1
|
Frostegård A, Haegerstrand A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5-A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals (Basel) 2024; 17:979. [PMID: 39204083 PMCID: PMC11357257 DOI: 10.3390/ph17080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Despite progress in the management of patients with retinal vascular and degenerative diseases, there is still an unmet clinical need for safe and effective therapeutic options with novel mechanisms of action. Recent mechanistic insights into the pathogenesis of retinal diseases with a prominent vascular component, such as retinal vein occlusion (RVO), diabetic retinopathy (DR) and wet age-related macular degeneration (AMD), may open up new treatment paradigms that reach beyond the inhibition of vascular endothelial growth factor (VEGF). Phosphatidylserine (PS) is a novel lipid target that is linked to the pathophysiology of several human diseases, including retinal diseases. PS acts upstream of VEGF and complement signaling pathways. Annexin A5 is a protein that targets PS and inhibits PS signaling. This review explores the current understanding of the potential roles of PS as a target and Annexin A5 as a therapeutic. The clinical development status of Annexin A5 as a therapeutic and the potential utility of PS-Annexin A5 as a theranostic pairing in retinal vascular conditions in particular is described.
Collapse
Affiliation(s)
- Anna Frostegård
- Annexin Pharmaceuticals AB, Kammakargatan 48, S-111 60 Stockholm, Sweden
- Unit of Immunology and Chronic Disease, IMM, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
2
|
Jing J. The Relevance, Predictability, and Utility of Annexin A5 for Human Physiopathology. Int J Mol Sci 2024; 25:2865. [PMID: 38474114 PMCID: PMC10932194 DOI: 10.3390/ijms25052865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
As an important functional protein molecule in the human body, human annexin A5 (hAnxA5) is widely found in human cells and body fluids. hAnxA5, the smallest type of annexin, performs a variety of biological functions by reversibly and specifically binding phosphatidylserine (PS) in a calcium-dependent manner and plays an important role in many human physiological and pathological processes. The free state hAnxA5 exists in the form of monomers and usually forms a polymer in a specific self-assembly manner when exerting biological activity. This review systematically discusses the current knowledge and understanding of hAnxA5 from three perspectives: physiopathological relevance, diagnostic value, and therapeutic utility. hAnxA5 affects the occurrence and development of many physiopathological processes. Moreover, hAnxA5 can be used independently or in combination as a biomarker of physiopathological phenomena for the diagnosis of certain diseases. Importantly, based on the properties of hAnxA5, many novel drug candidates have been designed and prepared for application in actual medical practice. However, there are also some gaps and shortcomings in hAnxA5 research. This in-depth study will not only expand the understanding of structural and functional relationships but also promote the application of hAnxA5 in the field of biomedicine.
Collapse
Affiliation(s)
- Jian Jing
- Beijing Key Laboratory of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Tarallo D, Martínez J, Leyva A, Mónaco A, Perroni C, Tassano M, Gambini JP, Cappetta M, Durán R, Moreno M, Quijano C. Mitofusin 1 silencing decreases the senescent associated secretory phenotype, promotes immune cell recruitment and delays melanoma tumor growth after chemotherapy. Sci Rep 2024; 14:909. [PMID: 38195762 PMCID: PMC10776601 DOI: 10.1038/s41598-024-51427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Cellular senescence is a therapy endpoint in melanoma, and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and mitochondrial energy metabolism supports resistance to therapy in melanoma. In a previous report we showed that senescence, induced by the DNA methylating agent temozolomide, increased the level of fusion proteins mitofusin 1 and 2 in melanoma, and silencing Mfn1 or Mfn2 expression reduced interleukin-6 secretion by senescent cells. Here we expanded these observations evaluating the secretome of senescent melanoma cells using shotgun proteomics, and explored the impact of silencing Mfn1 on the SASP. A significant increase in proteins reported to reduce the immune response towards the tumor was found in the media of senescent cells. The secretion of several of these immunomodulatory proteins was affected by Mfn1 silencing, among them was galectin-9. In agreement, tumors lacking mitofusin 1 responded better to treatment with the methylating agent dacarbazine, tumor size was reduced and a higher immune cell infiltration was detected in the tumor. Our results highlight mitochondrial dynamic proteins as potential pharmacological targets to modulate the SASP in the context of melanoma treatment.
