1
|
Poulaki A, Piperaki ET, Voulgarelis M. Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective. Microorganisms 2021; 9:microorganisms9040759. [PMID: 33916346 PMCID: PMC8066032 DOI: 10.3390/microorganisms9040759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/29/2023] Open
Abstract
The leishmaniases constitute a group of parasitic diseases caused by species of the protozoan genus Leishmania. In humans it can present different clinical manifestations and are usually classified as cutaneous, mucocutaneous, and visceral (VL). Although the full range of parasite—host interactions remains unclear, recent advances are improving our comprehension of VL pathophysiology. In this review we explore the differences in VL immunobiology between the liver and the spleen, leading to contrasting infection outcomes in the two organs, specifically clearance of the parasite in the liver and failure of the spleen to contain the infection. Based on parasite biology and the mammalian immune response, we describe how hypoxia-inducible factor 1 (HIF1) and the PI3K/Akt pathway function as major determinants of the observed immune failure. We also summarize existing knowledge on pancytopenia in VL, as a direct effect of the parasite on bone marrow health and regenerative capacity. Finally, we speculate on the possible effect that manipulation by the parasite of the PI3K/Akt/HIF1 axis may have on the myelodysplastic (MDS) features observed in VL.
Collapse
Affiliation(s)
- Aikaterini Poulaki
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Evangelia-Theophano Piperaki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| |
Collapse
|
2
|
Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Rep 2021; 30:2512-2525.e9. [PMID: 32101732 PMCID: PMC7981274 DOI: 10.1016/j.celrep.2020.01.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFNs) play critical roles in anti-viral and anti-tumor immunity. However, they also suppress protective immune responses in some infectious diseases. Here, we identify type I IFNs as major upstream regulators of CD4+ T cells from visceral leishmaniasis (VL) patients. Furthermore, we report that mice deficient in type I IFN signaling have significantly improved control of Leishmania donovani, a causative agent of human VL, associated with enhanced IFNγ but reduced IL-10 production by parasite-specific CD4+ T cells. Importantly, we identify a small-molecule inhibitor that can be used to block type I IFN signaling during established infection and acts synergistically with conventional anti-parasitic drugs to improve parasite clearance and enhance anti-parasitic CD4+ T cell responses in mice and humans. Thus, manipulation of type I IFN signaling is a promising strategy for improving disease outcome in VL patients.
Collapse
|
3
|
Montes de Oca M, de Labastida Rivera F, Winterford C, Frame TCM, Ng SS, Amante FH, Edwards CL, Bukali L, Wang Y, Uzonna JE, Kuns RD, Zhang P, Kabat A, Klein Geltink RI, Pearce EJ, Hill GR, Engwerda CR. IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathog 2020; 16:e1008994. [PMID: 33049000 PMCID: PMC7584222 DOI: 10.1371/journal.ppat.1008994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammation is critical for controlling pathogens, but also responsible for symptoms of infectious diseases. IL-27 is an important regulator of inflammation and can limit development of IFNγ-producing Tbet+ CD4+ T (Th1) cells. IL-27 is thought to do this by stimulating IL-10 production by CD4+ T cells, but the underlying mechanisms of these immunoregulatory pathways are not clear. Here we studied the role of IL-27 signalling in experimental visceral leishmaniasis (VL) caused by infection of C57BL/6 mice with the human pathogen Leishmania donovani. We found IL-27 signalling was critical for the development of IL-10-producing Th1 (Tr1) cells during infection. Furthermore, in the absence of IL-27 signalling, there was improved control of parasite growth, but accelerated splenic pathology characterised by the loss of marginal zone macrophages. Critically, we discovered that IL-27 signalling limited glycolysis in Th1 cells during infection that in turn attenuated inflammation. Furthermore, the modulation of glycolysis in the absence of IL-27 signalling restricted tissue pathology without compromising anti-parasitic immunity. Together, these findings identify a novel mechanism by which IL-27 mediates immune regulation during disease by regulating cellular metabolism. Infectious diseases like visceral leishmaniasis caused by the protozoan parasites Leishmania donovani and L. infantum are associated with an inflammatory response generated by the host. This is needed to control parasite growth, but also contributes to the symptoms of disease. Consequently, these inflammatory responses need to be tightly regulated. Although we now recognize many of the cells and