1
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
2
|
Truscott J, Guan X, Fury H, Atagozli T, Metwali A, Liu W, Li Y, Li RW, Elliott DE, Blazar BR, Ince MN. After Bone Marrow Transplantation, the Cell-Intrinsic Th2 Pathway Promotes Recipient T Lymphocyte Survival and Regulates Graft-versus-Host Disease. Immunohorizons 2023; 7:442-455. [PMID: 37294277 PMCID: PMC10580113 DOI: 10.4049/immunohorizons.2300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Recipient T cells can aggravate or regulate lethal and devastating graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In this context, we have shown before that intestinal immune conditioning with helminths is associated with survival of recipient T cells and Th2 pathway-dependent regulation of GVHD. We investigated the mechanism of survival of recipient T cells and their contribution to GVHD pathogenesis in this helminth infection and BMT model after myeloablative preparation with total body irradiation in mice. Our results indicate that the helminth-induced Th2 pathway directly promotes the survival of recipient T cells after total body irradiation. Th2 cells also directly stimulate recipient T cells to produce TGF-β, which is required to regulate donor T cell-mediated immune attack of GVHD and can thereby contribute to recipient T cell survival after BMT. Moreover, we show that recipient T cells, conditioned to produce Th2 cytokines and TGF-β after helminth infection, are fundamentally necessary for GVHD regulation. Taken together, reprogrammed or immune-conditioned recipient T cells after helminth infection are crucial elements of Th2- and TGF-β-dependent regulation of GVHD after BMT, and their survival is dependent on cell-intrinsic Th2 signaling.
Collapse
Affiliation(s)
- Jamie Truscott
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Xiaoqun Guan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Hope Fury
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Tyler Atagozli
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Ahmed Metwali
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Weiren Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Yue Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
| | - Robert W. Li
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD
| | - David E. Elliott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - M. Nedim Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
- Veterans Administration Medical Center, Iowa City, IA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
3
|
Atagozli T, Elliott DE, Ince MN. Helminth Lessons in Inflammatory Bowel Diseases (IBD). Biomedicines 2023; 11:1200. [PMID: 37189818 PMCID: PMC10135676 DOI: 10.3390/biomedicines11041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Helminths are multicellular invertebrates that colonize the gut of many vertebrate animals including humans. This colonization can result in pathology, which requires treatment. It can also lead to a commensal and possibly even a symbiotic relationship where the helminth and the host benefit from each other's presence. Epidemiological data have linked helminth exposure to protection from immune disorders that include a wide range of diseases, such as allergies, autoimmune illnesses, and idiopathic inflammatory disorders of the gut, which are grouped as inflammatory bowel diseases (IBD). Treatment of moderate to severe IBD involves the use of immune modulators and biologics, which can cause life-threatening complications. In this setting, their safety profile makes helminths or helminth products attractive as novel therapeutic approaches to treat IBD or other immune disorders. Helminths stimulate T helper-2 (Th2) and immune regulatory pathways, which are targeted in IBD treatment. Epidemiological explorations, basic science studies, and clinical research on helminths can lead to the development of safe, potent, and novel therapeutic approaches to prevent or treat IBD in addition to other immune disorders.
