1
|
Gieniusz E, Skrzydlewska E, Łuczaj W. Current Insights into the Role of UV Radiation-Induced Oxidative Stress in Melanoma Pathogenesis. Int J Mol Sci 2024; 25:11651. [PMID: 39519202 PMCID: PMC11546485 DOI: 10.3390/ijms252111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cutaneous melanoma accounts for the majority of skin cancer-related deaths, and its incidence increases each year. The growing number of melanoma cases, especially in advanced stages, poses a significant socio-medical challenge throughout the world. Extensive research on melanoma pathogenesis identifies UV radiation as the most important factor in melanocytic transformation. Oxidative effects of UV irradiation exert their influence on melanoma pathogenesis primarily through modification of nucleic acids, proteins, and lipids, further disrupting cellular signaling and cell cycle regulation. Its effects extend beyond melanocytes, leading to immunosuppression in the exposed skin tissue, which consequently creates conditions for immune surveillance evasion and further progression. In this review, we focus on the specific molecular changes observed in the UV-dependent oxidative stress environment and their biological consequences in the course of the disease, which have not been considered in previous reviews on melanoma. Nonetheless, data show that the exact role of oxidative stress in melanoma initiation and progression remains unclear, as it affects cancerous cells differently depending on the specific context. A better understanding of the pathophysiological basis of melanoma development holds promise for identifying potential targets, which could lead to effective melanoma prevention strategies.
Collapse
Affiliation(s)
| | | | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland; (E.G.); (E.S.)
| |
Collapse
|
2
|
Qi M, Liao S, Wang J, Deng Y, Zha A, Shao Y, Cui Z, Song T, Tang Y, Tan B, Yin Y. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism. J Cachexia Sarcopenia Muscle 2022; 13:677-695. [PMID: 34811946 PMCID: PMC8818611 DOI: 10.1002/jcsm.12858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gut health plays a vital role in the overall health and disease control of human and animals. Intestinal oxidative stress is a critical player in the induction and progression of cachexia which is conventionally diagnosed and classified by weight loss. Therefore, reduction of intestinal oxidative injury is a common and highly effective strategy for the maintenance of human and animal health. Here we identify intestinal myeloid differentiation primary response gene 88 (MyD88) as a novel target for intestinal oxidative stress using canonical oxidative stress model induced by paraquat (PQ) in vitro and in vivo. METHODS Intestinal oxidative stress was induced by administration of PQ in intestinal epithelial cells (IECs) and mouse model. Cell proliferation, apoptosis, DNA damage, mitochondrial function, oxidative status, and autophagy process were measured in wild-type and MyD88-deficient IECs during PQ exposure. Autophagy inhibitor (3-methyladenine) and activator (rapamycin) were employed to assess the role of autophagy in MyD88-deficient IECs during PQ exposure. MyD88 specific inhibitor, ST2825, was used to verify function of MyD88 during PQ exposure in mouse model. RESULTS MyD88 protein levels and apoptotic rate of IECs are increased in response to PQ exposure (P < 0.001). Intestinal deletion of MyD88 blocks PQ-induced apoptosis (~42% reduction) and DNA damage (~86% reduction), and improves mitochondrial fission (~37% reduction) and function including mitochondrial membrane potential (~23% increment) and respiratory metabolism capacity (~26% increment) (P < 0.01). Notably, there is a marked decrease in reactive oxygen species in MyD88-deficient IECs during PQ exposure (~70% reduction), which are consistent with high activity of antioxidative enzymes (~83% increment) (P < 0.001). Intestinal ablation of MyD88 inhibits mTOR signalling, and further phosphorylates p53 proteins during PQ exposure, which eventually promotes intestinal autophagy (~74% increment) (P < 0.01). Activation of autophagy (rapamycin) promotes IECs growth as compared with 3-methyladenine-treatment during PQ exposure (~173% increment), while inhibition of autophagy (3-methyladenine) exacerbates oxidative stress in MyD88-deficient IECs (P < 0.001). In mouse model, inhibition of MyD88 using specific inhibitor ST2825 followed by PQ treatment effectively ameliorates weight loss (~4% increment), decreased food intake (~92% increment), gastrocnemius and soleus loss (~24% and ~20% increment, respectively), and intestinal oxidative stress in an autophagy dependent manner (P < 0.01). CONCLUSIONS MyD88 modulates intestinal oxidative stress in an autophagy-dependent mechanism, which suggests that reducing MyD88 level may constitute a putative therapeutic target for intestinal oxidative injury-induced weight loss.