molecules involved in controlling inflammation, the underlying mechanisms mediating immune regulation are unclear. CD4+ T cells are critical drivers of inflammatory responses during infections and as they progress from a naïve to activated state, the metabolic pathways they use have to change to meet the new energy demands required to proliferate and produce effector molecules. In this study, we discovered that the inflammatory CD4+ T cells needed to control L. donovani infection switch from relying on mitochondrial oxidative pathways to glycolysis. Critically, we found the cytokine IL-27 limited glycolysis in these inflammatory CD4+ T cells, and in the absence of IL-27 signaling pathways, these cells expanded more rapidly to better control parasite growth, but also caused increased tissue damage in the spleen. However, pharmacological dampening of glycolysis in inflammatory CD4+ T cells in L. donovani-infected mice lacking IL-27 signaling pathways limited tissue damage without affecting their improved anti-parasitic activity. Together, these results demonstrate that the pathogenic activity of inflammatory CD4+ T cells can be modulated by altering their cellular metabolism.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fabian de Labastida Rivera
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Clay Winterford
- QIMR Berghofer Histology Facility, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Teija C. M. Frame
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chelsea L. Edwards
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Luzia Bukali
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yulin Wang
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jude E. Uzonna
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel D. Kuns
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ping Zhang
- Bone Marrow Transplantation Laboratory, Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Agnieszka Kabat
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Edward J. Pearce
- Max Plank Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Washington, United States of America
| | - Christian R. Engwerda
- Immunology and Infection Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
4
|
Lewis MD, Paun A, Romano A, Langston H, Langner CA, Moore IN, Bock KW, Francisco AF, Brenchley JM, Sacks DL. Fatal progression of experimental visceral leishmaniasis is associated with intestinal parasitism and secondary infection by commensal bacteria, and is delayed by antibiotic prophylaxis. PLoS Pathog 2020; 16:e1008456. [PMID: 32282850 PMCID: PMC7179947 DOI: 10.1371/journal.ppat.1008456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Leishmania donovani causes visceral leishmaniasis (VL), which is typically fatal without treatment. There is substantial variation between individuals in rates of disease progression, response to treatment and incidence of post-treatment sequelae, specifically post-kala-azar dermal leishmaniasis (PKDL). Nevertheless, the majority of infected people are asymptomatic carriers. Hamsters and mice are commonly used as models of fatal and non-fatal VL, respectively. Host and parasite genetics are likely to be important factors, but in general the reasons for heterogeneous disease presentation in humans and animal models are poorly understood. Host microbiota has become established as a factor in cutaneous forms of leishmaniasis but this has not been studied in VL. We induced intestinal dysbiosis in mice and hamsters by long-term treatment with broad-spectrum antibiotics in their drinking water. There were no significant differences in disease presentation in dysbiotic mice. In contrast, dysbiotic hamsters infected with L. donovani had delayed onset and progression of weight loss. Half of control hamsters had a rapid progression phenotype compared with none of the ABX-treated animals and the nine-month survival rate was significantly improved compared to untreated controls (40% vs. 10%). Antibiotic-treated hamsters also had significantly less severe hepatosplenomegaly, which was accompanied by a distinct cytokine gene expression profile. The protective effect was not explained by differences in parasite loads or haematological profiles. We further found evidence that the gut-liver axis is a key aspect of fatal VL progression in hamsters, including intestinal parasitism, bacterial translocation to the liver, malakoplakia and iron sequestration, none of which occurred in non-progressing murine VL. Diverse bacterial genera were cultured from VL affected livers, of which Rodentibacter was specifically absent from ABX-treated hamsters, indicating this pathobiont may play a role in promoting disease progression. The results provide experimental support for antibiotic prophylaxis against secondary bacterial infections as an adjunct therapy in human VL patients.
