1
|
Mihaylova G, Vasilev V, Kosturkova M, Petkova M, Radanova M. Anti-factor H autoantibodies in patients with lupus nephritis. Med Clin (Barc) 2024; 163:375-382. [PMID: 39003116 DOI: 10.1016/j.medcli.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION Lupus nephritis (LN) is a disease marked by autoantibodies against complement components. Autoantibodies against negative complement regulator factor H (anti-FH) are prevalent in aHUS, are associated with deletion of factor H-related protein 1 (FHR1) gene, and have overt functional consequences. They are also observed in C3 glomerulopathies. The frequency and relevance of anti-FH in LN are poorly studied. AIM The aim of our investigation was to screen for the presence of anti-FH and FHR1 gene deletion in a cohort of LN patients and to evaluate their association with LN activity. METHOD ELISA test and Western blot for detection of anti-FH and FHR1 deletion were used, respectively. Patients' clinical and laboratory parameters regarding anti-FH role were processed by statistical analysis. RESULTS Anti-FH were found at low level in a small number of LN patients - 11.7% (7/60) and were not associated with deletion of FHR1. Anti-FH did not correlate with ANA titers, anti-dsDNA, C3/C4 hypocomplementemia, eGFR, proteinuria, or active urinary sediment in LN patients. A weak correlation was found between anti-FH and anti-C3 levels. Anti-FH were linked with endocapillary proliferation and histological activity index. Four anti-FH positive patients had severe to moderate LN as per the BILAG renal score. CONCLUSIONS Anti-FH autoantibodies are an accessory finding in LN and are more likely to manifest during the active phase of the disease. Due to their low frequency and plasma levels, they do not seem suitable for routine laboratory investigation in patients with LN.
Collapse
Affiliation(s)
- Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - Vasil Vasilev
- Department of Nephrology, Medical University of Sofia, Sofia, Bulgaria; Clinic of Nephrology, University Hospital - "Tsaritza Yoanna - ISUL", Sofia, Bulgaria
| | - Mariya Kosturkova
- Department of Propaedeutics of Internal Diseases, Medical University of Varna, Bulgaria; Clinic of Internal Diseases, UMHAT "St. Marina", Varna, Bulgaria
| | - Mariana Petkova
- Department of Nephrology, Medical University of Sofia, Sofia, Bulgaria; Clinic of Nephrology, University Hospital - "Tsaritza Yoanna - ISUL", Sofia, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria.
| |
Collapse
|
2
|
Andeen NK, Hou J. Diagnostic Challenges and Emerging Pathogeneses of Selected Glomerulopathies. Pediatr Dev Pathol 2024; 27:387-410. [PMID: 38576387 DOI: 10.1177/10935266241237656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Recent progress in glomerular immune complex and complement-mediated diseases have refined diagnostic categories and informed mechanistic understanding of disease development in pediatric patients. Herein, we discuss selected advances in 3 categories. First, membranous nephropathy antigens are increasingly utilized to characterize disease in pediatric patients and include phospholipase A2 receptor (PLA2R), Semaphorin 3B (Sema3B), neural epidermal growth factor-like 1 (NELL1), and protocadherin FAT1, as well as the lupus membranous-associated antigens exostosin 1/2 (EXT1/2), neural cell adhesion molecule 1 (NCAM1), and transforming growth factor beta receptor 3 (TGFBR3). Second, we examine advances in techniques for paraffin and light chain immunofluorescence (IF), including the former's function as a salvage technique and their necessity for diagnosis in adolescent cases of membranous-like glomerulopathy with masked IgG kappa deposits (MGMID) and proliferative glomerulonephritis with monotypic Ig deposits (PGNMID), respectively. Finally, progress in understanding the roles of complement in pediatric glomerular disease is reviewed, with specific attention to overlapping clinical, histologic, and genetic or functional alternative complement pathway (AP) abnormalities among C3 glomerulopathy (C3G), infection-related and post-infectious GN, "atypical" post-infectious GN, immune complex mediated membranoproliferative glomerulonephritis (IC-MPGN), and atypical hemolytic uremic syndrome (aHUS).
Collapse
Affiliation(s)
- Nicole K Andeen
- Oregon Health & Science University, Department of Pathology and Laboratory Medicine, Portland, OR, USA
| | - Jean Hou
- Cedars-Sinai Medical Center, Department of Pathology, Los Angeles, CA, USA
| |
Collapse
|
3
|
Meuleman MS, Petitprez F, Pickering MC, Le Quintrec M, Artero MR, Duval A, Rabant M, Gilmore A, Boyer O, Hogan J, Servais A, Provot F, Gnemmi V, Eloudzeri M, Grunenwald A, Buob D, Boffa JJ, Moktefi A, Audard V, Goujon JM, Bridoux F, Thervet E, Karras A, Roumenina LT, Frémeaux Bacchi V, Duong Van Huyen JP, Chauvet S. Complement Terminal Pathway Activation and Intrarenal Immune Response in C3 Glomerulopathy. J Am Soc Nephrol 2024; 35:1034-1044. [PMID: 38709564 PMCID: PMC11377803 DOI: 10.1681/asn.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Key Points
We evidenced terminal pathway activation (C5b-9 deposits) in most of the glomeruli on kidney biopsy of C3 glomerulopathy.The amount of C5b-9 deposits correlated with disease prognosis in C3 glomerulopathy.Increased terminal pathway activation was found predominantly in a subgroup exhibiting an immuno-fibroblastic signature.