Collapse
Affiliation(s)
- Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Simeng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yirui Shao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijuan Cui
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulong Tang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng SR, Huang QD, Zheng ZH, Zhang ZT, Guo GL. circGFRA1 affects the sensitivity of triple-negative breast cancer cells to paclitaxel via the miR-361-5p/TLR4 pathway. J Biochem 2021; 169:601-611. [PMID: 33481008 DOI: 10.1093/jb/mvaa148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/10/2020] [Indexed: 01/14/2023] Open
Abstract
In recent years, the role of circular RNAs (circRNAs) in tumours has attracted widespread attention. Some circRNAs have been reported to play a role in triple-negative breast cancer (TNBC). However, circRNAs have rarely been reported in terms of TNBC resistance. This study aimed to clarify that circGFRA1 affects the sensitivity of TNBC cells to paclitaxel (PTX) by the miR-361-5p/TLR4 pathway. Compared with the non-PTX-resistant TNBC cell line MDA-MB-231, the expression of circGFRA1 in the PTX-resistant TNBC cell line MDA-MB-231.PR was significantly increased. The small hairpin RNA-mediated circGFRA1 knockdown inhibited the resistance of TNBC cells to PTX. RNA pull-down assay and luciferase reporter gene assay confirmed the binding between circGFRA1 and miR-361-5p and between miR-361-5p and TLR4. It has been proven that circGFRA1 knockdown can inhibit the resistance of TNBC cells to PTX by promoting the expression of miR-361-5p, and subsequently reduce the expression of TLR4.
Collapse
Affiliation(s)
- Shu-Rong Zheng
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China.,Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang 325000, China
| | - Qi-di Huang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang 325000, China
| | - Zhi-Hai Zheng
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China.,Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang 325000, China
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Gui-Long Guo
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Whitley MJ, Suwanpradid J, Lai C, Jiang SW, Cook JL, Zelac DE, Rudolph R, Corcoran DL, Degan S, Spasojevic I, Levinson H, Erdmann D, Reid C, Zhang JY, Robson SC, Healy E, Havran WL, MacLeod AS. ENTPD1 (CD39) Expression Inhibits UVR-Induced DNA Damage Repair through Purinergic Signaling and Is Associated with Metastasis in Human Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2021; 141:2509-2520. [PMID: 33848530 DOI: 10.1016/j.jid.2021.02.753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022]
Abstract
UVR and immunosuppression are major risk factors for cutaneous squamous cell carcinoma (cSCC). Regulatory T cells promote cSCC carcinogenesis, and in other solid tumors, infiltrating regulatory T cells and CD8+ T cells express ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1) (also known as CD39), an ectoenzyme that catalyzes the rate-limiting step in converting extracellular adenosine triphosphate (ATP) to extracellular adenosine (ADO). We previously showed that extracellular purine nucleotides influence DNA damage repair. In this study, we investigate whether DNA damage repair is modulated through purinergic signaling in cSCC. We found increased ENTPD1 expression on T cells within cSCCs when compared with the expression on T cells from blood or nonlesional skin, and accordingly, concentrations of derivative extracellular adenosine diphosphate (ADP), adenosine monophosphate (AMP), and ADO are increased in tumors compared with those in normal skin. Importantly, ENTPD1 expression is significantly higher in human cSCCs that metastasize than in those that are nonmetastatic. We also identify in a mouse model that ENTPD1 expression is induced by UVR in an IL-27-dependent manner. Finally, increased extracellular ADO is shown to downregulate the expression of NAP1L2, a nucleosome assembly protein we show to be important for DNA damage repair secondary to UVR. Together, these data suggest a role for ENTPD1 expression on skin-resident T cells to regulate DNA damage repair through purinergic signaling to promote skin carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Melodi Javid Whitley