Collapse
Affiliation(s)
- Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Harry Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Charlotte A. Langner
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Kevin W. Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Scariot DB, Volpato H, Fernandes NS, Lazarin-Bidóia D, Borges O, Sousa MDC, Rosa FA, Jacomini AP, Silva SO, Ueda-Nakamura T, Rubira AF, Nakamura CV. Oral treatment with T6-loaded yeast cell wall particles reduces the parasitemia in murine visceral leishmaniasis model. Sci Rep 2019; 9:20080. [PMID: 31882925 PMCID: PMC6934808 DOI: 10.1038/s41598-019-56647-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023] Open
Abstract
Yeast cell wall particles isolated from Saccharomyces cerevisiae (scYCWPs) have a rich constitution of β-glucan derived from the cell wall. After removing intracellular contents, β-glucan molecules are readily recognized by dectin-1 receptors, present on the cytoplasmic membrane surface of the mononuclear phagocytic cells and internalized. Leishmania spp. are obligate intracellular parasites; macrophages are its primary host cells. An experimental murine model of visceral leishmaniasis caused by L. infantum was used to evaluate the antileishmanial activity of oral administration of these particles. A low-water soluble thiophene previously studied in vitro against L. infantum was entrapped into scYCWPs to direct it into the host cell, in order to circumvent the typical pharmacokinetic problems of water-insoluble compounds. We found that scYCWPs + T6 reduced the parasitic burden in the liver and spleen. There was an increase in IFN-γ levels related to nitric oxide production, explaining the reduction of the L. infantum burden in the tissue. Histological analysis did not show signals of tissue inflammation and biochemical analysis from plasma did not indicate signals of cytotoxicity after scYCWPs + T6 treatment. These findings suggested that scYCWPs + T6 administered through oral route reduced the parasitic burden without causing toxic effects, satisfying requirements for development of new strategies to treat leishmaniasis.
Collapse
Affiliation(s)
- Débora B Scariot
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Hélito Volpato
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Nilma S Fernandes
- Cellular Biology Graduate Program, State University of Maringá, Maringa, 87020-900, Brazil
| | - Danielle Lazarin-Bidóia
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Fernanda A Rosa
- Chemistry Department, State University of Maringá, Maringa, 87020-900, Brazil
| | - Andrey P Jacomini
- Chemistry Department, State University of Maringá, Maringa, 87020-900, Brazil
| | - Sueli O Silva
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Tânia Ueda-Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil
| | - Adley F Rubira
- Chemistry Department, State University of Maringá, Maringa, 87020-900, Brazil
| | - Celso V Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, State University of Maringá, Maringa, 87020-900, Brazil.
| |
Collapse
|
6
|
McFarlane E, Mokgethi T, Kaye PM, Hurdayal R, Brombacher F, Alexander J, Carter KC. IL-4 Mediated Resistance of BALB/c Mice to Visceral Leishmaniasis Is Independent of IL-4Rα Signaling via T Cells. Front Immunol 2019; 10:1957. [PMID: 31475014 PMCID: PMC6707061 DOI: 10.3389/fimmu.2019.01957] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
Previous studies infecting global IL-4Rα−/−, IL-4−/−, and IL-13−/−mice on a BALB/c background with the visceralizing parasite Leishmania donovani have shown that the T helper 2 cytokines, IL-4, and IL-13, play influential but not completely overlapping roles in controlling primary infection. Subsequently, using macrophage/neutrophil-specific IL-4Rα deficient BALB/c mice, we demonstrated that macrophage/neutrophil unresponsiveness to IL-4 and IL-13 did not have a detrimental effect during L. donovani infection. Here we expand on these findings and show that CD4+ T cell-(Lckcre), as well as pan T cell-(iLckcre) specific IL-4Rα deficient mice, on a BALB/c background, unlike global IL-4Rα deficient mice, are also not adversely affected in terms of resistance to primary infection with L. donovani. Our analysis suggested only a transient and tissue specific impact on disease course due to lack of IL-4Rα on T cells, limited to a reduced hepatic parasite burden at day 30 post-infection. Consequently, the protective role(s) demonstrated for IL-4 and IL-13 during L. donovani infection are mediated by IL-4Rα-responsive cell(s) other than macrophages, neutrophils and T cells.