Background
C3 glomerulopathy is a rare disease resulting from an overactivation of the complement alternative pathway. Although there is also evidence of terminal pathway activation, its occurrence and consequences on the disease have been poorly studied.
Methods
We retrospectively studied a cohort of 42 patients diagnosed with C3 glomerulopathy. We performed centralized extensive characterization of histological parameters. Kidney C5b-9 staining was performed as a marker of terminal pathway activation; intrarenal immune response was characterized through transcriptomic analysis.
Results
Eighty-eight percent of biopsies showed C5b-9 deposits in glomeruli. Biopsies were grouped according to the amount of C5b-9 deposits (no or low n=15/42, 36%; intermediate n=15/42, 36%; and high n=12/42, 28%). Patients with high C5b-9 deposits significantly differed from the two other groups of patients and were characterized by a significant higher histological chronicity score (P = 0.005) and lower outcome-free survival (P = 0.001). In multivariable analysis, higher glomerular C5b-9 remained associated with poor kidney prognosis after adjustment. One third of the 847 studied immune genes were upregulated in C3 glomerulopathy biopsies compared with controls. Unsupervised clustering on differentially expressed genes identified a group of kidney biopsies enriched in high glomerular C5b-9 with high immune and fibroblastic signature and showed high chronicity scores on histological examination.
Conclusions
In a cohort of patients with C3 glomerulopathy, intrarenal terminal pathway activation was associated with specific histological phenotype and disease prognosis.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew C Pickering
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London, United Kingdom
| | - Moglie Le Quintrec
- Department of Nephrology, Montpellier University Hospital, Montpellier, France
| | - Mikel Rezola Artero
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
| | - Anna Duval
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Nephrology, Strasbourg University Hospital, Strasbourg, France
| | - Marion Rabant
- Department of Anathomopathology, Necker Hospital, APHP, Paris, France
- Département Croissance et Signalisation, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Alyssa Gilmore
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London, United Kingdom
| | - Olivia Boyer
- Pediatric Nephrology, Necker-Enfants Malades University Hospital, MARHEA reference center, APHP, Institut Imagine, Université Paris Cité, Paris, France
| | - Julien Hogan
- Department of pediatric Nephrology, Robert Debré Hospital, APHP, Paris, France
| | - Aude Servais
- Department of Nephrology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - François Provot
- Department of Nephrology, Lille University Hospital, Lille, France
| | - Vivianne Gnemmi
- Department of Pathology, Lille University Hospital, Lille, France
| | - Maeva Eloudzeri
- Département Croissance et Signalisation, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Anne Grunenwald
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Nephrology, Poissy Intercommunal Hospital, Poissy, France
| | - David Buob
- Department of Pathology, Tenon Hospital, APHP, Paris, France
| | | | - Anissa Moktefi
- Department of Pathology, Henri Mondor Hospital, APHP, Créteil, France
| | - Vincent Audard
- Assistance Publique des Hôpitaux de Paris (AP-HP), Nephrology and Renal Transplantation Department, Henri Mondor Hospital University, Centre de Référence Maladie Rare Syndrome Néphrotique Idiopathique, Fédération Hospitalo-Universitaire Innovative therapy for immune disorders, Créteil, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Univ Paris Est Créteil, Créteil, France
| | | | - Frank Bridoux
- Department of Nephrology, Poitiers University Hospital, Poitiers, France
| | - Eric Thervet
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France
- Paris Cité University, Paris, France
| | - Alexandre Karras
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France
- Paris Cité University, Paris, France
| | - Lubka T Roumenina
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
| | - Véronique Frémeaux Bacchi
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Immunology, European Hospital Georges Pompidou, APHP, Paris, France
| | - Jean-Paul Duong Van Huyen
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Anathomopathology, Necker Hospital, APHP, Paris, France
- Paris Cité University, Paris, France
| | - Sophie Chauvet
- Inflammation, Complement and Cancer Team, Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France
- Department of Nephrology, European Hospital Georges Pompidou, APHP, Paris, France
- Paris Cité University, Paris, France
| |
Collapse
|
4
|
Obata S, Vaz de Castro PAS, Riella LV, Cravedi P. Recurrent C3 glomerulopathy after kidney transplantation. Transplant Rev (Orlando) 2024; 38:100839. [PMID: 38412598 DOI: 10.1016/j.trre.2024.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The complement system is part of innate immunity and is pivotal in protecting the body against pathogens and maintaining host homeostasis. Activation of the complement system is triggered through multiple pathways, including antibody deposition, a mannan-binding lectin, or activated complement deposition. C3 glomerulopathy (C3G) is a rare glomerular disease driven by complement dysregulation with high post-transplantation recurrence rates. Its treatment is mainly based on immunosuppressive therapies, specifically mycophenolate mofetil and glucocorticoids. Recent years have seen significant progress in understanding complement biology and its role in C3G pathophysiology. New complement-tergeting treatments have been developed and initial trials have shown promising results. However, challenges persist in C3G, with recurrent post-transplantation cases leading to suboptimal outcomes. This review discusses the pathophysiology and management of C3G, with a focus on its recurrence after kidney transplantation.