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jutamas Suwanpradid
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chester Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Department of Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Simon W Jiang
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jonathan L Cook
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel E Zelac
- Department of Dermatology and Mohs Surgery, Scripps Clinic, La Jolla, California, USA
| | - Ross Rudolph
- Division of Plastic Surgery, Scripps Clinic, San Diego, California, USA; Division of Plastic Surgery, University of California San Diego, San Diego, California, USA
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simone Degan
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA; PK/PD Core Lab, Duke Cancer Institute, Durham, North Carolina, USA
| | - Howard Levinson
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Detlev Erdmann
- Division of Plastic, Maxillofacial, and Oral Surgery, Duke Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Claire Reid
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Department of Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Jennifer Y Zhang
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Pinnell Center for Investigative Dermatology, Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, Massachusetts, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Department of Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Wendy L Havran
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, USA
| | - Amanda S MacLeod
- Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Pinnell Center for Investigative Dermatology, Department of Duke Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA; Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Moretti IF, Lerario AM, Trombetta-Lima M, Sola PR, da Silva Soares R, Oba-Shinjo SM, Marie SKN. Late p65 nuclear translocation in glioblastoma cells indicates non-canonical TLR4 signaling and activation of DNA repair genes. Sci Rep 2021; 11:1333. [PMID: 33446690 PMCID: PMC7809124 DOI: 10.1038/s41598-020-79356-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain primary malignancy. Toll-like receptor 4 (TLR4) has a dual role in cell fate, promoting cell survival or death depending on the context. Here, we analyzed TLR4 expression in different grades of astrocytoma, and observed increased expression in tumors, mainly in GBM, compared to non-neoplastic brain tissue. TLR4 role was investigated in U87MG, a GBM mesenchymal subtype cell line, upon LPS stimulation. p65 nuclear translocation was observed in late phase, suggesting TLR4-non-canonical pathway activation. In fact, components of ripoptosome and inflammasome cascades were upregulated and they were significantly correlated in GBMs of the TCGA-RNASeq dataset. Moreover, an increased apoptotic rate was observed when the GBM-derived U87MG cells were co-treated with LPS and Temozolomide (TMZ) in comparison to TMZ alone. Increased TLR4 immunostaining was detected in nuclei of U87MG cells 12 h after LPS treatment, concomitant to activation of DNA repair genes. Time-dependent increased RAD51, FEN1 and UNG expression levels were confirmed after LPS stimulation, which may contribute to tumor cell fitness. Moreover, the combined treatment with the RAD51 inhibitor, Amuvatinib in combination with, TMZ after LPS stimulation reduced tumor cell viability more than with each treatment alone. In conclusion, our results suggest that stimulation of TLR4 combined with pharmacological inhibition of the DNA repair pathway may be an alternative treatment for GBM patients.
Collapse
Affiliation(s)
- Isabele F Moretti
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil.