Collapse
Affiliation(s)
- Emma McFarlane
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Thabang Mokgethi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul M Kaye
- Department of Biology, Centre for Immunology and Infection, Hull York Medical School, University of York, York, United Kingdom
| | - Ramona Hurdayal
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Katharine C Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
7
|
Chauhan SB, Faleiro R, Kumar R, Ng S, Singh B, Singh OP, Singh SS, Amante F, Rivera FDL, Rai M, Chakravarty J, Sacks D, Nylen S, Sundar S, Engwerda C. Interleukin 2 is an Upstream Regulator of CD4+ T Cells From Visceral Leishmaniasis Patients With Therapeutic Potential. J Infect Dis 2019; 220:163-173. [PMID: 30796820 PMCID: PMC6775044 DOI: 10.1093/infdis/jiz074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Control of visceral leishmaniasis (VL) caused by Leishmania donovani requires interferon-γ production by CD4+ T cells. In VL patients, antiparasitic CD4+ T-cell responses are ineffective for unknown reasons. In this study, we measured the expression of genes associated with various immune functions in these cells from VL patients and compared them to CD4+ T cells from the same patients after drug treatment and from endemic controls. We found reduced GATA3, RORC, and FOXP3 gene expression in CD4+ T cells of VL patients, associated with reduced Th2, Th17, and FOXP3+CD4+ T regulatory cell frequencies in VL patient blood. Interleukin 2 (IL-2) was an important upstream regulator of CD4+ T cells from VL patients, and functional studies demonstrated the therapeutic potential of IL-2 for improving antiparasitic immunity. Together, these results provide new insights into the characteristics of CD4+ T cells from VL patients that can be used to improve antiparasitic immune responses.
Collapse
Affiliation(s)
- Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | - Rebecca Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Rajiv Kumar
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Susanna Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | - Om Prakash Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | - Fiona Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | - Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susanne Nylen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Praadesh, India
| | | |
Collapse
|
8
|
Edwards CL, de Oca MM, de Labastida Rivera F, Kumar R, Ng SS, Wang Y, Amante FH, Kometani K, Kurosaki T, Sidwell T, Kallies A, Engwerda CR. The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS. Front Immunol 2018; 9:2578. [PMID: 30459773 PMCID: PMC6232374 DOI: 10.3389/fimmu.2018.02578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022] Open
Abstract
BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2 (BACH2) is a transcription factor best known for its role in B cell development. More recently, it has been associated with T cell functions in inflammatory diseases, and has been proposed as a master transcriptional regulator within the T cell compartment. In this study, we employed T cell-specific Bach2-deficient (B6.Bach2ΔT) mice to examine the role of this transcription factor in CD4+ T cell functions in vitro and in mice infected with Plasmodium chabaudi AS. We found that under CD4+ T cell polarizing conditions in vitro, Th2, and Th17 helper cell subsets were more active in the absence of Bach2 expression. In mice infected with P. chabaudi AS, although the absence of Bach2 expression by T cells had no effect on blood parasitemia or disease pathology, we found reduced expansion of CD4+ T cells in B6.Bach2ΔT mice, compared with littermate controls. Despite this reduction, we observed increased frequencies of Tbet+ IFNγ+ CD4+ (Th1) cells and IL-10-producing Th1 (Tr1) cells in mice lacking Bach2 expression by T cells. Studies in mixed bone marrow chimeric mice revealed T cell intrinsic effects of BACH2 on hematopoietic cell development, and in particular, the generation of CD4+ and CD8+ T cell subsets. Furthermore, T cell intrinsic BACH2 was needed for efficient expansion of CD4+ T cells during experimental malaria in this immunological setting. We also examined the response of B6.Bach2ΔT mice to a second protozoan parasitic challenge with Leishmania donovani and found similar effects on disease outcome and T cell responses. Together, our findings provide new insights into the role of BACH2 in CD4+ T cell activation during experimental malaria, and highlight an important role for this transcription factor in the development and expansion of T cells under homeostatic conditions, as well as establishing the composition of the effector CD4+ T cell compartment during infection.
