.i3.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX or ENPP2) is a secreted glycoprotein widely present in biological fluids. ATX primarily functions as a plasma lysophospholipase D and is largely responsible for the bulk of lysophosphatidic acid (LPA) production in the plasma and at inflamed and/or malignant sites. LPA is a phospholipid mediator produced in various conditions both in cells and in biological fluids, and it evokes growth-factor-like responses, including cell growth, survival, differentiation and motility, in almost all cell types. The large variety of LPA effector functions is attributed to at least six G-protein coupled LPA receptors (LPARs) with overlapping specificities and widespread distribution. Increased ATX/LPA/LPAR levels have been detected in a large variety of cancers and transformed cell lines, as well as in non-malignant inflamed tissues, suggesting a possible involvement of ATX in chronic inflammatory disorders and cancer. In this review, we focus exclusively on the role of the ATX/LPA axis in pulmonary pathophysiology, analysing the effects of ATX/LPA on pulmonary cells and leukocytes in vitro and in the context of pulmonary pathophysiological situations in vivo and in human diseases.
Collapse
|