1
|
Petkevicius K, Bidault G, Virtue S, Jenkins B, van Dierendonck XAMH, Dugourd A, Saez-Rodriguez J, Stienstra R, Koulman A, Vidal-Puig A. Norepinephrine promotes triglyceride storage in macrophages via beta2-adrenergic receptor activation. FASEB J 2021; 35:e21266. [PMID: 33484195 PMCID: PMC7898725 DOI: 10.1096/fj.202001101r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Tissue‐resident macrophages are required for homeostasis, but also contribute to tissue dysfunction in pathophysiological states. The sympathetic neurotransmitter norepinephrine (NE) induces an anti‐inflammatory and tissue‐reparative phenotype in macrophages. As NE has a well‐established role in promoting triglyceride lipolysis in adipocytes, and macrophages accumulate triglyceride droplets in various physiological and disease states, we investigated the effect of NE on primary mouse bone marrow‐derived macrophage triglyceride metabolism. Surprisingly, our data show that in contrast to the canonical role of NE in stimulating lipolysis, NE acting via beta2‐adrenergic receptors (B2ARs) in macrophages promotes extracellular fatty acid uptake and their storage as triglycerides and reduces free fatty acid release from triglyceride‐laden macrophages. We demonstrate that these responses are mediated by a B2AR activation‐dependent increase in Hilpda and Dgat1 gene expression and activity. We further show that B2AR activation favors the storage of extracellular polyunsaturated fatty acids. Finally, we present evidence that macrophages isolated from hearts after myocardial injury, for which survival critically depends on leukocyte B2ARs, have a transcriptional signature indicative of a transient triglyceride accumulation. Overall, we describe a novel and unexpected role of NE in promoting triglyceride storage in macrophages that could have potential implications in multiple diseases.
Collapse
Affiliation(s)
- Kasparas Petkevicius
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Guillaume Bidault
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Sam Virtue
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Benjamin Jenkins
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aurelien Dugourd
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Faculty of Medicine & Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Joint Research Centre for Computational Biomedicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Institute for Computational Biomedicine, Faculty of Medicine & Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.,Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Albert Koulman
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, MDU MRC, University of Cambridge Metabolic Research Laboratories, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
2
|
Jiang W, Le J, Wang PY, Cheng X, Smelkinson M, Dong W, Yang C, Chu Y, Hwang PM, Munford RS, Lu M. Extracellular Acidity Reprograms Macrophage Metabolism and Innate Responsiveness. THE JOURNAL OF IMMUNOLOGY 2021; 206:3021-3031. [PMID: 34108259 DOI: 10.4049/jimmunol.2100014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Although organ hypofunction and immunosuppression are life-threatening features of severe sepsis, the hypofunctioning organs and immune cells usually regain normal functionality if patients survive. Because tissue interstitial fluid can become acidic during the septic response, we tested the hypothesis that low extracellular pH (pHe) can induce reversible metabolic and functional changes in peritoneal macrophages from C57BL/6J mice. When compared with macrophages cultured at normal pHe, macrophages living in an acidic medium used less glucose and exogenous fatty acid to produce ATP. Lactate, glutamine, and de novo-synthesized fatty acids supported ATP production by mitochondria that gained greater mass, maximal oxygen consumption rate, and spare respiratory capacity. The cells transitioned to an M2-like state, with altered immune responses to LPS and slightly decreased phagocytic ability, yet they regained basal energy production, normal mitochondrial function, and proinflammatory responsiveness when neutral pHe was restored. Low pHe induces changes that support macrophage survival while rendering the cells less proinflammatory (more "tolerant") and less able to phagocytose bacteria. Macrophage responses to low interstitial pH may contribute to the reversible organ hypofunction and immunoparalysis noted in many patients with sepsis.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - James Le
- Antibacterial Host Defense Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ping-Yuan Wang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiaofang Cheng
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Margery Smelkinson
- The Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Wenyue Dong
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Paul M Hwang
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Munford