Collapse
Affiliation(s)
- Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Rajiv Kumar
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tom Sidwell
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute of Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | | |
Collapse
|
9
|
Bunn PT, Montes de Oca M, de Labastida Rivera F, Kumar R, Ng SS, Edwards CL, Faleiro RJ, Sheel M, Amante FH, Frame TCM, Muller W, Haque A, Uzonna JE, Hill GR, Engwerda CR. Distinct Roles for CD4+ Foxp3+ Regulatory T Cells and IL-10–Mediated Immunoregulatory Mechanisms during Experimental Visceral Leishmaniasis Caused by Leishmania donovani. THE JOURNAL OF IMMUNOLOGY 2018; 201:3362-3372. [DOI: 10.4049/jimmunol.1701582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
|
10
|
Bunn PT, Montes de Oca M, Rivera FDL, Kumar R, Edwards CL, Faleiro RJ, Ng SS, Sheel M, Wang Y, Amante FH, Haque A, Engwerda CR. Galectin-1 Impairs the Generation of Anti-Parasitic Th1 Cell Responses in the Liver during Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:1307. [PMID: 29075269 PMCID: PMC5643427 DOI: 10.3389/fimmu.2017.01307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
Many infectious diseases are characterized by the development of immunoregulatory pathways that contribute to pathogen persistence and associated disease symptoms. In diseases caused by intracellular parasites, such as visceral leishmaniasis (VL), various immune modulators have the capacity to negatively impact protective CD4+ T cell functions. Galectin-1 is widely expressed on immune cells and has previously been shown to suppress inflammatory responses and promote the development of CD4+ T cells with immunoregulatory characteristics. Here, we investigated the role of galectin-1 in experimental VL caused by infection of C57BL/6 mice with Leishmania donovani. Mice lacking galectin-1 expression exhibited enhanced tissue-specific control of parasite growth in the liver, associated with an augmented Th1 cell response. However, unlike reports in other experimental models, we found little role for galectin-1 in the generation of IL-10-producing Th1 (Tr1) cells, and instead report that galectin-1 suppressed hepatic Th1 cell development. Furthermore, we found relatively early effects of galectin-1 deficiency on parasite growth, suggesting involvement of innate immune cells. However, experiments investigating the impact of galectin-1 deficiency on dendritic cells indicated that they were not responsible for the phenotypes observed in galectin-1-deficient mice. Instead, studies examining galectin-1 expression by CD4+ T cells supported a T cell intrinsic role for galectin-1 in the suppression of hepatic Th1 cell development during experimental VL. Together, our findings provide new information on the roles of galectin-1 during parasitic infection and indicate an important role for this molecule in tissue-specific Th1 cell development, but not CD4+ T cell IL-10 production.
Collapse
Affiliation(s)
- Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Institute of Glycomics, Griffith University, Gold Coast, QLD, Australia
| | | | | | - Rajiv Kumar
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Natural Sciences, Griffith University, Nathan, QLD, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | |
Collapse
|
11
|
Yu J, Chen Y, Wu Y, Ye L, Lian Z, Wei H, Sun R, Tian Z. The differential organogenesis and functionality of two liver-draining lymph nodes in mice. J Autoimmun 2017; 84:109-121. [PMID: 28886898 DOI: 10.1016/j.jaut.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
The liver is an immunological organ. However, fundamental knowledge concerning liver-draining lymph nodes (LNs), which have been newly identified in mice as the portal and celiac LNs, is still lacking. Here, we revealed that the portal LN and celiac LN drain liver lymph through different lymphatic vessels. Although both the portal LN and celiac LN possess typical structures, they have different cell compositions. Interestingly, these two LNs form at different times during fetal development. Moreover, the organogenesis of the celiac LN, but not the portal LN, is controlled by the transcription factor NFIL3. Furthermore, the portal LN and celiac LN also perform different functions. The celiac LN is the predominant site of liver antiviral immune responses, whereas the portal LN functions in the in situ induction of dietary antigen-specific regulatory T cells. In conclusion, the portal LN and celiac LN are two independent liver-draining LNs with different organogenesis histories and separate functions in maintaining immune homeostasis in the liver.