Collapse
Affiliation(s)
- Doménica Tarallo
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Alejandro Leyva
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Perroni
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcos Tassano
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Gambini
- Centro Uruguayo de Imagenología Molecular (CUDIM) and Centro de Medicina Nuclear (CMN), Hospital de Clínicas Dr. Manuel Quintela, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rosario Durán
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Niu X, Zhao K, Zheng Y, Wang Y, Liu R, Zhang Y, Wang L, Wu Y, Bai X, Qiao B. ANXA13 promotes cell proliferation and invasion and attenuates apoptosis in renal cell carcinoma. Heliyon 2023; 9:e18009. [PMID: 37520951 PMCID: PMC10374933 DOI: 10.1016/j.heliyon.2023.e18009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Emerging evidences have demonstrated that annexin A13 (ANXA13) is closely related to the occurrence and development of malignant tumors. However, the functions and underlying molecular mechanisms of ANXA13 in Clear cell renal cell carcinoma (ccRCC) have not been defined. Therefore, this study aimed to clarify the potential role of ANXA13 in regulating the proliferation, migration, invasion, cell cycle, and apoptosis of ccRCC cells. Patients and methods The quantitative real-time PCR (qRT-PCR) and western blotting was performed for detecting the ANXA13 expression in ccRCC tissues at the mRNA and protein levels, respectively. The GEPIA2 databases were used to derive data for analyzing the ANXA13 expression in pan-cancer and ccRCC clinical features. Cell Counting and colony formation assays, as well as flow cytometry, were used to detect cell proliferation, apoptosis, or cell cycle. The wound healing assay was used to evaluate the migration ability of cells, and the Trans-well assay was conducted to determine the cell invasiveness. Results ANXA13 was upregulated in ccRCC cells and human ccRCC tissues. Furthermore, siANXA13 inhibited ccRCC cell proliferation, migration, invasion and induced cell apoptosis. Conclusion ANXA13 was upregulated in ccRCC. ANXA13 promotes tumorigenic traits of ccRCC cell lines in vitro. ANXA13 is a potential novel biomarker and a potential therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Keyuan Zhao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Yuanyuan Zheng
- National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 404100, China
| | - Ruoyang Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yiming Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lihui Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, 450001, China
| | - Xuefeng Bai
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, 450001, China
| | - Baoping Qiao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
5
|
Bode K, Hauri-Hohl M, Jaquet V, Weyd H. Unlocking the power of NOX2: A comprehensive review on its role in immune regulation. Redox Biol 2023; 64:102795. [PMID: 37379662 DOI: 10.1016/j.redox.2023.102795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Reactive oxygen species (ROS) are a family of highly reactive molecules with numerous, often pleiotropic functions within the cell and the organism. Due to their potential to destroy biological structures such as membranes, enzymes and organelles, ROS have long been recognized as harmful yet unavoidable by-products of cellular metabolism leading to "oxidative stress" unless counterbalanced by cellular anti-oxidative defense mechanisms. Phagocytes utilize this destructive potential of ROS released in high amounts to defend against invading pathogens. In contrast, a regulated and fine-tuned release of "signaling ROS" (sROS) provides essential intracellular second messengers to modulate central aspects of immunity, including antigen presentation, activation of antigen presenting cells (APC) as well as the APC:T cell interaction during T cell activation. This regulated release of sROS is foremost attributed to the specialized enzyme NADPH-oxidase (NOX) 2 expressed mainly in myeloid cells such as neutrophils, macrophages and dendritic cells (DC). NOX-2-derived sROS are primarily involved in immune regulation and mediate protection against autoimmunity as well as maintenance of self-tolerance. Consequently, deficiencies in NOX2 not only result in primary immune-deficiencies such as Chronic Granulomatous Disease (CGD) but also lead to auto-inflammatory diseases and autoimmunity. A comprehensive understanding of NOX2 activation and regulation will be key for successful pharmaceutical interventions of such ROS-related diseases in the future. In this review, we summarize recent progress regarding immune regulation by NOX2-derived ROS and the consequences of its deregulation on the development of immune disorders.