- Antibacterial Host Defense Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mingfang Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology (MOE, NHC, CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China; .,Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Roelands J, Garand M, Hinchcliff E, Ma Y, Shah P, Toufiq M, Alfaki M, Hendrickx W, Boughorbel S, Rinchai D, Jazaeri A, Bedognetti D, Chaussabel D. Long-Chain Acyl-CoA Synthetase 1 Role in Sepsis and Immunity: Perspectives From a Parallel Review of Public Transcriptome Datasets and of the Literature. Front Immunol 2019; 10:2410. [PMID: 31681299 PMCID: PMC6813721 DOI: 10.3389/fimmu.2019.02410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
A potential role for the long-chain acyl-CoA synthetase family member 1 (ACSL1) in the immunobiology of sepsis was explored during a hands-on training workshop. Participants first assessed the robustness of the potential gap in biomedical knowledge identified via an initial screen of public transcriptome data and of the literature associated with ACSL1. Increase in ACSL1 transcript abundance during sepsis was confirmed in several independent datasets. Querying the ACSL1 literature also confirmed the absence of reports associating ACSL1 with sepsis. Inferences drawn from both the literature (via indirect associations) and public transcriptome data (via correlation) point to the likely participation of ACSL1 and ACSL4, another family member, in inflammasome activation in neutrophils during sepsis. Furthermore, available clinical data indicate that levels of ACSL1 and ACSL4 induction was significantly higher in fatal cases of sepsis. This denotes potential translational relevance and is consistent with involvement in pathways driving potentially deleterious systemic inflammation. Finally, while ACSL1 expression was induced in blood in vitro by a wide range of pathogen-derived factors as well as TNF, induction of ACSL4 appeared restricted to flagellated bacteria and pathogen-derived TLR5 agonists and IFNG. Taken together, this joint review of public literature and omics data records points to two members of the acyl-CoA synthetase family potentially playing a role in inflammasome activation in neutrophils. Translational relevance of these observations in the context of sepsis and other inflammatory conditions remain to be investigated.
Collapse
Affiliation(s)
- Jessica Roelands
- Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Ma
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Parin Shah
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | | | | | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | |
Collapse
|
4
|
Öörni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-Rich Lipoproteins as a Source of Proinflammatory Lipids in the Arterial Wall. Curr Med Chem 2019; 26:1701-1710. [DOI: 10.2174/0929867325666180530094819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins
(chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and
cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below
70-80 nm may enter the arterial wall, where they accumulate and induce the formation of
atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids
in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles.
However, recent observational and genetic studies have discovered that the triglyceriderich
lipoproteins and their remnants are linked with cardiovascular disease risk. In this review,
we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can
contribute to the development of atherosclerotic lesions, and highlight the differences in the
atherogenicity between low-density lipoproteins and the remnant lipoproteins.
Collapse
Affiliation(s)
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
| | | | | |
Collapse
|
5
|
Sepehri Z, Kiani Z, Kohan F, Ghavami S. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med 2019; 50:117-129. [PMID: 30124945 DOI: 10.1093/labmed/lmy047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To review the main Mycobacterium tuberculosis (Mtb) pathogen-associated molecular patterns (PAMPs) and the roles played by toll-like receptor (TLR)4 in determination of Mtb infection outcome. METHODS Several scientific databases, including Scopus, PubMed, and Google Scholar, were used for searching appropriate research articles from the literature for information on our topic. RESULTS TLR4 plays positive roles in induction of immune responses against Mtb and participates in eradication of the infection. Some limited investigations approved the roles of TLR4 in induction of apoptosis in macrophages during tuberculosis (TB) and attenuation of immune responses in some situations. CONCLUSIONS TB outcome appears to be dependent on TLR4/Mtb interaction and several factors, including bacterial load and immune or nonimmune cells, as hosts. Also, other TLR/Mtb interactions can affect TLR4 responses.