Collapse
Affiliation(s)
- Jiali Yu
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
12
|
Fox-Lewis A, Lockwood DNJ. Visceral leishmaniasis complicating idiopathic CD4+ T-cell lymphocytopenia: 2 case reports. PLoS Negl Trop Dis 2017; 11:e0005412. [PMID: 28493863 PMCID: PMC5426586 DOI: 10.1371/journal.pntd.0005412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Andrew Fox-Lewis
- Hospital for Tropical Diseases, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
- * E-mail:
| | - Diana N. J. Lockwood
- Hospital for Tropical Diseases, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
13
|
Gannavaram S, Bhattacharya P, Ismail N, Kaul A, Singh R, Nakhasi HL. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules. Front Immunol 2016; 7:187. [PMID: 27242794 PMCID: PMC4865500 DOI: 10.3389/fimmu.2016.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022] Open
Abstract
No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the polarization of antigen-presenting cells and subsequent role of costimulatory and coinhibitory molecules in mediating vaccine-induced immunity using live-attenuated Leishmania parasites as specific examples.
Collapse
Affiliation(s)
- Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Amit Kaul
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| | - Rakesh Singh
- Department of Biochemistry, Banaras Hindu University , Varanasi , India
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Food and Drug Administration , Silver Spring, MD , USA
| |
Collapse
|
14
|
Kauffmann F, Dumetz F, Hendrickx S, Muraille E, Dujardin JC, Maes L, Magez S, De Trez C. In vivocharacterization of two additionalLeishmania donovanistrains using the murine and hamster model. Parasite Immunol 2016; 38:290-302. [DOI: 10.1111/pim.12316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/19/2016] [Indexed: 11/29/2022]
Affiliation(s)
- F. Kauffmann
- Laboratory of Cellular and Molecular Immunology (CMIM); Vrije Universiteit Brussel (VUB); Brussels Belgium
- Department of Structural Biology Research Center; Vlaams Instituut voor Biotechnologie (VIB); Brussels Belgium
| | - F. Dumetz
- Molecular Parasitology Unit; Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerpen Belgium
| | - S. Hendrickx
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); University of Antwerp; Antwerpen Belgium
| | - E. Muraille
- Laboratory of Parasitology; Université Libre de Bruxelles; Brussels Belgium
| | - J.-C. Dujardin
- Molecular Parasitology Unit; Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerpen Belgium
| | - L. Maes
- Laboratory of Parasitology; Université Libre de Bruxelles; Brussels Belgium
| | - S. Magez
- Laboratory of Cellular and Molecular Immunology (CMIM); Vrije Universiteit Brussel (VUB); Brussels Belgium
- Department of Structural Biology Research Center; Vlaams Instituut voor Biotechnologie (VIB); Brussels Belgium
| | - C. De Trez
- Laboratory of Cellular and Molecular Immunology (CMIM); Vrije Universiteit Brussel (VUB); Brussels Belgium
- Department of Structural Biology Research Center; Vlaams Instituut voor Biotechnologie (VIB); Brussels Belgium
| |
Collapse
|
15
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
16
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Silvestre R, Estaquier J. Regulation of immunity during visceral Leishmania infection. Parasit Vectors 2016; 9:118. [PMID: 26932389 PMCID: PMC4774109 DOI: 10.1186/s13071-016-1412-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/24/2022] Open
Abstract
Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.