Collapse
Affiliation(s)
- Kevin Bode
- Section for Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Mathias Hauri-Hohl
- Division of Stem Cell Transplantation, University Children's Hospital Zurich - Eleonore Foundation & Children`s Research Center (CRC), Zurich, Switzerland
| | - Vincent Jaquet
- Department of Pathology & Immunology, Centre Médical Universitaire, Rue Michel Servet 1, 1211, Genève 4, Switzerland
| | - Heiko Weyd
- Clinical Cooperation Unit Applied Tumor Immunity D120, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Kulik L, Renner B, Laskowski J, Thurman JM, Michael Holers V. Highly pathogenic natural monoclonal antibody B4-IgM recognizes a post-translational modification comprised of acetylated N-terminal methionine followed by aspartic or glutamic acid. Mol Immunol 2023; 157:112-128. [PMID: 37018938 PMCID: PMC11669889 DOI: 10.1016/j.molimm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
The natural monoclonal antibody B4-IgM recognizes murine annexin 4 (mAn4) and exacerbates ischemia-reperfusion injury in many mouse models. During apoptosis, the intracellular mAn4 protein translocates to the membrane surface, remaining attached to the outer membrane leaflet where it is recognized by the anti-mAn4 B4-IgM antibody. B4-IgM does not recognize human annexin 4 (hAn4). However, the B4-IgM antibody epitope was detected by Western blot of unknown human proteins and by flow cytometry on all studied human cell lines undergoing apoptosis and on a minor subset of healthy cells. The B4-IgM antibody also recognizes the epitope on necrotic cells in cytoplasmic proteins, apparently entering through pores large enough to allow natural antibodies to penetrate the cells and bind to the epitope expressed on self-proteins. Using proteomics and site-directed mutagenesis, we found that B4-IgM binds to an epitope with post-translationally modified acetylated N-terminal methionine, followed by either glutamic or aspartic acid. The epitope is not induced by apoptosis or injury because this modification can also occur during protein translation. This finding reveals an additional novel mechanism whereby injured cells are detected by natural antibodies that initiate pathogenic complement activation through the recognition of epitopes that are shared across multiple proteins found in variable cell lines.
Collapse
Affiliation(s)
- Liudmila Kulik
- Division of Rheumatology, University of Colorado Denver, USA.
| | - Brandon Renner
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | - Jennifer Laskowski
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | - Joshua M Thurman
- Division of Renal Diseases and Hypertension, University of Colorado Denver, USA
| | | |
Collapse
|
7
|
Hein T, Krammer PH, Weyd H. Molecular analysis of Annexin expression in cancer. BMC Cancer 2022; 22:994. [PMID: 36123610 PMCID: PMC9484247 DOI: 10.1186/s12885-022-10075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Uptake of apoptotic cells induces a tolerogenic phenotype in phagocytes and promotes peripheral tolerance. The highly conserved Annexin core domain, present in all members of the Annexin family, becomes exposed on the apoptotic cell-surface and triggers tolerogenic signalling in phagocytes via the Dectin-1 receptor. Consequently, Annexins exposed on tumour cells upon cell death are expected to induce tolerance towards tumour antigens, inhibiting tumour rejection. Methods Expression analysis for all Annexin family members was conducted in cancer cell lines of diverse origins. Presentation of Annexins on the cell surface during apoptosis of cancer cell lines was investigated using surface washes and immunoblotting. Expression data from the GEO database was analysed to compare Annexin levels between malignant and healthy tissue. Results Six Annexins at least were consistently detected on mRNA and protein level for each investigated cell line. AnxA1, AnxA2 and AnxA5 constituted the major part of total Annexin expression. All expressed Annexins translocated to the cell surface upon apoptosis induction in all cell lines. Human expression data indicate a correlation between immune infiltration and overall Annexin expression in malignant compared to healthy tissue. Conclusions This study is the first comprehensive analysis of expression, distribution and presentation of Annexins in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10075-8.
Collapse
Affiliation(s)
- Tobias Hein
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, 69120, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Zhang Y, Liu Z, Li X, Liu L, Wang L, Han X, Li Z. Comprehensive Molecular Analyses of a Six-Gene Signature for Predicting Late Recurrence of Hepatocellular Carcinoma. Front Oncol 2021; 11:732447. [PMID: 34568069 PMCID: PMC8459683 DOI: 10.3389/fonc.2021.732447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 01/12/2023] Open
Abstract