Collapse
Affiliation(s)
- Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Mirac Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
4
|
Abstract
Transforming Growth Factor-β is a potent regulator of the immune system, acting at every stage from thymic differentiation, population of the periphery, control of responsiveness, tissue repair and generation of memory. It is therefore a central player in the immune response to infectious pathogens, but its contribution is often clouded by multiple roles acting on different cells in time and space. Hence, context is all-important in understanding when TGF-β is beneficial or detrimental to the outcome of infection. In this review, a full range of infectious agents from viruses to helminth parasites are explored within this framework, drawing contrasts and general conclusions about the importance of TGF-β in these diseases.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
5
|
D'Angelo CR, Sudakaran S, Callander NS. Clinical effects and applications of the gut microbiome in hematologic malignancies. Cancer 2020; 127:679-687. [PMID: 33369893 DOI: 10.1002/cncr.33400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 11/22/2020] [Indexed: 12/16/2022]
Abstract
The gut microbiome and its effects on host immunity have exciting implications for cancer prognosis and therapy. Examples in allogeneic hematopoietic stem cell transplantation (allo-SCT) demonstrate the role of the gut microbiome as a biomarker for clinical outcomes, and animal models demonstrate how microbiota manipulation may augment therapeutic responses. There are multiple mechanisms that gut microbiota may have in affecting distant tumor environments, including control of cytokine release, dendritic cell activation, and T-cell lymphocyte stimulation. Recently, there has been a marked interest in understanding interactions between host and microbiome in hematologic malignancies. This review summarizes the current understanding of the gut microbiome and its impact on leukemia, lymphoma, multiple myeloma, and allo-SCT and highlights several broad methods for targeting the gut microbiome in therapeutic trials.
Collapse
Affiliation(s)
- Christopher R D'Angelo
- Division of Hematology/Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sailendharan Sudakaran
- Microbiome Hub, Wisconsin Institute of Discovery, University of Wisconsin, Madison, Wisconsin
| | - Natalie S Callander
- Section of Hematology/Oncology and Bone Marrow Transplantation, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
6
|
Dang N, Lin Y, Rutgeerts O, Sagaert X, Billiau AD, Waer M, Sprangers B. Solid Tumor–Induced Immune Regulation Alters the GvHD/GvT Paradigm after Allogenic Bone Marrow Transplantation. Cancer Res 2019; 79:2709-2721. [DOI: 10.1158/0008-5472.can-18-3143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
|
7
|
Li Y, Guan X, Liu W, Chen HL, Truscott J, Beyatli S, Metwali A, Weiner GJ, Zavazava N, Blumberg RS, Urban JF, Blazar BR, Elliott DE, Ince MN. Helminth-Induced Production of TGF-β and Suppression of Graft-versus-Host Disease Is Dependent on IL-4 Production by Host Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2910-2922. [PMID: 30291167 DOI: 10.4049/jimmunol.1700638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/07/2018] [Indexed: 02/07/2023]
Abstract
Helminths stimulate the secretion of Th2 cytokines, like IL-4, and suppress lethal graft-versus-host disease (GVHD) after bone marrow transplantation. This suppression depends on the production of immune-modulatory TGF-β and is associated with TGF-β-dependent in vivo expansion of Foxp3+ regulatory T cells (Treg). In vivo expansion of Tregs is under investigation for its potential as a therapy for GVHD. Nonetheless, the mechanism of induced and TGF-β-dependent in vivo expansion of Tregs, in a Th2 polarized environment after helminth infection, is unknown. In this study, we show that helminth-induced IL-4 production by host cells is critical to the induction and maintenance of TGF-β secretion, TGF-β-dependent expansion of Foxp3+ Tregs, and the suppression of GVHD. In mice with GVHD, the expanding donor Tregs express the Th2-driving transcription factor, GATA3, which is required for helminth-induced production of IL-4 and TGF-β. In contrast, TGF-β is not necessary for GATA3 expression by Foxp3+ Tregs or by Foxp3- CD4 T cells. Various cell types of innate or adaptive immune compartments produce high quantities of IL-4 after helminth infection. As a result, IL-4-mediated suppression of GVHD does not require invariant NKT cells of the host, a cell type known to produce IL-4 and suppress GVHD in other models. Thus, TGF-β generation, in a manner dependent on IL-4 secretion by host cells and GATA3 expression, constitutes a critical effector arm of helminthic immune modulation that promotes the in vivo expansion of Tregs and suppresses GVHD.
