1
|
Amanya SB, Oyewole-Said D, Ernste KJ, Bisht N, Murthy A, Vazquez-Perez J, Konduri V, Decker WK. The mARS complex: a critical mediator of immune regulation and homeostasis. Front Immunol 2024; 15:1423510. [PMID: 38975338 PMCID: PMC11224427 DOI: 10.3389/fimmu.2024.1423510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Over the course of evolution, many proteins have undergone adaptive structural changes to meet the increasing homeostatic regulatory demands of multicellularity. Aminoacyl tRNA synthetases (aaRS), enzymes that catalyze the attachment of each amino acid to its cognate tRNA, are such proteins that have acquired new domains and motifs that enable non-canonical functions. Through these new domains and motifs, aaRS can assemble into large, multi-subunit complexes that enhance the efficiency of many biological functions. Moreover, because the complexity of multi-aminoacyl tRNA synthetase (mARS) complexes increases with the corresponding complexity of higher eukaryotes, a contribution to regulation of homeostatic functions in multicellular organisms is hypothesized. While mARS complexes in lower eukaryotes may enhance efficiency of aminoacylation, little evidence exists to support a similar role in chordates or other higher eukaryotes. Rather, mARS complexes are reported to regulate multiple and variegated cellular processes that include angiogenesis, apoptosis, inflammation, anaphylaxis, and metabolism. Because all such processes are critical components of immune homeostasis, it is important to understand the role of mARS complexes in immune regulation. Here we provide a conceptual analysis of the current understanding of mARS complex dynamics and emerging mARS complex roles in immune regulation, the increased understanding of which should reveal therapeutic targets in immunity and immune-mediated disease.
Collapse
Affiliation(s)
- Sharon Bright Amanya
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Damilola Oyewole-Said
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Keenan J. Ernste
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Nalini Bisht
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Arnav Murthy
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Natural Sciences, Rice University, Houston, TX, United States
| | - Jonathan Vazquez-Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Yuan C, Liu X, Cai S, Zhang L, Guo R, Jia Z, Sun Y, Li B. Secreted aminoacyl-tRNA synthetase-interacting multifunctional protein-1 (AIMP1) is a promising predictor for the severity of acute AQP4-IgG positive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2023; 70:104504. [PMID: 36623394 DOI: 10.1016/j.msard.2023.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Aminoacyl-tRNA synthetase complex interacting with multifunctional protein-1 (AIMP1) has been reported to carry pro-inflammatory properties and anti-angiogenesis effects. However, the exact role of AIMP1 in patients with NMOSD is not yet clear. Our objective was to investigate the relationship between plasma AIMP1 levels and disease severity in patients with AQP4-IgG+ NMOSD from North China based on the Expanded Disability Status Scale (EDSS) score. METHODS Plasma AIMP1 levels were measured using ELISA kits in 94 patients with AQP4-IgG+NMOSD (48 in the acute phase before high-dose intravenous methylprednisolone (IVMP) therapy, 21 in the acute phase after IVMP therapy, 25 in the clinical remission-phase)as well as 33 healthy controls (HCs). The disability function of NMOSD patients was evaluated using the EDSS score. Furthermore, the clinical characteristics of the patients were also evaluated, and laboratory tests were performed on blood samples. RESULTS The plasma AIMP1 levels in AQP4-IgG+NMOSD patients with acute phase before IVMP therapy were significantly higher as compared to those in patients after the IVMP therapy (p < 0.001) as well as those in the clinical remission phase (p = 0.021) or HCs (p < 0.001). Plasma AIMP1 levels were positively correlated with EDSS scores (r = 0.485, p < 0.001) and negatively correlated with serum complement 3 concentrations (r =-0.452, p = 0.001). AIMP1 exhibited the potential to distinguish NMOSD from HCs (AUROC 0.820, p < 0.0001) and could differentiate mild and moderate-severe NMOSD (AUROC 0.790, p = 0.0006). Furthermore, plasma AIMP1 levels of ≥49.55pg/mL were found to be an independent predictor of the risk for moderate-severe NMOSD (with OR 0.03, 95%CI 0.001-0.654, p = 0.026). CONCLUSION AIMP1 may be involved in the pathogenesis of AQP4-IgG+NMOSD disease and predict the disease activity, severity, or effect of treatment in patients with NMOSD. Further studies should be performed to reveal the precise mechanisms of AQP4-IgG+NMOSD.