A larger number of patients with stages I-III hepatocellular carcinoma (HCC) experience late recurrence (LR) after surgery. We sought to develop a novel tool to stratify patients with different LR risk for tailoring decision-making for postoperative recurrence surveillance and therapy modalities. We retrospectively enrolled two independent public cohorts and 103 HCC tissues. Using LASSO logical analysis, a six-gene model was developed in the The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA-LIHC) and independently validated in GSE76427. Further experimental validation using qRT-PCR assays was performed to ensure the robustness and clinical feasible of this signature. We developed a novel LR-related signature consisting of six genes. This signature was validated to be significantly associated with dismal recurrence-free survival in three cohorts TCGA-LIHC, GSE76427, and qPCR assays [HR: 2.007 (1.200-3.357), p = 0.008; HR: 2.171 (1.068, 4.412), p-value = 0.032; HR: 3.383 (2.100, 5.450), p-value <0.001]. More importantly, this signature displayed robust discrimination in predicting the LR risk, with AUCs being 0.73 (TCGA-LIHC), 0.93 (GSE76427), and 0.85 (in-house cohort). Furthermore, we deciphered the specific landscape of molecular alterations among patients in nonrecurrence (NR) and LR group to analyze the mechanism contributing to LR. For high-risk group, we also identified several potential drugs with specific sensitivity to high- and low-risk groups, which is vital to improve prognosis of LR-HCC after surgery. We discovered and experimentally validated a novel gene signature with powerful performance for identifying patients at high LR risk in stages I-III HCC.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Xin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
9
|
Tajbakhsh A, Farahani N, Gheibihayat SM, Mirkhabbaz AM, Savardashtaki A, Hamblin MR, Mirzaei H. Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. Int Immunopharmacol 2020; 90:107177. [PMID: 33249046 DOI: 10.1016/j.intimp.2020.107177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Apoptotic cells are tolerogenic and can present self-antigens in the absence of inflammation, to antigen-presenting cells by the process of efferocytosis, resulting in anergy and depletion of immune effector cells. This tolerance is essential to maintain immune homeostasis and prevent systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Consequently, effective efferocytosis can result in the induction of immune tolerance mediated via triggering modulatory lymphocytes and anti-inflammatory responses. Furthermore, several distinct soluble factors, receptors and pathways have been found to be involved in the efferocytosis, which are able to regulate immune tolerance by lessening antigen presentation, inhibition of T-cell proliferation and induction of regulatory T-cells. Some newly developed nanotechnology-based approaches can induce antigen-specific immunological tolerance without any systemic immunosuppression. These strategies have been explored to reverse autoimmune responses induced against various protein antigens in different diseases. In this review, we describe some nanotechnology-based approaches for the maintenance of self-tolerance using the apoptotic cell clearance process (efferocytosis) that may be able to induce immune tolerance and treat autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
10
|
Bode K, Bujupi F, Link C, Hein T, Zimmermann S, Peiris D, Jaquet V, Lepenies B, Weyd H, Krammer PH. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep 2020; 29:4435-4446.e9. [PMID: 31875551 DOI: 10.1016/j.celrep.2019.11.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived β-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance.
Collapse
Affiliation(s)
- Kevin Bode
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Corinna Link
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Hein
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Diluka Peiris
- Attana AB, Greta Arwidssons v. 21, 11419 Stockholm, Sweden
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Peter H Krammer
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Kavvadas E. Autoantibodies specific for C1q, C3b, β2-glycoprotein 1 and annexins may amplify complement activity and reduce apoptosis-mediated immune suppression. Med Hypotheses 2020; 144:110286. [PMID: 33254588 DOI: 10.1016/j.mehy.2020.110286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
Abstract
Neoplastic cells hijack cell death pathways to evade the immune response. Phosphatidylserine, a marker of apoptotic cells, and its highly conserved bridging proteins, annexins and β2-glycoprotein I, facilitate the efficient removal of apoptotic and necrotic cells via tumor-associated phagocytes in a process called efferocytosis. Efferocytosis results in the clearance of dead and dying cells and local immune suppression. Neoplastic cells also have an increased capacity to activate complement. Complement may facilitate the silent removal of tumor cells and has a dual role in promoting and inhibiting tumor growth. Here I hypothesize that immune response-generating IgG autoantibodies that recognize opsonizing fragments C1q, C3b, and phosphatidylserine-binding proteins (annexins, β2-glycoprotein I) may reduce tumor growth. I propose that these autoantibodies induce a pro-inflammatory, cytotoxic tumor microenvironment. Further, I predict that autoantibodies can drive neoplastic cell phagocytosis in an Fc receptor-dependent manner and recruit additional complement, resulting in immune-stimulatory effects. Excessive complement activation and antibody-dependent cytotoxicity may stimulate anti-tumor responses, including damage to tumor vasculature. Here I provide insights that may aid the development of more effective therapeutic modalities to control cancer. Such therapeutic approaches should kill neoplastic cells and target their interaction with host immune cells. Thereby the pro-tumorigenic effect of dead cancer cells could be limited while inducing the anti-tumor potential of tumor-associated phagocytes.