Collapse
Affiliation(s)
- Zahra Sepehri
- Department of Internal Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Zohre Kiani
- Zabol Medicinal Plant Research Center, Zabol University of Medical Sciences, Zabol, Iran and Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Kohan
- Zabol University of Medical Sciences, Zabol, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Phelan JJ, Basdeo SA, Tazoll SC, McGivern S, Saborido JR, Keane J. Modulating Iron for Metabolic Support of TB Host Defense. Front Immunol 2018; 9:2296. [PMID: 30374347 PMCID: PMC6196273 DOI: 10.3389/fimmu.2018.02296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Tuberculosis (TB) is the world's biggest infectious disease killer. The increasing prevalence of multidrug-resistant and extensively drug-resistant TB demonstrates that current treatments are inadequate and there is an urgent need for novel therapies. Research is now focused on the development of host-directed therapies (HDTs) which can be used in combination with existing antimicrobials, with a special focus on promoting host defense. Immunometabolic reprogramming is integral to TB host defense, therefore, understanding and supporting the immunometabolic pathways that are altered after infection will be important for the development of new HDTs. Moreover, TB pathophysiology is interconnected with iron metabolism. Iron is essential for the survival of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB disease. Mtb struggles to replicate and persist in low iron environments. Iron chelation has therefore been suggested as a HDT. In addition to its direct effects on iron availability, iron chelators modulate immunometabolism through the stabilization of HIF1α. This review examines immunometabolism in the context of Mtb and its links to iron metabolism. We suggest that iron chelation, and subsequent stabilization of HIF1α, will have multifaceted effects on immunometabolic function and holds potential to be utilized as a HDT to boost the host immune response to Mtb infection.
Collapse
Affiliation(s)
- James J Phelan
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Simone C Tazoll
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Sadhbh McGivern
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Judit R Saborido
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Frimmel K, Sotníková R, Navarová J, Bernátová I, KriŽák J, Haviarová Z, Kura B, Slezák J, Okruhlicová Ľ. Omega-3 fatty acids reduce lipopolysaccharide-induced abnormalities in expression of connexin-40 in aorta of hereditary hypertriglyceridemic rats. Physiol Res 2016; 65 Suppl 1:S65-76. [PMID: 27643941 DOI: 10.33549/physiolres.933401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Omega-3 fatty acids (omega3FA) are known to reduce hypertriglyceridemia- and inflammation-induced vascular wall diseases. However, mechanisms of their effects are not completely clear. We examined, whether 10-day omega3FA diet can reduce bacterial lipopolysaccharide-induced changes in expression of gap junction protein connexin40 (Cx40) in the aorta of hereditary hypertriglyceridemic (hHTG) rats. After administration of a single dose of lipopolysaccharide (LPS, 1 mg/kg, i.p.) to adult hHTG rats, animals were fed with omega3FA diet (30 mg/kg/day) for 10 days. LPS decreased Cx40 expression that was associated with reduced acetylcholine-induced relaxation of aorta. Omega3FA administration to LPS rats had partial anti-inflammatory effects, associated with increased Cx40 expression and improved endothelium dependent relaxation of the aorta. Our results suggest that 10-day omega3FA diet could protect endothelium-dependent relaxation of the aorta of hHTG rats against LPS-induced damage through the modulation of endothelial Cx40 expression.
Collapse
Affiliation(s)
- K Frimmel
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep 2015; 5:18176. [PMID: 26658723 PMCID: PMC4674750 DOI: 10.1038/srep18176] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023] Open
Abstract
To elucidate the little-known bioenergetic pathways of host immune cells in tuberculosis, a granulomatous disease caused by the intracellular pathogen Mycobacterium tuberculosis, we characterized infected murine lung tissue by transcriptomic profiling and confocal imaging. Transcriptomic analysis revealed changes of host energy metabolism during the course of infection that are characterized by upregulation of key glycolytic enzymes and transporters for glucose uptake, and downregulation of enzymes participating in the tricarboxylic acid cycle and oxidative phosphorylation. Consistent with elevated glycolysis, we also observed upregulation of a transporter for lactate secretion and a V type H(+) -ATPase involved in cytosolic pH homeostasis. Transcription profiling results were corroborated by immunofluorescence microscopy showing increased expression of key glycolytic enzymes in macrophages and T cells in granulomatous lesions. Moreover, we found increased mRNA and protein levels in macrophages and T cells of hypoxia inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a master transcriptional regulator. Thus, our findings suggest that immune cells predominantly utilize aerobic glycolysis in response to M. tuberculosis infection. This bioenergetic shift is similar to the Warburg effect, the metabolic signature of cancer cells. Finding immunometabolic changes during M. tuberculosis infection opens the way to new strategies for immunotherapy against tuberculosis.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Richard Pine
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | - Maria L Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|