Collapse
Affiliation(s)
- Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China; Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Xueyu Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Shuang Cai
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Zhen Jia
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yafei Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
3
|
Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses 2022; 14:v14030613. [PMID: 35337020 PMCID: PMC8955326 DOI: 10.3390/v14030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as “molecule communicators” on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.
Collapse
|
4
|
Jung HJ, Park SH, Cho KM, Jung KI, Cho D, Kim TS. Threonyl-tRNA Synthetase Promotes T Helper Type 1 Cell Responses by Inducing Dendritic Cell Maturation and IL-12 Production via an NF-κB Pathway. Front Immunol 2020; 11:571959. [PMID: 33178197 PMCID: PMC7592646 DOI: 10.3389/fimmu.2020.571959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Threonyl-tRNA synthetase (TRS) is an aminoacyl-tRNA synthetase that catalyzes the aminoacylation of tRNA by transferring threonine. In addition to an essential role in translation, TRS was extracellularly detected in autoimmune diseases and also exhibited pro-angiogenetic activity. TRS is reported to be secreted into the extracellular space when vascular endothelial cells encounter tumor necrosis factor-α. As T helper (Th) type 1 response and IFN-γ levels are associated with autoimmunity and angiogenesis, in this study, we investigated the effects of TRS on dendritic cell (DC) activation and CD4 T cell polarization. TRS-treated DCs exhibited up-regulated expression of activation-related cell-surface molecules, including CD40, CD80, CD86, and MHC class II. Treatment of DCs with TRS resulted in a significant increase of IL-12 production. TRS triggered nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, MAPK inhibitors markedly recovered the degradation of IκB proteins and the increased IL-12 production in TRS-treated DCs, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in TRS-induced DC maturation and activation. Importantly, TRS-stimulated DCs significantly increased the populations of IFN-γ+CD4 T cells, and the levels of IFN-γ when co-cultured with CD4+ T cells. The addition of a neutralizing anti-IL-12 mAb to the cell cultures of TRS-treated DCs and CD4+ T cells resulted in decreased IFN-γ production, indicating that TRS-stimulated DCs may enhance the Th1 response through DC-derived IL-12. Injection of OT-II mice with OVA-pulsed, TRS-treated DCs also enhanced Ag-specific Th1 responses in vivo. Importantly, injection with TRS-treated DC exhibited increased populations of IFN-γ+-CD4+ and -CD8+ T cells as well as secretion level of IFN-γ, resulting in viral clearance and increased survival periods in mice infected with influenza A virus (IAV), as the Th1 response is associated with the enhanced cellular immunity, including anti-viral activity. Taken together, these results indicate that TRS promotes the maturation and activation of DCs, DC-mediated Th1 responses, and anti-viral effect on IAV infection.
Collapse
Affiliation(s)
- Hak-Jun Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Su-Ho Park
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kyung-Min Cho
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang Il Jung
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
5
|
Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer. Cell Death Dis 2020; 11:579. [PMID: 32709848 PMCID: PMC7382500 DOI: 10.1038/s41419-020-02794-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are an important class of enzymes with an evolutionarily conserved mechanism for protein synthesis. In higher eukaryotic systems, eight ARSs and three ARS-interacting multi-functional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC), which seems to contribute to cellular homeostasis. Of these, AIMPs are generally considered as non-enzyme factors, playing a scaffolding role during MSC assembly. Although the functions of AIMPs are not fully understood, increasing evidence indicates that these scaffold proteins usually exert tumor-suppressive activities. In addition, endothelial monocyte-activating polypeptide II (EMAP II), as a cleavage product of AIMP1, and AIMP2-DX2, as a splice variant of AIMP2 lacking exon 2, also have a pivotal role in regulating tumorigenesis. In this review, we summarize the biological functions of AIMP1, EMAP II, AIMP2, AIMP2-DX2, and AIMP3. Also, we systematically introduce their emerging roles in cancer, aiming to provide new ideas for the treatment of cancer.