Collapse
Affiliation(s)
- Efstathios Kavvadas
- 417 General Military Hospital NIMTS - Pathology Department, Monis Petraki 12, Postal Code: 11521, Athens, Greece.
| |
Collapse
|
12
|
Zhang N, Zhang Y, Zhang P, Lou S, Chen Y, Li H, Zeng H, Shen Y, Deng J. Overexpression of annexin A5 might guide the gemtuzumab ozogamicin treatment choice in patients with pediatric acute myeloid leukemia. Ther Adv Med Oncol 2020; 12:1758835920927635. [PMID: 32636939 PMCID: PMC7310896 DOI: 10.1177/1758835920927635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is a common hematological malignancy. Gemtuzumab
ozogamicin (GO), a humanized anti-CD33 antibody conjugated with the potent
anti-tumor antibiotic calicheamicin, represents a promising targeted therapy
for AML. Annexin A5 (ANXA5) is a proposed marker for the clinical prognosis
of AML to guide treatment choice. Methods: In total, 253 patients with pediatric AML were enrolled and divided into two
treatment groups: conventional chemotherapy alone and conventional
chemotherapy in combination with GO. Univariate, multivariate, and
Kaplan–Meier survival analyses were conducted to assess risk factors and
clinical outcomes, and to estimate hazard ratios (HRs) and their 95%
confidence interval. The level of statistical significance was set at
p < 0.05. Results: In the GO treatment group, high ANXA5 expression was
considered a favorable prognostic factor for overall survival (OS) and
event-free survival (EFS). Multivariate analysis showed that high
ANXA5 expression was an independent favorable factor
for OS (HR = 0.629, p = 0.084) and EFS (HR = 0.544,
p = 0.024) distinct from the curative effect of GO
treatment. When all patients were again divided into two groups, this time
based on the median expression of ANXA5, patients
undergoing chemotherapy combined with GO had significantly better OS
(p = 0.0012) and EFS (p = 0.0003) in
the ANXA5 high-expression group. Gene set enrichment
analysis identified a relevant series of pathways associated with
glutathione metabolism, leukocyte transendothelial migration, and
hematopoietic cell lineage. Conclusion: The expression level of ANXA5 can help optimize the
treatment regimen for individual patients, and patients with overexpression
of ANXA5 may circumvent poor outcomes from chemotherapy
combined with GO.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ping Zhang
- Hematology Laboratory, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong, Chongqing, P.R. China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Ying Chen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Huan Li
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Hanqing Zeng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Yan Shen
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Jiangnan, Chongqing, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, P.R. China
| |
Collapse
|
13
|
Chekhonin IV, Kobyakov GL, Gurina OI. [Dendritic cell vaccines in neurological oncology]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:76-85. [PMID: 32207746 DOI: 10.17116/neiro20208401176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dendritic cell-based vaccines are an intensively studied active immunotherapy technology. Aim of this article is to review the results of the key clinical studies of such vaccines in the treatment of neuro-oncological diseases. Their effectiveness was studied most widely in the treatment of malignant glial tumors, the study went from experimental work to phase III clinical studies, preliminary results of which indicate some positive results of this immunotherapy method in adults. Currently, emphasis is also being placed on the identification of clinical and immunological correlates of the patient's response to therapy and on the search for new antigens for sensitization of dendritic cells Studies of dendritic cell vaccines also include a number of other neuro-oncological diseases. A separate part of this article is devoted to the treatment of intracerebral tumors in children, for example, medulloblastomas and gliomas of the pons. In addition, the potential use of dendritic cell vaccines for intracerebral metastases is considered.
Collapse
Affiliation(s)
- I V Chekhonin
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Moscow, Russia; N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - G L Kobyakov
- N.N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - O I Gurina
- V.P. Serbskiy National Medical Research Center of Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
14
|
Bollinger AL, Bollinger T, Rupp J, Shima K, Gross N, Padayachy L, Chicheportiche R, Puga Yung GL, Seebach JD. Annexin V expression on CD4 + T cells with regulatory function. Immunology 2019; 159:205-220. [PMID: 31642515 DOI: 10.1111/imm.13140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells induce immunologic tolerance by suppressing effector functions of conventional lymphocytes in the periphery. On the other hand, immune silencing is mediated by recognition of phosphatidylserine (PS) on apoptotic cells by phagocytes. Here we describe expression of the PS-binding protein Annexin V (ANXA5) in CD4+ CD25hi Treg cells at the mRNA and protein levels. CD4+ ANXA5+ T cells constitute about 0·1%-0·6% of peripheral blood CD3+ T cells, exhibit co-expression of several Treg markers, such as Forkhead box P3, programmed cell death protein-1, cytotoxic T-lymphocyte antigen-4 and CD38. In vitro, ANXA5+ Treg cells showed enhanced adhesion to PS+ endothelial cells. Stimulated by anti-CD3 and PS+ syngeneic antigen-presenting cells CD4+ ANXA5+ T cells expanded in the absence of exogenous interleukin-2. CD4+ ANXA5+ T cells suppressed CD4+ ANXA5- T-cell proliferation and mammalian target of rapamycin phosphorylation, partially dependent on cell contact. CD4+ ANXA5+ T-cell-mediated suppression was allo-specific and accompanied by an increased production of anti-inflammatory mediators. In vivo, using a model of delayed type hypersensitivity, murine CD4+ ANXA5+ T cells inhibited T helper type 1 responses. In conclusion, we report for the first time expression of ANXA5 on a subset of Treg cells that might bridge classical regulatory Treg function with immune silencing.