Collapse
Affiliation(s)
- Shota Obata
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Pedro A S Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Brazil
| | - Leonardo V Riella
- Division of Nephrology and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Paolo Cravedi
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| |
Collapse
|
5
|
Hauer JJ, Zhang Y, Goodfellow R, Taylor A, Meyer NC, Roberts S, Shao D, Fergus L, Borsa NG, Hall M, Nester CM, Smith RJ. Defining Nephritic Factors as Diverse Drivers of Systemic Complement Dysregulation in C3 Glomerulopathy. Kidney Int Rep 2024; 9:464-477. [PMID: 38344720 PMCID: PMC10851021 DOI: 10.1016/j.ekir.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 09/19/2024] Open
Abstract
Introduction C3 glomerulopathy (C3G) is an ultrarare renal disease characterized by deposition of complement component C3 in the glomerular basement membrane (GBM). Rare and novel genetic variation in complement genes and autoantibodies to complement proteins are commonly identified in the C3G population and thought to drive the underlying complement dysregulation that results in renal damage. However, disease heterogeneity and rarity make accurately defining characteristics of the C3G population difficult. Methods Here, we present a retrospective analysis of the Molecular Otolaryngology and Renal Research Laboratories C3G cohort. This study integrated complement biomarker testing and in vitro tests of autoantibody function to achieve the following 3 primary goals: (i) define disease profiles of C3G based on disease drivers, complement biomarkers, and age; (ii) determine the relationship between in vitro autoantibody tests and in vivo complement dysregulation; and (iii) evaluate the association between autoantibody function and disease progression. Results The largest disease profiles of C3G included patients with autoantibodies to complement proteins (48%) and patients for whom no genetic and/or acquired drivers of disease could be identified (43%). The correlation between the stabilization of convertases by complement autoantibodies as measured by in vitro modified hemolytic assays and systemic biomarkers that reflect in vivo complement dysregulation was remarkably strong. In patients positive for autoantibodies, the degree of stabilization capacity predicted worse renal function. Conclusion This study implicates complement autoantibodies as robust drivers of systemic complement dysregulation in approximately 50% of C3G but also highlights the need for continued discovery-based research to identify novel drivers of disease.
Collapse
Affiliation(s)
- Jill J. Hauer
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Renee Goodfellow
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Amanda Taylor
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicole C. Meyer
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah Roberts
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dingwu Shao
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lauren Fergus
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicolo Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Monica Hall
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Carla M. Nester
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics and Internal Medicine, Divisions of Nephrology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics and Internal Medicine, Divisions of Nephrology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Gonçalves F, Marques N, Silva R, Mendonça L, Faria B. C3 Glomerulonephritis Presenting With Nephritic and Nephrotic Syndromes: Spontaneous Remission After Six Months on Dialysis. Cureus 2023; 15:e50396. [PMID: 38213351 PMCID: PMC10783613 DOI: 10.7759/cureus.50396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
C3 glomerulopathy is a rare and complex renal disease driven by complement dysregulation, with variable presentation and pathophysiology. We report the case of a middle-aged male patient presenting with nephritic and nephrotic syndromes and low serum C3, whose biopsy established the diagnosis of C3 glomerulonephritis. He was found to be homozygous for the complement factor H-related protein (CFHR)3-CFHR1 deletion, which has been associated with the development of anti-factor H autoantibodies. However, the lack of consistent and accessible nephritic factor assays prevented full clarification of the mechanisms involved in the disease. Interestingly, despite not receiving treatment due to suspicion of malignancy and perceived poor renal prognosis, there was spontaneous recovery after six months on hemodialysis. This case reflects the enduring challenges in establishing the diagnosis and prognosis of C3 glomerulonephritis.
Collapse
Affiliation(s)
| | - Nídia Marques
- Nephrology, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Roberto Silva
- Anatomical Pathology, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Luis Mendonça
- Nephrology, Centro Hospitalar Universitário de São João, Porto, PRT
| | - Bernardo Faria
- Nephrology, Centro Hospitalar Universitário de São João, Porto, PRT
| |
Collapse
|
7
|
Li LL, Luan ZQ, Tan Y, Wang H, Yu XJ, Qu Z, Yu F, Chen M. Anti-complement factor H (CFH) autoantibodies could delay pristane-induced lupus nephritis. Immunol Res 2023; 71:849-859. [PMID: 37322353 PMCID: PMC10667379 DOI: 10.1007/s12026-023-09396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Anti-complement factor H (CFH) autoantibodies could be detected in lupus and its significance remained to be elucidated. Herein, we aimed to explore the roles of anti-CFH autoantibodies based on pristane-induced lupus mice. METHODS Twenty-four female Balb/c mice were randomly divided into four groups, with one group injected with pristane (pristane group), one group with pristane and then human CFH (hCFH) (pristane-CFH group) 3 times, and the other two as vertical controls, PBS group and PBS-CFH group. Histopathological analysis was performed six months after pristane administration. Levels of hCFH, anti-CFH autoantibodies and anti-dsDNA antibody were detected. Murine IgG (mIgG) were purified and cross-reactivity, epitopes, subclasses and functional analysis were further evaluated in vitro. RESULTS Immunization with hCFH and subsequent development of anti-CFH autoantibodies significantly attenuated nephritis of pristane-induced lupus, including lower levels of urinary protein and serum creatinine, decreased levels of serum anti-dsDNA antibody, greatly ameliorated renal histopathologic damage, decreased IgG, complements (C1q, C3) deposits and lower inflammatory factor (IL-6) expression in glomerulus. Furthermore, the purified mIgG (contained anti-CFH autoantibodies) could recognize both hCFH and murine CFH, and the epitopes were predominantly located in hCFH short consensus repeats (SCRs) 1-4, 7 and 11-14. The IgG subclasses were predominant IgG1. The autoantibodies could enhance the binding between hCFH and C3b, and increase factor I mediated-C3b lysis in vitro. CONCLUSION Our results suggested that anti-CFH autoantibodies could attenuate pristane-induced lupus nephritis by increasing bio-functions of CFH on regulating complement activation and controlling inflammation.