Collapse
Affiliation(s)
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | | | - Ricardo Silvestre
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Jérôme Estaquier
- CNRS FR3636, Université Paris-Descartes, Paris, France. .,Centre de Recherche en Infectiologie, Université Laval, Québec, Canada.
| |
Collapse
|
17
|
Faleiro RJ, Kumar R, Bunn PT, Singh N, Chauhan SB, Sheel M, Amante FH, Montes de Oca M, Edwards CL, Ng SS, Best SE, Haque A, Beattie L, Hafner LM, Sacks D, Nylen S, Sundar S, Engwerda CR. Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0004415. [PMID: 26872334 PMCID: PMC4752322 DOI: 10.1371/journal.pntd.0004415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/09/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR) on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL) patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of combining different immune modulation strategies.
Collapse
Affiliation(s)
- Rebecca J. Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Netaji Subhas Institute of Technology, New Delhi, India
- Banaras Hindu University Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
- * E-mail: (RK); (CRE)
| | - Patrick T. Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, Institute of Glycomics, Gold Coast, Australia
| | - Neetu Singh
- Banaras Hindu University Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | | | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona H. Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Shannon E. Best
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise M. Hafner
- Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Australia
| | - David Sacks
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Shyam Sundar
- Banaras Hindu University Institute of Medical Sciences, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
18
|
Kaye PM, Beattie L. Lessons from other diseases: granulomatous inflammation in leishmaniasis. Semin Immunopathol 2015; 38:249-60. [PMID: 26678994 PMCID: PMC4779128 DOI: 10.1007/s00281-015-0548-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022]
Abstract
The Leishmania granuloma shares some, though not all, properties with that formed following mycobacterial infection. As a simplified, noncaseating granuloma composed of relatively few and largely mononuclear cell populations, it provides a tractable model system to investigate intra-granuloma cellular dynamics, immune regulation, and antimicrobial resistance. Here, the occurrence of granulomatous pathology across the spectrum of leishmaniasis, in humans and animal reservoir hosts, is first described. However, this review focuses on the process of hepatic granuloma formation as studied in rodent models of visceral leishmaniasis, starting from the initial infection of Kupffer cells to the involution of the granuloma after pathogen clearance. It describes how the application of intravital imaging and the use of computational modeling have changed some of our thoughts on granuloma function, and illustrates how host-directed therapies have been used to manipulate granuloma form and function for therapeutic benefit. Where appropriate, lessons that may be equally applicable across the spectrum of granulomatous diseases are highlighted.
Collapse
Affiliation(s)
- Paul M Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK.
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland, Australia, 4006
| |
Collapse
|
19
|
Freitas EO, Nico D, Alves-Silva MV, Morrot A, Clinch K, Evans GB, Tyler PC, Schramm VL, Palatnik-de-Sousa CB. Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0004297. [PMID: 26701750 PMCID: PMC4689457 DOI: 10.1371/journal.pntd.0004297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/20/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Immucillins ImmA (IA), ImmH (IH) and SerMe-ImmH (SMIH) are synthetic deazapurine nucleoside analogues that inhibit Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis multiplication in vitro without macrophage toxicity. Immucillins are compared to the Glucantime standard drug in the chemotherapy of Leishmania (L.) infantum chagasi infection in mice and hamsters. These agents are tested for toxicity and immune system response. METHODOLOGY/PRINCIPAL FINDINGS BALB/c mice were infected with 107 amastigotes, treated with IA, IH, SMIH or Glucantime (2.5mg/kg/day) and monitored for clinical variables, parasite load, antibody levels and splenocyte IFN-γ, TNF-α, and IL-10 expression. Cytokines and CD4+, CD8+ and CD19+ lymphocyte frequencies were assessed in uninfected controls and in response to immucillins. Urea, creatinine, GOT and GPT levels were monitored in sera. Anti-Leishmania-specific IgG1 antibodies (anti-NH36) increased in untreated animals. IgG2a response, high levels of IFN-γ, TNF-α and lower levels of IL-10 were detected in mice treated with the immucillins and Glucantime. Immucillins permitted normal weight gain, prevented hepato-splenomegaly and cleared the parasite infection (85-89%) without renal and hepatic toxicity. Immucillins promoted 35% lower secretion of IFN-γ in uninfected controls than in infected mice. IA and IH increased the CD4+ T and CD19+ B cell frequencies. SMIH increased only the proportion of CD-19 B cells. IA and IH also cured infected hamsters with lower toxicity than Glucantime. CONCLUSIONS/SIGNIFICANCE Immucillins IA, IH and SMIH were effective in treating leishmaniasis in mice. In hamsters, IA and IH were also effective. The highest therapeutic efficacy was obtained with IA, possibly due to its induction of a TH1 immune response. Low immucillin doses were required and showed no toxicity. Our results disclose the potential use of IA and IH in the therapy of visceral leishmaniasis.