Collapse
Affiliation(s)
- Anna-Lena Bollinger
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Thomas Bollinger
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Laura Padayachy
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Rachel Chicheportiche
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Gisella L Puga Yung
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg Dieter Seebach
- Division of Immunology and Allergology, Department of Medicine, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
15
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
16
|
Raabe CA, Gröper J, Rescher U. Biased perspectives on formyl peptide receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:305-316. [DOI: 10.1016/j.bbamcr.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
17
|
Peng Y, Ye Y, Jia J, He Y, Yang Z, Zhu X, Huang H, Wang W, Geng L, Yin S, Zhou L, Zheng S. Galectin-1-induced tolerogenic dendritic cells combined with apoptotic lymphocytes prolong liver allograft survival. Int Immunopharmacol 2018; 65:470-482. [PMID: 30390594 DOI: 10.1016/j.intimp.2018.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023]
Abstract
Donor-derived tolerogenic dendritic cells (DCs) and apoptotic lymphocytes (ALs) are practical tools for controlling rejection after transplantation by targeting direct and indirect allorecognition pathways, respectively. To date, few studies have investigated the combination of donor-derived tolerogenic DCs and ALs infusion in organ transplantation protection. In the present study, we generated galectin-1-induced tolerogenic DCs (DCgal-1s) and ultraviolet irradiation-induced ALs with stable immune characteristics in vitro and potential immune regulatory activity in vivo. A rat model of acute liver transplant rejection was established, and the intrinsic tolerogenic profiles associated with the short-term alleviation of rejection and the long-term maintenance of tolerance in the absence of immunosuppressive drugs were evaluated. The DCgal-1-AL treatment prolonged allograft survival more significantly than a transfusion of DCgal-1s or ALs alone. This benefit was associated with CD4+ Treg cell expansion and decreased interferon (IFN)-γ+ T cell levels. Moreover, DCgal-1-AL treatment led to different cytokine/chemokine changes in the allograft and peripheral blood, that indicated an alleviation of local and systemic inflammation on day 7 post-transplantation. TGF-β1 and TGF-β2 were significantly increased in the long-term surviving allografts after DCgal-1-AL treatment. Our results indicate that the combination of DCgal-1s with ALs effectively prolongs liver allograft survival and represents a novel therapeutic strategy for liver transplant rejection.
Collapse
Affiliation(s)
- Yifan Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Yufu Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yong He
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Xiaolu Zhu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Hechen Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Wei Wang
- S. Arthur Localio Laboratory, Department of Surgery, NYU School of Medicine, West Tower Alexandria Center, New York 10016, USA
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.
| |
Collapse
|
18
|
D'Anna C, Cigna D, Di Sano C, Di Vincenzo S, Dino P, Ferraro M, Bini L, Bianchi L, Di Gaudio F, Gjomarkaj M, Pace E. Exposure to cigarette smoke extract and lipopolysaccharide modifies cytoskeleton organization in bronchial epithelial cells. Exp Lung Res 2017; 43:347-358. [PMID: 29199880 DOI: 10.1080/01902148.2017.1377784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integrity of the respiratory epithelium is crucial for airway homeostasis. Tobacco smoke exposure and recurrent infections of the airways play a crucial role in the progression and in the decline of the respiratory function in chronic obstructive pulmonary disease (COPD). The aim of this study was to detect differentially expressed proteins in a bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extract (CSE) and lipopolysaccharide (LPS), a constituent of gram-negative bacteria, alone and/or in combination, by using two-dimensional electrophoresis (2DE) analysis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was applied to confirm the expression of significantly modulated proteins. Flow cytometry and immunofluorescence were used to assess F-actin polimerization by phalloidin method. Fourteen proteins, with significant (p < 0.05) changes in intensity, were identified at various experimental points: 6 were up-regulated and 8 were down-regulated. As expected, bioinformatic analysis revealed that most of these proteins are involved in anti-oxidant and immune responses and in cytoskeleton stability. Western blot analysis confirmed that: Proteasome activator complex subunit 2 (PSME2), Peroxiredoxin-6 (PRDX6), Annexin A5 (ANXA5) and Heat shock protein beta-1 (HSPB1) were reduced and Coactosin-like protein (COTL-1) was increased by co-exposure of CSE and LPS. Furthermore, LPS and CSE increased actin polimerization. In conclusion, although further validation studies are needed, our findings suggest that, CSE and LPS could contribute to the progressive deterioration of lung function, altering the expression of proteins involved in metabolic processes and cytoskeleton rearrangement in bronchial epithelial cells.