Collapse
Affiliation(s)
- Lin-Lin Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Renal Division, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhong-Qiu Luan
- Department of Nephrology, First Affiliated Hospital of Heilongjiang, University of Chinese Medicine, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| | - Hui Wang
- Laboratory of Electron Microscopy, Pathological Centre, Peking University First Hospital, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| | - Zhen Qu
- Department of Nephrology, Peking University International Hospital, Beijing, China.
| | - Feng Yu
- Department of Nephrology, Peking University International Hospital, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Wada Y, Kamata M, Miyasaka R, Abe T, Kawamura S, Takeuchi K, Aoyama T, Oda T, Takeuchi Y. Clinico-Pathogenic Similarities and Differences between Infection-Related Glomerulonephritis and C3 Glomerulopathy. Int J Mol Sci 2023; 24:ijms24098432. [PMID: 37176142 PMCID: PMC10179079 DOI: 10.3390/ijms24098432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, the comprehensive concept of "infection-related glomerulonephritis (IRGN)" has replaced that of postinfectious glomerulonephritis (PIGN) because of the diverse infection patterns, epidemiology, clinical features, and pathogenesis. In addition to evidence of infection, hypocomplementemia particularly depresses serum complement 3 (C3), with endocapillary proliferative and exudative GN developing into membranoproliferative glomerulonephritis (MPGN); also, C3-dominant or co-dominant glomerular immunofluorescence staining is central for diagnosing IRGN. Moreover, nephritis-associated plasmin receptor (NAPlr), originally isolated from the cytoplasmic fraction of group A Streptococci, is vital as an essential inducer of C3-dominant glomerular injury and is a key diagnostic biomarker for IRGN. Meanwhile, "C3 glomerulopathy (C3G)", also showing a histological pattern of MPGN due to acquired or genetic dysregulation of the complement alternative pathway (AP), mimics C3-dominant IRGN. Initially, C3G was characterized by intensive "isolated C3" deposition on glomeruli. However, updated definitions allow for glomerular deposition of other complement factors or immunoglobulins if C3 positivity is dominant and at least two orders of magnitude greater than any other immunoreactant, which makes it challenging to quickly distinguish pathomorphological findings between IRGN and C3G. As for NAPlr, it was demonstrated to induce complement AP activation directly in vitro, and it aggravates glomerular injury in the development of IRGN. A recent report identified anti-factor B autoantibodies as a contributing factor for complement AP activation in pediatric patients with PIGN. Moreover, C3G with glomerular NAPlr deposition without evidence of infection was reported. Taken together, the clinico-pathogenic features of IRGN overlap considerably with those of C3G. In this review, similarities and differences between the two diseases are highlighted.
Collapse
Affiliation(s)
- Yukihiro Wada
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Mariko Kamata
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Ryoma Miyasaka
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Tetsuya Abe
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Sayumi Kawamura
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Kazuhiro Takeuchi
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Togo Aoyama
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| | - Takashi Oda
- Department of Nephrology and Blood Purification, Kidney Disease Center, Tokyo Medical University Hachioji Medical Center, Hachioji 193-0998, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan
| |
Collapse
|
9
|
Ma Z, Mao C, Jia Y, Yu F, Xu P, Tan Y, Zou QH, Zhou XJ, Kong W, Fu Y. ADAMTS7-Mediated Complement Factor H Degradation Potentiates Complement Activation to Contributing to Renal Injuries. J Am Soc Nephrol 2023; 34:291-308. [PMID: 36735376 PMCID: PMC10103097 DOI: 10.1681/asn.0000000000000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The dysfunction of complement factor H (CFH), the main soluble complement negative regulator, potentiates various complement-induced renal injuries. However, insights into the underlying mechanism of CFH dysfunction remain limited. In this study, we investigated whether extracellular protease-mediated degradation accounts for CFH dysfunction in complement-mediated renal injuries. METHODS An unbiased interactome of lupus mice kidneys identified CFH-binding protease. In vitro cleavage assay clarified CFH degradation. Pristane-induced SLE or renal ischemia-reperfusion (I/R) injury models were used in wild-type and ADAMTS7-/- mice. RESULTS We identified the metalloprotease ADAMTS7 as a CFH-binding protein in lupus kidneys. Moreover, the upregulation of ADAMTS7 correlated with CFH reduction in both lupus mice and patients. Mechanistically, ADAMTS7 is directly bound to CFH complement control protein (CCP) 1-4 domain and degraded CCP 1-7 domain through multiple cleavages. In mice with lupus nephritis or renal I/R injury, ADAMTS7 deficiency alleviated complement activation and related renal pathologies, but without affecting complement-mediated bactericidal activity. Adeno-associated virus-mediated CFH silencing compromised these protective effects of ADAMTS7 knockout against complement-mediated renal injuries in vivo. CONCLUSION ADAMTS7-mediated CFH degradation potentiates complement activation and related renal injuries. ADAMTS7 would be a promising anticomplement therapeutic target that does not increase bacterial infection risk.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Institute of Biotechnology, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drugs of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Ying Tan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Qing-Hua Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Abstract