Collapse
|
6
|
Halpert MM, Konduri V, Liang D, Vazquez-Perez J, Hofferek CJ, Weldon SA, Baig Y, Vedula I, Levitt JM, Decker WK. MHC class I and II peptide homology regulates the cellular immune response. FASEB J 2020; 34:8082-8101. [PMID: 32298026 DOI: 10.1096/fj.201903002r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
Mammalian immune responses are initiated by "danger" signals--immutable molecular structures known as PAMPs. When detected by fixed, germline encoded receptors, pathogen-associated molecular pattern (PAMPs) subsequently inform the polarization of downstream adaptive responses depending upon identity and localization of the PAMP. Here, we report the existence of a completely novel "PAMP" that is not a molecular structure but an antigenic pattern. This pattern--the incidence of peptide epitopes with stretches of 100% sequence identity bound to both dendritic cell (DC) major histocompatibility (MHC) class I and MHC class II--strongly induces TH 1 immune polarization and activation of the cellular immune response. Inherent in the existence of this PAMP is the concomitant existence of a molecular sensor complex with the ability to scan and compare amino acid sequence identities of bound class I and II peptides. We provide substantial evidence implicating the multienzyme aminoacyl-tRNA synthetase (mARS) complex and its AIMp1 structural component as the key constituents of this complex. The results demonstrate a wholly novel mechanism by which T-helper (TH ) polarization is governed and provide critical information for the design of vaccination strategies intended to provoke cell-mediated immunity.
Collapse
Affiliation(s)
- Matthew M Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Colby J Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Scott A Weldon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Yunyu Baig
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Indira Vedula
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Levitt
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - William K Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Zou C, Gu C, Zhao M, Zhu D, Wang N, Yu J, Yao Y, Chen Y, Shi M, Gu Q, Qian Y, Qiu Q, Zheng Z. The Role of the AIMP1 Pathway in Diabetic Retinopathy: AIMP1-Targeted Intervention Study in Diabetic Retinopathy. Ophthalmic Res 2020; 63:122-132. [PMID: 31962335 DOI: 10.1159/000503637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We characterized the role of aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) in retinal inflammation and apoptosis regulation, both in vivo and in vitro. In addition, we used clinical specimens to show the relationship between AIMP1 and the development of diabetic retinopathy (DR). OBJECTIVE To elucidate the role of AIMP1 in DR. METHODS A diabetic AIMP1-specific knockout (KO) C57 mouse model was used. Human retinal microvascular endothelial cells (HRMECs) were incubated with normal glucose, high glucose (HG), and HG + AIMP1-small interfering RNA (siRNA). The expression of AIMP1 and relative inflammatory and apoptotic cytokines in diabetic mice retina and HRMECs were measured using Western blotting and polymerase chain reaction. The apoptosis of HRMECs was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The levels of AIMP1 in the vitreous humor and serum were determined using ELISA. Possible correlations between the intravitreal level of AIMP1 and blood glucose, glycosylated hemoglobin HbA1c, intravitreal levels of IL-1β, and caspase-3 were determined. RESULTS The expression of inflammatory and apoptotic proteins was inhibited in the AIMP1 KO mice and HRMECs incubated with AIMP1-siRNA. The apoptosis of HRMECs was decreased in the AIMP1-siRNA group. The intravitreal level of AIMP1 in DR patients was significantly higher than that in nondiabetic patients (p < 0.01). There was a positive correlation between intravitreal AIMP1 and HbA1c and intravitreal IL-1β and caspase-3 (p < 0.05). CONCLUSIONS HG induced increased expression of AIMP1 in HRMECs and retinas from diabetic C57 mice, thereby increasing the expression of inflammatory and apoptotic cytokines, which promoted DR progression. A decrease in AIMP1 expression prevented the development of DR by inhibiting the activation of inflammatory and apoptotic signaling. Therefore, AIMP1 is an effective interfering target for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Chen Zou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Minjie Zhao
- Department of Ophthalmology, Yixing People's Hospital, Jiangsu University, Yixing, China
| | - Dandan Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Na Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Jingjing Yu
- Department of Ophthalmology, Changshu 2nd People's Hospital, Changshu, China
| | - Yuan Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Ye Chen
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Min Shi
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Qi Gu
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Yingying Qian
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, China,
| |
Collapse
|
8
|
Kim MH, Kim S. Structures and functions of multi-tRNA synthetase complexes. Enzymes 2020; 48:149-173. [PMID: 33837703 DOI: 10.1016/bs.enz.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Human body is a finely-tuned machine that requires homeostatic balance based on systemically controlled biological processes involving DNA replication, transcription, translation, and energy metabolism. Ubiquitously expressed aminoacyl-tRNA synthetases have been investigated for many decades, and they act as cross-over mediators of important biological processes. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC) appears to be a central machinery controlling the complexity of biological systems. The structural integrity of MSC determined by the associated components is correlated with increasing biological complexity that links to system development in higher organisms. Although the role of the MSCs is still unclear, this chapter describes the current knowledge on MSC components that are associated with and regulate functions beyond their catalytic activities with focus on human MSC.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon, South Korea.