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marina Trombetta-Lima
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Paula R Sola
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Roseli da Silva Soares
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Sueli M Oba-Shinjo
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
7
|
Kerkhof P, Gruijl F. Phototherapy in the perspective of the chronicity of psoriasis. J Eur Acad Dermatol Venereol 2020; 34:926-931. [DOI: 10.1111/jdv.16245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- P.C.M. Kerkhof
- Department of Dermatology Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
| | - F.R. Gruijl
- Department of Dermatology Leids Universitair Medisch Centrum Nijmegen The Netherlands
| |
Collapse
|
8
|
Wu Y, Wang Y, Gong S, Tang J, Zhang J, Li F, Yu B, Zhang Y, Kou J. Ruscogenin alleviates LPS-induced pulmonary endothelial cell apoptosis by suppressing TLR4 signaling. Biomed Pharmacother 2020; 125:109868. [PMID: 32036210 DOI: 10.1016/j.biopha.2020.109868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary process triggered by varieties of pathophysiological factors, among which apoptosis of pulmonary endothelial cells plays a critical role in the progression of ALI/ARDS. Ruscogenin (RUS) has been found to exert significant protective effect on ALI induced by lipopolysaccharides (LPS), but there is little information about its role in LPS-induced pulmonary endothelial cell apoptosis. The aim of the present study was to investigate the underlying mechanism in which RUS attenuates LPS-induced pulmonary endothelial cell apoptosis. Mice were challenged with LPS (5 mg/kg) by intratracheal instillation for 24 h to induce apoptosis of pulmonary endothelial cells in model group. RUS (three doses: 0.1, 0.3, and 1 mg/kg) was administrated orally 1 h prior to LPS challenge. The results showed that RUS could attenuate LPS-induced lung injury and pulmonary endothelial apoptosis significantly. And we observed that RUS inhibited the activation of TLR4/MYD88/NF-κB pathway in pulmonary endothelium after LPS treatment. In murine lung vascular endothelial cells (MLECs) we further confirmed that RUS (1 μmol/L) markedly ameliorated MLECs apoptosis by suppressing TLR4 signaling. By using TLR4 knockout mice we found that TLR4 was essential for the RUS-mediated eff ;ect on LPS-stimulated pulmonary endothelial apoptosis. Collectively, our results indicate that RUS plays a protective role against LPS-induced endothelial cell apoptosis via regulating TLR4 signaling, and may be a promising agent in the management of ALI.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuwei Wang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Shuaishuai Gong
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Jiahui Tang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Jiazhi Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Fang Li
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Boyang Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yuanyuan Zhang
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
9
|
Xie X, Ma L, Zhou Y, Shen W, Xu D, Dou J, Shen B, Zhou C. Polysaccharide enhanced NK cell cytotoxicity against pancreatic cancer via TLR4/MAPKs/NF-κB pathway in vitro/vivo. Carbohydr Polym 2019; 225:115223. [PMID: 31521276 DOI: 10.1016/j.carbpol.2019.115223] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
A polysaccharide isolated from Strongylocentrotus nudus eggs (SEP) reportedly displays immune activity in vivo. Here, its effect and underlying mechanism in the treatment of pancreatic cancer were investigated. SEP obviously inhibited pancreatic cancer growth by activating NK cells in vitro/vivo via TLR4/MAPKs/NF-κB signaling pathway, The tumor inhibitory rate achieved to 44.5% and 50.8% at a dose of 40 mg/kg in Bxpc-3 and SW1990 nude mice, respectively. Moreover, SEP obviously augmented the Gemcitabine (GEM) antitumor effect by upregulating NKG2D, which improved the sensitivity of NK cells targeting to its ligand MICA; meanwhile, the antitumor inhibitory rate was 68.6% in BxPC-3 tumor-bearing mice. Moreover, SEP reversed GEM-induced apoptosis and atrophy in both spleen and bone marrow via suppressing ROS secretion in vivo. These results suggested that pancreatic cancer was effectively inhibited by SEP-enhanced NK cytotoxicity mediated primarily through TLR4/MAPKs/NF-κB signaling pathway, representing a potential immunotherapy candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xin Xie
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Wen Shen
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Duiyue Xu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Jie Dou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China.