Uncontrolled alternative pathway activation is the primary driver of several diseases, and it contributes to the pathogenesis of many others. Consequently, diagnostic tests to monitor this arm of the complement system are increasingly important. Defects in alternative pathway regulation are strong risk factors for disease, and drugs that specifically block the alternative pathway are entering clinical use. A range of diagnostic tests have been developed to evaluate and monitor the alternative pathway, including assays to measure its function, expression of alternative pathway constituents, and activation fragments. Genetic studies have also revealed many disease-associated variants in alternative pathway genes that predict the risk of disease and prognosis. Newer imaging modalities offer the promise of non-invasively detecting and localizing pathologic complement activation. Together, these various tests help in the diagnosis of disease, provide important prognostic information, and can help guide therapy with complement inhibitory drugs.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, European Hospital Georges Pompidou, Department of Immunology Biology and INSERM UMRS1138, Centre de Recherche des Cordeliers, Team "Inflammation, Complement and Cancer", Paris, France
| |
Collapse
|
11
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
13
|
Li Q, Kong X, Tian M, Wang J, Yang Z, Yu L, Liu S, Wang C, Wang X, Sun S. Clinical features of children with anti-CFH autoantibody-associated hemolytic uremic syndrome: a report of 8 cases. Ren Fail 2022; 44:1061-1069. [PMID: 35730179 PMCID: PMC9225730 DOI: 10.1080/0886022x.2022.2089167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective To explore the clinical characteristics, treatment protocol and prognosis of children with anti-complement factor H (CFH) autoantibody (Ab)-associated hemolytic uremic syndrome (HUS). Methods Clinical data of 8 patients with anti-CFH Ab-associated HUS who were admitted to Shandong Provincial Hospital from January 2011 to December 2020 were collected retrospectively. Results The age at disease onset ranged between 5.83 and 13.5 years, with a male: female ratio of 1.67:1. The time of onset was distributed from May to June and November to December. Digestive and upper respiratory tract infections were common prodromal infections. Positivity for anti-CFH Ab and reduced C3 levels were observed among all patients. Heterozygous mutation of the CHFR5 gene (c.669del A) and homozygous loss of the CFHR1 gene [loss2(EXON:2-6)] were found in two patients. All patients received early treatment with plasma exchange and corticosteroid therapy. Six patients were given immunosuppressive agents (cyclophosphamide and/or mycophenolate mofetil) for persistent proteinuria. The follow-up period was 12–114 months. Four of 8 patients achieved complete remission, 3 achieved partial remission, and 1 died. Relapse occurred in two patients. Conclusion Children with anti-CFH Ab-associated HUS were mainly school-aged and predominantly male, with onset times of summer and winter. Digestive and upper respiratory tract infections were common prodromal infections. Plasma exchange combined with methylprednisolone pulse therapy in the acute phase and cyclophosphamide or mycophenolate mofetil treatment for maintenance can be utilized in children with anti-CFH Ab-associated HUS if eculizumab is not available.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Xinxin Kong
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Minle Tian
- School of Basic Medical Sciences, Shandong First Medical University, Taian, Shandong, China
| | - Jing Wang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Zhenle Yang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Lichun Yu
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Suwen Liu
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Cong Wang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Xiaoyuan Wang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Shuzhen Sun
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P. R. China.,Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, P. R. China
| |
Collapse
|
14
|
Overview on the role of complement-specific autoantibodies in diseases. Mol Immunol 2022; 151:52-60. [PMID: 36084516 DOI: 10.1016/j.molimm.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various systemic and organ-specific disorders. These include antibodies directed against complement components, regulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions regarding their functional effect and relevance.
Collapse
|
15
|
Heiderscheit AK, Hauer JJ, Smith RJH. C3 glomerulopathy: Understanding an ultra-rare complement-mediated renal disease. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:344-357. [PMID: 35734939 PMCID: PMC9613507 DOI: 10.1002/ajmg.c.31986] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/27/2022] [Accepted: 06/10/2022] [Indexed: 01/29/2023]
Abstract
C3 glomerulopathy (C3G) describes a pathologic pattern of injury diagnosed by renal biopsy. It is characterized by the dominant deposition of the third component of complement (C3) in the renal glomerulus as resolved by immunofluorescence microscopy. The underlying pathophysiology is driven by dysregulation of the alternative pathway of complement in the fluid-phase and in the glomerular microenvironment. Characterization of clinical features and a targeted evaluation for indices and drivers of complement dysregulation are necessary for optimal patient care. Autoantibodies to the C3 and C5 convertases of complement are the most commonly detected drivers of complement dysregulation, although genetic mutations in complement genes can also be found. Approximately half of patients progress to end-stage renal disease within 10 years of diagnosis, and, while transplantation is a viable option, there is high risk for disease recurrence and allograft failure. This poor outcome reflects the lack of disease-specific therapy for C3G, relegating patients to symptomatic treatment to minimize proteinuria and suppress renal inflammation. Fortunately, the future is bright as several anti-complement drugs are currently in clinical trials.