| |
Collapse
|
9
|
Mun CH, Kim JO, Ahn SS, Yoon T, Kim SJ, Ko E, Noh HD, Park YB, Jung HJ, Kim TS, Lee SW, Park SG. Atializumab, a humanized anti-aminoacyl-tRNA synthetase-interacting multifunctional protein-1 (AIMP1) antibody significantly improves nephritis in (NZB/NZW) F1 mice. Biomaterials 2019; 220:119408. [DOI: 10.1016/j.biomaterials.2019.119408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
|
10
|
Kim MS, Lee A, Cho D, Kim TS. AIMP1 regulates TCR signaling and induces differentiation of regulatory T cells by interfering with lipid raft association. Biochem Biophys Res Commun 2019; 514:875-880. [PMID: 31084930 DOI: 10.1016/j.bbrc.2019.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
Abstract
In addition to a role in translation, AIMP1 is secreted to affect various immune cells, such as macrophages, dendritic cells, B cells, and natural killer cells. However, the direct effects of AIMP1 on T cells have not yet been reported. In this study, we investigated whether AIMP1 could modulate T cell responses directly. Results revealed that AIMP1 significantly inhibited T cell receptor (TCR)-dependent activation and proliferation of CD4 T cells, as well as decreased TCR stimuli-induced Ca2+ influx in CD4 T cells. In addition, microscopic analysis revealed that lipid raft association in response to TCR engagement was significantly reduced in the presence of AIMP1, and the phosphorylation of PLCγ and PI3K was also down-regulated in CD4 T cells by AIMP1. Furthermore, AIMP1 specifically enhanced the differentiation of regulatory T (Treg) cells, while it had no effect on T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cell differentiation. Collectively, these results indicate that AIMP1 affects T cells directly by down-regulating TCR signaling complex formation and inducing Treg cell differentiation in CD4 T cells.
Collapse
MESH Headings
- Animals
- Calcium/immunology
- Calcium/metabolism
- Cell Differentiation/drug effects
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/pharmacology
- Female
- Gene Expression Regulation
- Immunophenotyping
- Ion Transport/drug effects
- Lymphocyte Activation/drug effects
- Membrane Microdomains/drug effects
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Mice
- Mice, Inbred C57BL
- Phosphatidylinositol 3-Kinase/genetics
- Phosphatidylinositol 3-Kinase/immunology
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phosphorylation/drug effects
- Primary Cell Culture
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Myun Soo Kim
- Institute of Convergence Science, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Arim Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Daeho Cho
- Institute of Convergence Science, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Lim HX, Jung HJ, Lee A, Park SH, Han BW, Cho D, Kim TS. Lysyl-Transfer RNA Synthetase Induces the Maturation of Dendritic Cells through MAPK and NF-κB Pathways, Strongly Contributing to Enhanced Th1 Cell Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:2832-2841. [PMID: 30275047 DOI: 10.4049/jimmunol.1800386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Abstract
In addition to essential roles in protein synthesis, lysyl-tRNA synthetase (KRS) is secreted to trigger a proinflammatory function that induces macrophage activation and TNF-α secretion. KRS has been associated with autoimmune diseases such as polymyositis and dermatomyositis. In this study, we investigated the immunomodulatory effects of KRS on bone marrow-derived dendritic cells (DCs) of C57BL/6 mice and subsequent polarization of Th cells and analyzed the underlying mechanisms. KRS-treated DCs increased the expression of cell surface molecules and proinflammatory cytokines associated with DC maturation and activation. Especially, KRS treatment significantly increased production of IL-12, a Th1-polarizing cytokine, in DCs. KRS triggered the nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, JNK, p38, and ERK inhibitors markedly recovered the degradation of IκB proteins, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in the KRS-induced DC maturation and activation. Importantly, KRS-treated DCs strongly increased the differentiation of Th1 cells when cocultured with CD4+ T cells. The addition of anti-IL-12-neutralizing Ab abolished the secretion of IFN-γ in the coculture, indicating that KRS induces Th1 cell response via DC-derived IL-12. Moreover, KRS enhanced the OVA-specific Th1 cell polarization in vivo following the adoptive transfer of OVA-pulsed DCs. Taken together, these results indicated that KRS effectively induced the maturation and activation of DCs through MAPKs/NF-κB-signaling pathways and favored DC-mediated Th1 cell response.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hak-Jun Jung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Arim Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Si Hoon Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byung Woo Han