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
10
|
Dickinson SE, Wondrak GT. TLR4 in skin cancer: From molecular mechanisms to clinical interventions. Mol Carcinog 2019; 58:1086-1093. [PMID: 31020719 DOI: 10.1002/mc.23016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
The health and economic burden imposed by skin cancer is substantial, creating an urgent need for the development of improved molecular strategies for its prevention and treatment. Cutaneous exposure to solar ultraviolet (UV) radiation is a causative factor in skin carcinogenesis, and TLR4-dependent inflammatory dysregulation is an emerging key mechanism underlying detrimental effects of acute and chronic UV exposure. Direct and indirect TLR4 activation, upstream of inflammatory signaling, is elicited by a variety of stimuli, including pathogen-associated molecular patterns (such as lipopolysaccharide) and damage-associated molecular patterns (such as HMGB1) that are formed upon exposure to environmental stressors, such as solar UV. TLR4 involvement has now been implicated in major types of skin malignancies, including nonmelanoma skin cancer, melanoma and Merkel cell carcinoma. Targeted molecular interventions that positively or negatively modulate TLR4 signaling have shown promise in translational, preclinical, and clinical investigations that may benefit skin cancer patients in the near future.
Collapse
Affiliation(s)
- Sally E Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
11
|
Dickinson SE, Wondrak GT. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr Med Chem 2019; 25:5487-5502. [DOI: 10.2174/0929867324666170828125328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/16/2023]
Abstract
Background:
Exposure to solar ultraviolet (UV) radiation is a causative factor in
skin photodamage and carcinogenesis, and inflammatory dysregulation is a key mechanism
underlying detrimental effects of acute and chronic UV exposure. The health and economic
burden of skin cancer treatment is substantial, creating an increasingly urgent need for the development
of improved molecular strategies for photoprotection and photochemoprevention.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature
revealed 139 articles including our own that are presented and critically evaluated in this
TLR4-directed review.
Objective:
To understand the molecular role of Toll-like receptor 4 (TLR4) as a key regulator
of skin anti-microbial defense, wound healing, and cutaneous tumorigenic inflammation. The
specific focus of this review is on recent published evidence suggesting that TLR4 represents
a novel molecular target for skin photoprotection and cancer photochemoprevention.
Results:
Cumulative experimental evidence indicates that pharmacological and genetic antagonism
of TLR4 suppresses UV-induced inflammatory signaling involving the attenuation
of cutaneous NF-κB and AP-1 stress signaling observable in vitro and in vivo. TLR4-directed
small molecule pharmacological antagonists [including eritoran, (+)-naloxone, ST2825, and
resatorvid] have now been identified as a novel class of molecular therapeutics. TLR4 antagonists
are in various stages of preclinical and clinical development for the modulation of
dysregulated TLR4-dependent inflammatory signaling that may also contribute to skin photodamage
and photocarcinogenesis in human populations.
Conclusion:
Future research should explore the skin photoprotective and photochemopreventive
efficacy of topical TLR4 antagonism if employed in conjunction with other molecular
strategies including sunscreens.
Collapse
Affiliation(s)
- Sally E. Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
12
|
Vieyra-Garcia PA, Wolf P. From Early Immunomodulatory Triggers to Immunosuppressive Outcome: Therapeutic Implications of the Complex Interplay Between the Wavebands of Sunlight and the Skin. Front Med (Lausanne) 2018; 5:232. [PMID: 30250844 PMCID: PMC6139367 DOI: 10.3389/fmed.2018.00232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Phototherapy is an efficient treatment for many cutaneous diseases that involve the activation of inflammatory pathways or the overgrowth of cells with aberrant phenotype. In this review, we discuss recent advances in photoimmunology, focusing on the effects of UV-based therapies currently used in dermatology. We describe the molecular responses to the main forms of photo(chemo)therapy such as UVB, UVA-1, and PUVA that include the triggering of apoptotic or immunosuppressive pathways and help to clear diseased skin. The early molecular response to UV involves DNA photoproducts, the isomerization of urocanic acid, the secretion of biophospholipids such as platelet activating factor (PAF), the activation of aryl hydrocarbon receptor and inflammasome, and vitamin D synthesis. The simultaneous and complex interaction of these events regulates the activity of the immune system both locally and systemically, resulting in apoptosis of neoplastic and/or benign cells, reduction of cellular infiltrate, and regulation of cytokines and chemokines. Regulatory T-cells and Langerhans cells, among other skin-resident cellular populations, are deeply affected by UV exposure and are therefore important players in the mechanisms of immunomodulation and the therapeutic value of UV in all its forms. We weigh the contribution of these cells to the therapeutic application of UV and how they may participate in transferring the direct impact of UV on the skin into local and systemic immunomodulation. Moreover, we review the therapeutic mechanisms revealed by clinical and laboratory animal investigations in the most common cutaneous diseases treated with phototherapy such as psoriasis, atopic dermatitis, vitiligo, and cutaneous T-cell lymphoma. Better understanding of phototherapeutic mechanisms in these diseases will help advance treatment in general and make future therapeutic strategies more precise, targeted, personalized, safe, and efficient.