Collapse
Affiliation(s)
- Amanda K. Heiderscheit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of MedicineUniversity of IowaIowa CityIowaUSA,Graduate PhD Program in Immunology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Jill J. Hauer
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of MedicineUniversity of IowaIowa CityIowaUSA,Graduate PhD Program in Immunology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
16
|
Martins M, Bridoux F, Goujon JM, Meuleman MS, Ribes D, Rondeau E, Guerry MJ, Delmas Y, Levy B, Ducloux D, Kandel-Aznar C, Le Fur A, Garrouste C, Provot F, Gibier JB, Thervet E, Bruneval P, Rabant M, Karras A, Dragon Durey MA, Fremeaux-Bacchi V, Chauvet S. Complement Activation and Thrombotic Microangiopathy Associated With Monoclonal Gammopathy: A National French Case Series. Am J Kidney Dis 2022; 80:341-352. [PMID: 35217094 DOI: 10.1053/j.ajkd.2021.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
RATIONALE & OBJECTIVE Hemolytic uremic syndrome (HUS), a thrombotic microangiopathy (TMA) with kidney involvement, is a rare condition in patients with monoclonal gammopathy. In the absence of known causes of TMA, the role of complement activation in endothelial injury in patients with monoclonal gammopathy remains unknown and was the focus of this investigation. STUDY DESIGN Case series. SETTING & PARTICIPANTS We studied the 24 patients in the French national registry of HUS between 2000 and 2020 who had monoclonal gammopathy without other causes of secondary TMA. We provide the clinical histories and complement studies of these patients. FINDINGS Monoclonal gammopathy-associated TMA with kidney involvement is estimated to be 10 times less frequent than adult atypical HUS (aHUS) in the French national registry. It is characterized by severe clinical features, with 17 of 24 patients requiring dialysis at disease onset, and with median renal survival of only 20 months. TMA-mediated extrarenal manifestations, particularly cutaneous and neurological involvement, were common and associated with poor overall prognosis. Complement studies identified low C3, normal C4, and high soluble C5b-9 levels in 33%, 100%, and 77% of tested patients, respectively, indicating a contribution of the alternative and terminal complement pathways in the pathophysiology of the disease. Genetic abnormalities in complement genes known to be associated with aHUS were found in only 3 of 17 (17%) who were tested. LIMITATIONS Retrospective study without comparison group; limited number of patients, limited available blood samples. CONCLUSIONS Within the spectrum of TMA, TMA associated with monoclonal gammopathy represents a distinct subset. Our findings suggest that HUS associated with monoclonal immunoglobulin is a complement-mediated disease akin to aHUS.
Collapse
Affiliation(s)
- Manon Martins
- Institut National de la Santé et de la Recherche Médicale Team 1138, Cordelier Research Center, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Departments of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - Frank Bridoux
- Departments of Nephrology, Centre Hospitalier Universitaire de Poitiers; Centre National de Référence Maladies Rares: Amylose AL et Autres Maladies à; Dépôts d'Immunoglobulines Monoclonales; Université de Poitiers, Poitiers
| | - Jean Michel Goujon
- Departments of Nephrology and Pathology, Centre Hospitalier Universitaire de Poitiers; Centre National de Référence Maladies Rares: Amylose AL et Autres Maladies à; Dépôts d'Immunoglobulines Monoclonales
| | - Marie Sophie Meuleman
- Institut National de la Santé et de la Recherche Médicale Team 1138, Cordelier Research Center, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - David Ribes
- Department of Nephrology, Centre Hospitalier Universitaire de Toulouse, Toulouse
| | - Eric Rondeau
- Department of Nephrology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris
| | - Mary-Jane Guerry
- Department of Nephrology, Centre Hospitalier de Valenciennes, Valenciennes
| | - Yahsou Delmas
- Department of Nephrology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux
| | - Bénédicte Levy
- Department of Nephrology, Centre Hospitalier de Troyes, Troyes
| | - Didier Ducloux
- Department of Nephrology, Centre Hospitalier Universitaire de Besançon, Besançon
| | | | - Awena Le Fur
- Department of Nephrology, Centre Hospitalier Departemental de La Roche-sur-Yon, La Roche-sur-Yon
| | - Cyril Garrouste
- Department of Nephrology, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand
| | - François Provot
- Department of Nephrology, Centre Hospitalier Universitaire de Lille, Lille
| | | | - Eric Thervet
- Departments of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Université de Paris, Paris
| | - Patrick Bruneval
- Departments of Nephrology Pathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - Marion Rabant
- Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris
| | - Alexandre Karras
- Departments of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - Marie Agnès Dragon Durey
- Departments of Nephrology Pathology, and Immunology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - Veronique Fremeaux-Bacchi
- Departments of Nephrology Pathology, and Immunology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
| | - Sophie Chauvet
- Institut National de la Santé et de la Recherche Médicale Team 1138, Cordelier Research Center, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Departments of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris; Université de Paris, Paris.