Collapse
Affiliation(s)
- Elisangela Oliveira Freitas
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Dirlei Nico
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Vinícius Alves-Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Keith Clinch
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gary B. Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, New York, New York, United States
| | - Clarisa B. Palatnik-de-Sousa
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Sheel M, Beattie L, Frame TCM, de Labastida Rivera F, Faleiro RJ, Bunn PT, Montes de Oca M, Edwards CL, Ng SS, Kumar R, Amante FH, Best SE, McColl SR, Varelias A, Kuns RD, MacDonald KPA, Smyth MJ, Haque A, Hill GR, Engwerda CR. IL-17A-Producing γδ T Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. THE JOURNAL OF IMMUNOLOGY 2015; 195:5707-17. [PMID: 26538396 DOI: 10.4049/jimmunol.1501046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.
Collapse
Affiliation(s)
- Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Queensland 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Netaji Subhas Institute of Technology, New Delhi 110078, India; and
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shaun R McColl
- Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Geoff R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia;
| |
Collapse
|
21
|
Romano A, Doria NA, Mendez J, Sacks DL, Peters NC. Cutaneous Infection with Leishmania major Mediates Heterologous Protection against Visceral Infection with Leishmania infantum. THE JOURNAL OF IMMUNOLOGY 2015; 195:3816-27. [PMID: 26371247 DOI: 10.4049/jimmunol.1500752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
Abstract
Visceral leishmaniasis (VL) is a fatal disease of the internal organs caused by the eukaryotic parasite Leishmania. Control of VL would best be achieved through vaccination. However, this has proven to be difficult partly because the correlates of protective immunity are not fully understood. In contrast, protective immunity against nonfatal cutaneous leishmaniasis (CL) is well defined and mediated by rapidly recruited, IFN-γ-producing Ly6C(+)CD4(+) T cells at the dermal challenge site. Protection against CL is best achieved by prior infection or live vaccination with Leishmania major, termed leishmanization. A long-standing question is whether prior CL or leishmanization can protect against VL. Employing an intradermal challenge model in mice, we report that cutaneous infection with Leishmania major provides heterologous protection against visceral infection with Leishmania infantum. Protection was associated with a robust CD4(+) T cell response at the dermal challenge site and in the viscera. In vivo labeling of circulating cells revealed that increased frequencies of IFN-γ(+)CD4(+) T cells at sites of infection are due to recruitment or retention of cells in the tissue, rather than increased numbers of cells trapped in the vasculature. Shortly after challenge, IFN-γ-producing cells were highly enriched for Ly6C(+)T-bet(+) cells in the viscera. Surprisingly, this heterologous immunity was superior to homologous immunity mediated by prior infection with L. infantum. Our observations demonstrate a common mechanism of protection against different clinical forms of leishmaniasis. The efficacy of leishmanization against VL may warrant the introduction of the practice in VL endemic areas or during outbreaks of disease.
Collapse
Affiliation(s)
- Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Nicole A Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonatan Mendez
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|