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, Zhao F, Yu L, Chen X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep 2018; 18:3411-3420. [PMID: 30066873 PMCID: PMC6102647 DOI: 10.3892/mmr.2018.9326] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The influence of Toll-like receptor (TLR)4/myeloid differentiation factor (MyD)88 signaling on the invasion and metastasis of cancer cells has been previously reported. The purpose of the present study was to determine the role of TLR4/MyD88 in breast cancer cell migration and invasion, and to discover novel therapeutic targets for breast cancer treatment. TLR4, MyD88 and high mobility group box 1 (HMGB1) mRNA expression levels were assessed in highly invasive human MDA-MB-231 breast cancer cells, breast cancer cells with a low rate of invasion (MCF-7) and normal human MDA-Kb2 mammary gland cells by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of these markers were detected by western blotting and immunofluorescence. Randomly selected breast cancer and paracarcinoma tissues were used to measure TLR4 and MyD88 protein expression levels by immunohistochemistry. The mRNA and protein expression levels of TLR4 and MyD88 were significantly higher in MDA-MB-231 cells compared with either MCF-7 cells or MDA-Kb2 cells. The mRNA and protein expression levels of HMGB1 were comparable in the two breast cancer cell lines, with no statistical difference (P>0.05). TLR4 and MyD88 protein expression levels were also significantly higher in breast cancer tissues compared with paracarcinoma tissues (P<0.05). TLR4 and MyD88 protein expression levels were positively correlated with axillary lymph node metastasis and histological grade (P<0.05). TLR4/MyD88 expression levels were positively correlated with the metastasis of breast cancer cells. TLR4/MyD88 may be useful as a novel biomarker to evaluate the prognosis and treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huihao Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yajuan Fu
- Southern Biomedical Research Center, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feng Zhao
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Liangfei Yu
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
14
|
Blohm-Mangone K, Burkett NB, Tahsin S, Myrdal PB, Aodah A, Ho B, Janda J, McComas M, Saboda K, Roe DJ, Dong Z, Bode AM, Petricoin EF, Calvert VS, Curiel-Lewandrowski C, Alberts DS, Wondrak GT, Dickinson SE. Pharmacological TLR4 Antagonism Using Topical Resatorvid Blocks Solar UV-Induced Skin Tumorigenesis in SKH-1 Mice. Cancer Prev Res (Phila) 2018; 11:265-278. [PMID: 29437671 DOI: 10.1158/1940-6207.capr-17-0349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/19/2018] [Indexed: 02/06/2023]
Abstract
An urgent need exists for the development of more efficacious molecular strategies targeting nonmelanoma skin cancer (NMSC), the most common malignancy worldwide. Inflammatory signaling downstream of Toll-like receptor 4 (TLR4) has been implicated in several forms of tumorigenesis, yet its role in solar UV-induced skin carcinogenesis remains undefined. We have previously shown in keratinocyte cell culture and SKH-1 mouse epidermis that topical application of the specific TLR4 antagonist resatorvid (TAK-242) blocks acute UV-induced AP-1 and NF-κB signaling, associated with downregulation of inflammatory mediators and MAP kinase phosphorylation. We therefore explored TLR4 as a novel target for chemoprevention of UV-induced NMSC. We selected the clinical TLR4 antagonist resatorvid based upon target specificity, potency, and physicochemical properties. Here, we confirm using ex vivo permeability assays that topical resatorvid can be effectively delivered to skin, and using in vivo studies that topical resatorvid can block UV-induced AP-1 activation in mouse epidermis. We also report that in a UV-induced skin tumorigenesis model, topical resatorvid displays potent photochemopreventive activity, significantly suppressing tumor area and multiplicity. Tumors harvested from resatorvid-treated mice display reduced activity of UV-associated signaling pathways and a corresponding increase in apoptosis compared with tumors from control animals. Further mechanistic insight on resatorvid-based photochemoprevention was obtained from unsupervised hierarchical clustering analysis of protein readouts via reverse-phase protein microarray revealing a significant attenuation of key UV-induced proteomic changes by resatorvid in chronically treated high-risk SKH-1 skin prior to tumorigenesis. Taken together, our data identify TLR4 as a novel molecular target for topical photochemoprevention of NMSC. Cancer Prev Res; 11(5); 265-78. ©2018 AACRSee related editorial by Sfanos, p. 251.