Collapse
Affiliation(s)
- Claudia D'Anna
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Diego Cigna
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Caterina Di Sano
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Serena Di Vincenzo
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Paola Dino
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Maria Ferraro
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Luca Bini
- b Molecular Biology Department , Laboratory of Functional Proteomics, Università degli Studi di Siena , Siena , Italy
| | - Laura Bianchi
- b Molecular Biology Department , Laboratory of Functional Proteomics, Università degli Studi di Siena , Siena , Italy
| | - Francesca Di Gaudio
- c DiBiMeF (Biopatologia e Biotecnologie Mediche e Forensi) - Università degli Studi di Palermo - Italy
| | - Mark Gjomarkaj
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Elisabetta Pace
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| |
Collapse
|
19
|
Annexin A13 promotes tumor cell invasion in vitro and is associated with metastasis in human colorectal cancer. Oncotarget 2017; 8:21663-21673. [PMID: 28423508 PMCID: PMC5400614 DOI: 10.18632/oncotarget.15523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/27/2017] [Indexed: 01/16/2023] Open
Abstract
Purpose Aberrantly upregulated expression of selected members of annexin, a group of calcium- and membrane-binding proteins, have been found to be associated with metastasis, poor prognosis, and other clinical characteristics in colorectal cancer (CRC), the third most diagnosed cancer. However, ANXA13 (encoding protein annexin A13), the original founder gene of the annexin A family, has not been studied carefully as a potential prognostic biomarker in CRC. Methods The protein level of annexin A13 was determined by western blot in a panel of CRC cell lines. Tumor cell invasion was determined by a Matrigel in vitro invasion assay in selected CRC cells with either upregulated (via plasmid transfection) or downregulated (via siRNA treatment) expression of ANXA13. The clinicopathological features and prognostic values associated with ANXA13 expression were also evaluated in a group of 125 CRC patients. Results ANXA13 was expressed at a high level in HCT116 and HT29 cells but undetected or at a lower level in SW620, SW48, and Rko cells. CRC cell invasion was promoted by ANXA13 overexpression in SW620 or Rko cells and was reduced by ANXA13 downregulation in HCT116 or HT29 cells. In CRC patients, ANXA13 expression levels correlated with lymph node metastasis and were associated with poor overall survival. Conclusions ANXA13 is associated with CRC cell invasion in vitro, and with lymph node metastasis and poor survival in CRC patients. Our results indicate that ANXA13 can be exploited as a biomarker for its diagnostic and prognostic values.
Collapse
|
20
|
Weyd H. More than just innate affairs - on the role of annexins in adaptive immunity. Biol Chem 2017; 397:1017-29. [PMID: 27467753 DOI: 10.1515/hsz-2016-0191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/22/2016] [Indexed: 01/21/2023]
Abstract
In more than 30 years of research annexins have been demonstrated to regulate immune responses. The prototype member of this family, annexin (Anx) A1, has been widely recognized as an anti-inflammatory mediator affecting migration and cellular responses of various cell types of the innate immune system. Evidently, effects on innate immune cells also impact on the course of adaptive immune responses. Innate immune cells provide a distinct cytokine milieu during initiation of adaptive immunity which regulates the development of T cell responses. Moreover, innate immune cells such as monocytes can differentiate into dendritic cells and take an active part in T cell stimulation. Accumulating evidence shows a direct role for annexins in adaptive immunity. Anx A1, the annexin protein studied in most detail, has been shown to influence antigen presentation as well as T cells directly. Moreover, immune modulatory roles have been described for several other annexins such as Anx A2, Anx A4, Anx A5 and Anx A13. This review will focus on the involvement of Anx A1 and other annexins in central aspects of adaptive immunity, such as recruitment and activation of antigen presenting cells, T cell differentiation and the anti-inflammatory removal of apoptotic cells.