Collapse
Affiliation(s)
- Yue Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xiaoqun Guan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Weiren Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Hung-Lin Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jamie Truscott
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Sonay Beyatli
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Ahmed Metwali
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Nicholas Zavazava
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Richard S Blumberg
- Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705; and
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - David E Elliott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - M Nedim Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
8
|
Li Y, Liu W, Guan X, Truscott J, Creemers JW, Chen HL, Pesu M, El Abiad RG, Karacay B, Urban JF, Elliott DE, Kaplan MH, Blazar BR, Ince MN. STAT6 and Furin Are Successive Triggers for the Production of TGF-β by T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2612-2623. [PMID: 30266770 DOI: 10.4049/jimmunol.1700808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/03/2018] [Indexed: 01/11/2023]
Abstract
Production of TGF-β by T cells is key to various aspects of immune homeostasis, with defects in this process causing or aggravating immune-mediated disorders. The molecular mechanisms that lead to TGF-β generation by T cells remain largely unknown. To address this issue, we take advantage of the fact that intestinal helminths stimulate Th2 cells besides triggering TGF-β generation by T lymphocytes and regulate immune-mediated disorders. We show that the Th2 cell-inducing transcription factor STAT6 is necessary and sufficient for the expression of TGF-β propeptide in T cells. STAT6 is also necessary for several helminth-triggered events in mice, such as TGF-β-dependent suppression of alloreactive inflammation in graft-versus-host disease. Besides STAT6, helminth-induced secretion of active TGF-β requires cleavage of propeptide by the endopeptidase furin. Thus, for the immune regulatory pathway necessary for TGF-β production by T cells, our results support a two-step model, composed of STAT6 and furin.
Collapse
Affiliation(s)
- Yue Li
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Weiren Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Xiaqun Guan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jamie Truscott
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - John W Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, B-3000 Belgium
| | - Hung-Lin Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Marko Pesu
- Immunoregulation, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, FI-33520 Tampere, Finland.,Department of Dermatology, Tampere University Hospital, FI-33520 Tampere, Finland
| | - Rami G El Abiad
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Bahri Karacay
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Joseph F Urban
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - David E Elliott
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; and
| | - M Nedim Ince
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242; .,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
9
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
10
|
Reynolds LA, Redpath SA, Yurist-Doutsch S, Gill N, Brown EM, van der Heijden J, Brosschot TP, Han J, Marshall NC, Woodward SE, Valdez Y, Borchers CH, Perona-Wright G, Finlay BB. Enteric Helminths Promote Salmonella Coinfection by Altering the Intestinal Metabolome. J Infect Dis 2017; 215:1245-1254. [PMID: 28368463 DOI: 10.1093/infdis/jix141] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/22/2017] [Indexed: 12/29/2022] Open
Abstract
Intestinal helminth infections occur predominantly in regions where exposure to enteric bacterial pathogens is also common. Helminth infections inhibit host immunity against microbial pathogens, which has largely been attributed to the induction of regulatory or type 2 (Th2) immune responses. Here we demonstrate an additional 3-way interaction in which helminth infection alters the metabolic environment of the host intestine to enhance bacterial pathogenicity. We show that an ongoing helminth infection increased colonization by Salmonella independently of T regulatory or Th2 cells. Instead, helminth infection altered the metabolic profile of the intestine, which directly enhanced bacterial expression of Salmonella pathogenicity island 1 (SPI-1) genes and increased intracellular invasion. These data reveal a novel mechanism by which a helminth-modified metabolome promotes susceptibility to bacterial coinfection.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Michael Smith Laboratories, University of British Columbia, Vancouver.,Department of Biochemistry and Microbiology, University of Victoria, British Columbia
| | - Stephen A Redpath
- Department of Microbiology and Immunology, University of British Columbia, Vancouver
| | | | - Navkiran Gill
- Michael Smith Laboratories, University of British Columbia, Vancouver
| | - Eric M Brown
- Michael Smith Laboratories, University of British Columbia, Vancouver.,Department of Microbiology and Immunology, University of British Columbia, Vancouver