Collapse
Affiliation(s)
| | | | - Shekha Tahsin
- The University of Arizona Cancer Center, Tucson, Arizona
| | - Paul B Myrdal
- Department of Pharmacy Practice and Science, The University of Arizona, Tucson, Arizona
| | - Alhassan Aodah
- Department of Pharmacy Practice and Science, The University of Arizona, Tucson, Arizona.,The National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brenda Ho
- The University of Arizona Cancer Center, Tucson, Arizona
| | - Jaroslav Janda
- The University of Arizona Cancer Center, Tucson, Arizona
| | | | | | - Denise J Roe
- The University of Arizona Cancer Center, Tucson, Arizona.,Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona
| | - Zigang Dong
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, Minnesota
| | - Ann M Bode
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, Minnesota
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, The University of Arizona, Tucson, Arizona
| | - David S Alberts
- The University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Georg T Wondrak
- The University of Arizona Cancer Center, Tucson, Arizona.,Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona
| | - Sally E Dickinson
- The University of Arizona Cancer Center, Tucson, Arizona. .,Department of Pharmacology, The University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Janda J, Burkett NB, Blohm-Mangone K, Huang V, Curiel-Lewandrowski C, Alberts DS, Petricoin EF, Calvert VS, Einspahr J, Dong Z, Bode AM, Wondrak GT, Dickinson SE. Resatorvid-based Pharmacological Antagonism of Cutaneous TLR4 Blocks UV-induced NF-κB and AP-1 Signaling in Keratinocytes and Mouse Skin. Photochem Photobiol 2016; 92:816-825. [PMID: 27859308 DOI: 10.1111/php.12659] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll-like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV-induced NF-κB and AP-1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA-based genetic TLR4 inhibition blocks UV-induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK-242), a molecularly targeted clinical TLR4 antagonist, blocks UV-induced NF-κB and MAP kinase/AP-1 activity and cytokine expression (Il-6, Il-8, and Il-10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV-induced cutaneous signaling, and future experiments will explore the potential of TLR4-directed strategies for prevention of NMSC.