| |
Collapse
|
17
|
Meuleman MS, Duval A, Fremeaux-Bacchi V, Roumenina LT, Chauvet S. Ex Vivo Test for Measuring Complement Attack on Endothelial Cells: From Research to Bedside. Front Immunol 2022; 13:860689. [PMID: 35493497 PMCID: PMC9041553 DOI: 10.3389/fimmu.2022.860689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
As part of the innate immune system, the complement system plays a key role in defense against pathogens and in host cell homeostasis. This enzymatic cascade is rapidly triggered in the presence of activating surfaces. Physiologically, it is tightly regulated on host cells to avoid uncontrolled activation and self-damage. In cases of abnormal complement dysregulation/overactivation, the endothelium is one of the primary targets. Complement has gained momentum as a research interest in the last decade because its dysregulation has been implicated in the pathophysiology of many human diseases. Thus, it appears to be a promising candidate for therapeutic intervention. However, detecting abnormal complement activation is challenging. In many pathological conditions, complement activation occurs locally in tissues. Standard routine exploration of the plasma concentration of the complement components shows values in the normal range. The available tests to demonstrate such dysregulation with diagnostic, prognostic, and therapeutic implications are limited. There is a real need to develop tools to demonstrate the implications of complement in diseases and to explore the complex interplay between complement activation and regulation on human cells. The analysis of complement deposits on cultured endothelial cells incubated with pathologic human serum holds promise as a reference assay. This ex vivo assay most closely resembles the physiological context. It has been used to explore complement activation from sera of patients with atypical hemolytic uremic syndrome, malignant hypertension, elevated liver enzymes low platelet syndrome, sickle cell disease, pre-eclampsia, and others. In some cases, it is used to adjust the therapeutic regimen with a complement-blocking drug. Nevertheless, an international standard is lacking, and the mechanism by which complement is activated in this assay is not fully understood. Moreover, primary cell culture remains difficult to perform, which probably explains why no standardized or commercialized assay has been proposed. Here, we review the diseases for which endothelial assays have been applied. We also compare this test with others currently available to explore complement overactivation. Finally, we discuss the unanswered questions and challenges to overcome for validating the assays as a tool in routine clinical practice.
Collapse
Affiliation(s)
- Marie-Sophie Meuleman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anna Duval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
18
|
Henderson S, Ardill R, Reynolds B, Kavanagh D. Use of a B-cell depleting regimen for antifactor H autoantibody-mediated membranoproliferative glomerulonephritis in a paediatric patient. BMJ Case Rep 2022; 15:e246281. [PMID: 35444020 PMCID: PMC9021740 DOI: 10.1136/bcr-2021-246281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/03/2022] Open
Abstract
A male child presented initially well with a mixed nephrotic-nephritic syndrome and was commenced on standard high-dose oral corticosteroids. Clinical deterioration occurred 3 weeks later with rapidly progressing renal dysfunction, seizures and diminished urinary output, requiring renal replacement therapy. Once stabilised, renal biopsy demonstrated mesangial and capillary C3, minimal IgG deposition, with mesangial electron dense deposits felt consistent with postinfectious glomerulonephritis or C3 glomerulopathy. Further investigations identified circulating autoantibody directed against factor H, as a plausible aetiology of the membranoproliferative glomerulonephritis (MPGN). Treatment with rituximab and mycophenolate mofetil was associated with a reduction in antibody titres and a concurrent reduction in proteinuria and normalisation of renal function.Subsequent monitoring of antibody titres prompted further administrations of rituximab, with reduction in titres demonstrated after repeat doses. Atypical presentations or complications of nephrotic syndrome or MPGN should prompt detailed investigations for the cause with consideration of antifactor H antibodies.
Collapse
Affiliation(s)
| | | | - Ben Reynolds
- Paediatric Renal Department, NHS Greater Glasgow and Clyde, Glasgow, UK
- Department of Child Life and Health, University of Glasgow, Glasgow, UK
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- National Renal Complement Therapeutics Centre, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
19
|
Dijkstra DJ, Lokki AI, Gierman LM, Borggreven NV, van der Keur C, Eikmans M, Gelderman KA, Laivuori H, Iversen AC, van der Hoorn MLP, Trouw LA. Circulating Levels of Anti-C1q and Anti-Factor H Autoantibodies and Their Targets in Normal Pregnancy and Preeclampsia. Front Immunol 2022; 13:842451. [PMID: 35432365 PMCID: PMC9009242 DOI: 10.3389/fimmu.2022.842451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Preeclampsia (PE) generally manifests in the second half of pregnancy with hypertension and proteinuria. The understanding of the origin and mechanism behind PE is incomplete, although there is clearly an immune component to this disorder. The placenta constitutes a complicated immune interface between fetal and maternal cells, where regulation and tolerance are key. Stress factors from placental dysfunction in PE are released to the maternal circulation evoking the maternal response. Several complement factors play a role within this intricate landscape, including C1q in vascular remodeling and Factor H (FH) as the key regulator of alternative pathway complement activation. We hypothesize that decreased levels of C1q or FH, or disturbance of their function by autoantibodies, may be associated with PE. Autoantibodies against C1q and FH and the concentrations of C1q and FH were measured by ELISA in maternal sera from women with preeclamptic and normal pregnancies. Samples originated from cohorts collected in the Netherlands (n=63 PE; n=174 control pregnancies, n=51 nonpregnant), Finland (n=181 PE; n=63 control pregnancies) and Norway (n=59 PE; n=27 control pregnancies). Serum C1q and FH concentrations were higher in control pregnancy than in nonpregnant women. No significant differences were observed for serum C1q between preeclamptic and control pregnancy in any of the three cohorts. Serum levels of FH were lower in preeclamptic pregnancies compared to control pregnancies in two of the cohorts, this effect was driven by the early onset PE cases. Neither anti-C1q autoantibodies nor anti-FH autoantibodies levels differed between women with PE and normal pregnancies. In conclusion, levels of anti-C1q and anti-FH autoantibodies are not increased in PE. C1q and FH are increased in pregnancy, but importantly, a decrease in FH concentration is associated with PE.