| | - Joris van der Heijden
- Michael Smith Laboratories, University of British Columbia, Vancouver.,Department of Microbiology and Immunology, University of British Columbia, Vancouver
| | - Tara P Brosschot
- Michael Smith Laboratories, University of British Columbia, Vancouver
| | - Jun Han
- University of Victoria-Genome British Columbia Proteomics Centre
| | - Natalie C Marshall
- Michael Smith Laboratories, University of British Columbia, Vancouver.,Department of Microbiology and Immunology, University of British Columbia, Vancouver
| | - Sarah E Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver.,Department of Microbiology and Immunology, University of British Columbia, Vancouver
| | - Yanet Valdez
- Michael Smith Laboratories, University of British Columbia, Vancouver
| | - Christoph H Borchers
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia.,University of Victoria-Genome British Columbia Proteomics Centre.,Gerald Bronfman Department of Oncology and.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Georgia Perona-Wright
- Department of Microbiology and Immunology, University of British Columbia, Vancouver.,Institute of Infection, Immunity and Inflammation, University of Glasgow, United Kingdom ; and
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver.,Department of Microbiology and Immunology, University of British Columbia, Vancouver.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Cooper AJR, Dholakia S, Holland CV, Friend PJ. Helminths in organ transplantation. THE LANCET. INFECTIOUS DISEASES 2017; 17:e166-e176. [PMID: 28233632 DOI: 10.1016/s1473-3099(16)30533-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 11/06/2016] [Accepted: 11/15/2016] [Indexed: 12/26/2022]
Abstract
With transplantation becoming an increasingly routine form of treatment for diverse populations, and with international travel becoming ever more accessible and affordable, the danger of transplantation-mediated helminth infections, exacerbated by coincident immunosuppression, must be considered. In this Review, we attempt to catalogue all clinically-relevant helminthiases that have been reported to coincide with transplantation, whether by transplantation-mediated transmission, reactivation of latent infections in an immunosuppressed context, or possible de-novo infection during the immunosuppressed peritransplant period. Helminthiasis has been reported in cases of kidney, liver, bowel, pancreas, heart, lung, and stem-cell transplant, and blood transfusion. For each helminthiasis, known risk factors, symptoms, and suggested options for screening and treatment are given. We conclude that helminths are a small but important and potentially severe source of disease after transplantation, and, with options for diagnosis and treatment, these pathogens warrant greater consideration during organ implantation. The achievement of immunological tolerance using helminth-derived products is also an exciting future prospect.
Collapse
Affiliation(s)
- Andrew J R Cooper
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland.
| | - Shamik Dholakia
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, UK
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | - Peter J Friend
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
12
|
Jia H, Zhao T, Ji Y, Jia X, Ren W, Li C, Li M, Xiao Y, Wang H, Xu K. Combined nifuroxazide and SAT05f therapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Cell Death Dis 2016; 7:e2507. [PMID: 27906171 PMCID: PMC5261008 DOI: 10.1038/cddis.2016.399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/10/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is the major barrier to the broader use of allogenetic hematopoietic stem cells. However, currently these are no highly specific and efficient drugs. Monotherapy is not sufficient and more efficient and safe therapeutic regimen are urgent need. Studies demonstrated TLR9 and Stat3 signal pathways are critical for antigen-presenting cell maturation and T-cell activation, which are important mediators in aGvHD. Specific block these two critical signal pathways using their inhibitors SAT05f and nifuroxazide may be the novel strategies for aGvHD therapy. The results showed combined therapy significantly decreased the severity of aGvHD and prolonged the survival rate. Furthermore, after treatment, the activation of CD4+ effect T cells was reduced, whereas Treg cells was increased, and the cytokine release was inhibited. In conclusion, combined therapy of nifuroxazide with SAT05f may be potential for the prevention or treatment of aGvHD, providing theoretic and experimental basis.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Tiesuo Zhao
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yinghua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Xiaolong Jia
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wenjing Ren
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Chen Li
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Minming Li
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yali Xiao
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hui Wang
- Research Center for Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Kailin Xu