Collapse
Affiliation(s)
| | | | | | - Vivian Huang
- The University of Arizona Cancer Center, Tucson, AZ
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Medicine, The University of Arizona, Tucson, AZ
| | - David S Alberts
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Medicine, The University of Arizona, Tucson, AZ
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Janine Einspahr
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Medicine, The University of Arizona, Tucson, AZ
| | - Zigang Dong
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, MN
| | - Ann M Bode
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, MN
| | - Georg T Wondrak
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Sally E Dickinson
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Pharmacology, The University of Arizona, Tucson, AZ
| |
Collapse
|
16
|
Sun XK, Chen JF, Shen H. Immunohistochemical study of toll-like receptors 2, 4, and 9 expressions in pemphigus and bullous pemphigoid lesions. Arch Dermatol Res 2016; 308:429-36. [PMID: 27221282 DOI: 10.1007/s00403-016-1656-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 04/17/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Pemphigus and bullous pemphigoid (BP) are severe autoimmune skin diseases. Whether innate immunity could be a trigger or a part of the pathogeneses is unknown. Toll-like receptors (TLRs) are important components of the innate immune system, with no previous evaluation of TLRs in autoimmune bullous diseases. This work aims to investigate TLRs 2, 4, and 9 expressions in pemphigus and bullous pemphigoid. Thirty-six patients with pemphigus vulgaris (PV), pemphigus foliaceus (PF), bullous pemphigoid (BP), and six healthy controls were studied. Skin biopsies from the patients and the controls were examined immunohistochemically for TLR2, 4, and 9 expressions. The TLR4 expressed mainly at the basal layer of epidermis in controls, but in the cases with autoimmune bullous diseases, TLR4 staining located at basal layer and suprabasal layer, even superficial layer of epidermis. The immunostaining-intensity-distribution (IID) index of TLR4 in patients with PF (13.83, P = 0.001), PV (13.08, P = 0.003), and BP (11.42, P = 0.042) were significantly higher than that of the controls (6.17). TLR2 and TLR9 showed no significantly changes at epidermal expression (P > 0.05) compared with controls. There was no correlation found between the expressions of these TLRs. This work, thus, shows a re-localization of TLR4 expression sites with increased expression in pemphigus and bullous pemphigoid lesions. Targeting TLR4 signaling is expected to be a novel treatment strategy for autoimmune bullous diseases.
Collapse
Affiliation(s)
- Xiu-Kun Sun
- Department of Dermatology, The Third People's Hospital of Hangzhou, No.38, XiHu Street, Hangzhou, 310009, Zhejiang, China.
| | - Jun-Fan Chen
- Department of Dermatology, The Third People's Hospital of Hangzhou, No.38, XiHu Street, Hangzhou, 310009, Zhejiang, China
| | - Hong Shen
- Department of Dermatology, The Third People's Hospital of Hangzhou, No.38, XiHu Street, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
17
|
Mohammed J, Beura LK, Bobr A, Astry B, Chicoine B, Kashem SW, Welty NE, Igyártó BZ, Wijeyesinghe S, Thompson EA, Matte C, Bartholin L, Kaplan A, Sheppard D, Bridges AG, Shlomchik WD, Masopust D, Kaplan DH. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat Immunol 2016; 17:414-21. [PMID: 26901152 PMCID: PMC5135085 DOI: 10.1038/ni.3396] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 01/02/2023]
Abstract
Cells of the immune system that reside in barrier epithelia provide a first line of defense against pathogens. Langerhans cells (LCs) and CD8(+) tissue-resident memory T cells (TRM cells) require active transforming growth factor-β1 (TGF-β) for epidermal residence. Here we found that integrins αvβ6 and αvβ8 were expressed in non-overlapping patterns by keratinocytes (KCs) and maintained the epidermal residence of LCs and TRM cells by activating latent TGF-β. Similarly, the residence of dendritic cells and TRM cells in the small intestine epithelium also required αvβ6. Treatment of the skin with ultraviolet irradiation decreased integrin expression on KCs and reduced the availability of active TGF-β, which resulted in LC migration. Our data demonstrated that regulated activation of TGF-β by stromal cells was able to directly control epithelial residence of cells of the immune system through a novel mechanism of intercellular communication.
Collapse
Affiliation(s)
- Javed Mohammed
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Aleh Bobr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian Astry
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Brian Chicoine
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Sakeen W Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Nathan E Welty
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Botond Z Igyártó
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Sathi Wijeyesinghe
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Emily A Thompson
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Catherine Matte
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Alesia Kaplan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alina G Bridges
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Warren D Shlomchik
- Department of Medicine, University of Pittsburgh Cancer Center Institute, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh Cancer Center Institute, Pittsburgh, Pennsylvania, USA
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
| | - Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota USA
- Department of Dermatology, University of Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|