Collapse
|
21
|
Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 2017; 49:e331. [PMID: 28496201 PMCID: PMC5454446 DOI: 10.1038/emm.2017.52] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
The clearance of apoptotic cells is an essential process for tissue homeostasis. To this end, cells undergoing apoptosis must display engulfment signals, such as ‘find-me' and ‘eat-me' signals. Engulfment signals are recognized by multiple types of phagocytic machinery in phagocytes, leading to prompt clearance of apoptotic cells. In addition, apoptotic cells and phagocytes release tolerogenic signals to reduce immune responses against apoptotic cell-derived self-antigens. Here we discuss recent advances in our knowledge of engulfment signals, the phagocytic machinery and the signal transduction pathways for apoptotic cell engulfment.
Collapse
|
22
|
Krammer PH, Weyd H. Life, death and tolerance. Biochem Biophys Res Commun 2017; 482:470-472. [PMID: 28212733 DOI: 10.1016/j.bbrc.2016.10.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Peter H Krammer
- German Cancer Research Center, Division of Immunology, Heidelberg, Germany.
| | - Heiko Weyd
- German Cancer Research Center, Division of Immunology, Heidelberg, Germany
| |
Collapse
|
23
|
Morelli AE, Larregina AT. Concise Review: Mechanisms Behind Apoptotic Cell-Based Therapies Against Transplant Rejection and Graft versus Host Disease. Stem Cells 2016; 34:1142-50. [PMID: 26865545 DOI: 10.1002/stem.2326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/10/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The main limitations to the success of transplantation are the antigraft response developed by the recipient immune system, and the adverse side effects of chronic immunosuppression. Graft-versus-host disease (GVHD) triggered by donor-derived T lymphocytes against the recipient tissues is another serious obstacle in the field of hematopoietic stem cell transplantation. Several laboratories have tested the possibility of promoting antigen (Ag)-specific tolerance for therapy of graft rejection, GVHD, and autoimmune disorders, by developing methodologies that mimic the mechanisms by which the immune system maintains peripheral tolerance in the steady state. It has been long recognized that the silent clearance of cells undergoing apoptosis exerts potent immune-regulatory effects and provides apoptotic cell-derived Ags to those Ag-presenting cells (APCs) that internalize them, in particular macrophages and dendritic cells. Therefore, in situ-targeting of recipient APCs by systemic administration of leukocytes in early apoptosis and bearing donor Ags represents a relatively simple approach to control the antidonor response against allografts. Here, we review the mechanisms by which apoptotic cells are silently cleared by phagocytes, and how such phenomenon leads to down-regulation of the innate and adaptive immunity. We discuss the evolution of apoptotic cell-based therapies from murine models of organ/tissue transplantation and GVHD, to clinical trials. We make emphasis on potential limitations and areas of concern of apoptotic cell-based therapies, and on how other immune-suppressive therapies used in the clinics or tested experimentally likely also function through the silent clearance of apoptotic cells by the immune system. Stem Cells 2016;34:1142-1150.
Collapse
Affiliation(s)
- Adrian E Morelli
- T.E. Starzl Transplantation Institute, Department of Surgery.,Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Adriana T Larregina
- Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,Departments of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
24
|
Bowser JL, Blackburn MR, Shipley GL, Molina JG, Dunner K, Broaddus RR. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest 2015; 126:220-38. [PMID: 26642367 DOI: 10.1172/jci79380] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ecto-5'-nucleotidase (CD73) is central to the generation of extracellular adenosine. Previous studies have highlighted a detrimental role for extracellular adenosine in cancer, as it dampens T cell-mediated immune responses. Here, we determined that, in contrast to other cancers, CD73 is markedly downregulated in poorly differentiated and advanced-stage endometrial carcinoma compared with levels in normal endometrium and low-grade tumors. In murine models, CD73 deficiency led to a loss of endometrial epithelial barrier function, and pharmacological CD73 inhibition increased in vitro migration and invasion of endometrial carcinoma cells. Given that CD73-generated adenosine is central to regulating tissue protection and physiology in normal tissues, we hypothesized that CD73-generated adenosine in endometrial carcinoma induces an innate reflex to protect epithelial integrity. CD73 associated with cell-cell contacts, filopodia, and membrane zippers, indicative of involvement in cell-cell adhesion and actin polymerization-dependent processes. We determined that CD73-generated adenosine induces cortical actin polymerization via adenosine A1 receptor (A1R) induction of a Rho GTPase CDC42-dependent conformational change of the actin-related proteins 2 and 3 (ARP2/3) actin polymerization complex member N-WASP. Cortical F-actin elevation increased membrane E-cadherin, β-catenin, and Na(+)K(+) ATPase. Together, these findings reveal that CD73-generated adenosine promotes epithelial integrity and suggest why loss of CD73 in endometrial cancer allows for tumor progression. Moreover, our data indicate that the role of CD73 in cancer is more complex than previously described.
Collapse
|