- Laboratory of Transplantation and Immunology, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| |
Collapse
|
13
|
Conditioning with Fludarabine-Busulfan versus Busulfan-Cyclophosphamide Is Associated with Lower aGVHD and Higher Survival but More Extensive and Long Standing Bone Marrow Damage. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3071214. [PMID: 27843940 PMCID: PMC5098055 DOI: 10.1155/2016/3071214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 09/18/2016] [Indexed: 11/18/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a major cause of nonrelapse mortality after allo-HSCT. A conditioning regimen plays a pivotal role in the development of aGVHD. To provide a platform for studying aGVHD and evaluating the impact of different conditioning regimens, we established a murine aGVHD model that simulates the clinical situation and can be conditioned with Busulfan-Cyclophosphamide (Bu-Cy) and Fludarabine-Busulfan (Flu-Bu). In our study, BALB/c mice were conditioned with Bu-Cy or Flu-Bu and transplanted with 2 × 107 bone marrow cells and 2 × 107 splenocytes from either allogeneic (C57BL/6) or syngeneic (BALB/c) donors. The allogeneic recipients conditioned with Bu-Cy had shorter survivals (P < 0.05), more severe clinical manifestations, and higher hepatic and intestinal pathology scores, associated with increased INF-γ expression and diminished IL-4 expression in serum, compared to allogeneic recipients conditioned with Flu-Bu. Moreover, higher donor-derived T-cell infiltration and severely impaired B-cell development were seen in the bone marrow of mice, exhibiting aGVHD and conditioned with Flu-Bu. Our study showed that the conditioning regimen with Bu-Cy resulted in more severe aGVHD while the Flu-Bu regimen was associated with more extensive and long standing bone marrow damage.
Collapse
|
14
|
Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 2016; 138:666-675. [PMID: 27476889 PMCID: PMC5010150 DOI: 10.1016/j.jaci.2016.07.007] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Helminth parasite infections are associated with a battery of immunomodulatory mechanisms that affect all facets of the host immune response to ensure their persistence within the host. This broad-spectrum modulation of host immunity has intended and unintended consequences, both advantageous and disadvantageous. Thus the host can benefit from suppression of collateral damage during parasite infection and from reduced allergic, autoimmune, and inflammatory reactions. However, helminth infection can also be detrimental in reducing vaccine responses, increasing susceptibility to coinfection and potentially reducing tumor immunosurveillance. In this review we will summarize the panoply of immunomodulatory mechanisms used by helminths, their potential utility in human disease, and prospective areas of future research.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Understanding Luminal Microorganisms and Their Potential Effectiveness in Treating Intestinal Inflammation. Inflamm Bowel Dis 2016; 22:194-201. [PMID: 26457381 PMCID: PMC4679592 DOI: 10.1097/mib.0000000000000599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human intestine contains 10¹⁴ bacteria, which outnumber the mammalian cells 10-fold. Certain other commensal or infectious agents, like helminthic parasites, become members of this microbial ecosystem, especially in populations living under less hygienic conditions. Intestinal microbes, also called the microbiome or microbiota, shape the host immune reactivity to self and nonself throughout life. Changes in microbiome composition may impair the maturation of immune regulatory pathways and predispose the host to develop various forms of inflammatory disorders, like Crohn's disease or ulcerative colitis. The microbiome is also critical to successful transplantation of organs or grafts. After allogeneic hematopoietic stem cell transplantation, when the new donor cells, such as T lymphocytes learn to discriminate "the new self from nonself" in the transplant recipient, they need healthy microbiota-derived signals to preserve the immune homeostasis. Restoring microbiota through intestinal delivery of bacterial strains, helminths, fecal microbiota transplantation, or stool substitutes have the potential to improve and correct aberrant immune reactivity in various disorders.
Collapse
|
16
|
Abstract
Autoimmune and chronic inflammatory organic diseases represent a "postindustrial revolution epidemics," and their frequency has increased dramatically in the last century. Today, it is assumed that the increase in hygiene standards reduced the interactions with helminth parasites that coevolved with the immune system and are crucial for its proper functioning. Several helminths have been proposed and tested in the search of the ideal therapeutic. In this review, the authors summarize the translational and clinical studies and review the caveats and possible solutions for the optimization of helminth therapies.
Collapse
Affiliation(s)
- Irina Leonardi
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Isabelle Frey
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zürich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|