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; and
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Seoul 02841, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
12
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
13
|
Shen M, Sun Q, Wang J, Pan W, Ren X. Positive and negative functions of B lymphocytes in tumors. Oncotarget 2018; 7:55828-55839. [PMID: 27331871 PMCID: PMC5342456 DOI: 10.18632/oncotarget.10094] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/04/2016] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicated that B lymphocytes exerted complex functions in tumor immunity. On the one hand, B lymphocytes can inhibit tumor development through antibody generation, antigen presentation, tumor tissue interaction, and direct killing. On the other hand, B lymphocytes have tumor-promoting functions. A typical type of B lymphocytes, termed regulatory B cells, is confirmed to attenuate immune response in a tumor environment. In this paper, we summarize the current understanding of B-cell functions in tumor immunology, which may shed light on potential therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wei Pan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
14
|
Liang D, Tian L, You R, Halpert MM, Konduri V, Baig YC, Paust S, Kim D, Kim S, Jia F, Huang S, Zhang X, Kheradmand F, Corry DB, Gilbert BE, Levitt JM, Decker WK. AIMp1 Potentiates T H1 Polarization and Is Critical for Effective Antitumor and Antiviral Immunity. Front Immunol 2018; 8:1801. [PMID: 29379495 PMCID: PMC5775236 DOI: 10.3389/fimmu.2017.01801] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) must integrate a broad array of environmental cues to exact control over downstream immune responses including TH polarization. The multienzyme aminoacyl-tRNA synthetase complex component AIMp1/p43 responds to cellular stress and exerts pro-inflammatory functions; however, a role for DC-expressed AIMp1 in TH polarization has not previously been shown. Here, we demonstrate that the absence of AIMp1 in bone marrow-derived DC (BMDC) significantly impairs cytokine and costimulatory molecule expression, p38 MAPK signaling, and TH1 polarization of cocultured T-cells while significantly dysregulating immune-related gene expression. These deficits resulted in significantly compromised BMDC vaccine-mediated protection against melanoma. AIMp1 within the host was also critical for innate and adaptive antiviral immunity against influenza virus infection in vivo. Cancer patients with AIMp1 expression levels in the highest tertiles exhibited a 70% survival advantage at 15-year postdiagnosis as determined by bioinformatics analysis of nearly 9,000 primary human tumor samples in The Cancer Genome Atlas database. These data establish the importance of AIMp1 for the effective governance of antitumor and antiviral immune responses.
Collapse
Affiliation(s)
- Dan Liang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lin Tian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Ran You
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew M Halpert
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Yunyu C Baig
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Fuli Jia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Antibody-based Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Antibody-based Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Xiang Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Brian E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Kim MS, Song JH, Cohen EP, Cho D, Kim TS. Aminoacyl tRNA Synthetase–Interacting Multifunctional Protein 1 Activates NK Cells via Macrophages In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 198:4140-4147. [DOI: 10.4049/jimmunol.1601558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/09/2017] [Indexed: 11/19/2022]
|
16
|
Cohen PL. Comment on "Aminoacyl tRNA Synthetase-Interacting Multifunctional Protein 1 Acts as a Novel B Cell-Activating Factor In Vitro and In Vivo". THE JOURNAL OF IMMUNOLOGY 2015; 195:1339. [PMID: 26254265 DOI: 10.4049/jimmunol.1501167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Philip L Cohen
- Section of Rheumatology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|