Collapse
Affiliation(s)
- Douwe Jan Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Douwe Jan Dijkstra, ; Leendert Adrianus Trouw,
| | - A. Inkeri Lokki
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lobke Marijn Gierman
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Carin van der Keur
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Kyra Andrea Gelderman
- Department of Immunopathology and Haemostasis, Sanquin Diagnostic Services, Amsterdam, Netherlands
| | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere, Finland
| | | | - Ann-Charlotte Iversen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Leendert Adrianus Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Douwe Jan Dijkstra, ; Leendert Adrianus Trouw,
| |
Collapse
|
20
|
Vivarelli M, van de Kar N, Labbadia R, Diomedi-Camassei F, Thurman JM. A clinical approach to children with C3 glomerulopathy. Pediatr Nephrol 2022; 37:521-535. [PMID: 34002292 DOI: 10.1007/s00467-021-05088-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
C3 glomerulopathy is a relatively new clinical entity that represents a challenge both to diagnose and to treat. As new therapeutic agents that act as complement inhibitors become available, many with an oral formulation, a better understanding of this disease and of the underlying complement dysregulation driving it has become increasingly useful to optimize patient care. Moreover, recent advances in research have clarified the role of complement in other glomerular diseases in which its role was less established, namely in immune-complex membranoproliferative glomerulonephritis (IC-MPGN), ANCA-vasculitis, IgA nephropathy, and idiopathic membranous nephropathy. Complement inhibitors are being studied in adult and adolescent clinical trials for these indications. This review summarizes current knowledge and future perspectives on every aspect of the diagnosis and management of C3 glomerulopathy and elucidates current understanding of the role of complement in this condition and in other glomerular diseases in children. An overview of ongoing trials involving therapeutic agents targeting complement in glomerular diseases is also provided.
Collapse
Affiliation(s)
- Marina Vivarelli
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy.
| | - Nicole van de Kar
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Raffaella Labbadia
- Division of Nephrology and Dialysis, Department of Pediatric Subspecialties, Bambino Gesù Pediatric Hospital IRCCS, Piazza S Onofrio 4, 00165, Rome, Italy
| | | | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
21
|
Wong EK, Marchbank KJ, Lomax-Browne H, Pappworth IY, Denton H, Cooke K, Ward S, McLoughlin AC, Richardson G, Wilson V, Harris CL, Morgan BP, Hakobyan S, McAlinden P, Gale DP, Maxwell H, Christian M, Malcomson R, Goodship TH, Marks SD, Pickering MC, Kavanagh D, Cook HT, Johnson SA. C3 Glomerulopathy and Related Disorders in Children: Etiology-Phenotype Correlation and Outcomes. Clin J Am Soc Nephrol 2021; 16:1639-1651. [PMID: 34551983 PMCID: PMC8729419 DOI: 10.2215/cjn.00320121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Membranoproliferative GN and C3 glomerulopathy are rare and overlapping disorders associated with dysregulation of the alternative complement pathway. Specific etiologic data for pediatric membranoproliferative GN/C3 glomerulopathy are lacking, and outcome data are based on retrospective studies without etiologic data. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 80 prevalent pediatric patients with membranoproliferative GN/C3 glomerulopathy underwent detailed phenotyping and long-term follow-up within the National Registry of Rare Kidney Diseases (RaDaR). Risk factors for kidney survival were determined using a Cox proportional hazards model. Kidney and transplant graft survival was determined using the Kaplan-Meier method. RESULTS Central histology review determined 39 patients with C3 glomerulopathy, 31 with immune-complex membranoproliferative GN, and ten with immune-complex GN. Patients were aged 2-15 (median, 9; interquartile range, 7-11) years. Median complement C3 and C4 levels were 0.31 g/L and 0.14 g/L, respectively; acquired (anticomplement autoantibodies) or genetic alternative pathway abnormalities were detected in 46% and 9% of patients, respectively, across all groups, including those with immune-complex GN. Median follow-up was 5.18 (interquartile range, 2.13-8.08) years. Eleven patients (14%) progressed to kidney failure, with nine transplants performed in eight patients, two of which failed due to recurrent disease. Presence of >50% crescents on the initial biopsy specimen was the sole variable associated with kidney failure in multivariable analysis (hazard ratio, 6.2; 95% confidence interval, 1.05 to 36.6; P<0.05). Three distinct C3 glomerulopathy prognostic groups were identified according to presenting eGFR and >50% crescents on the initial biopsy specimen. CONCLUSIONS Crescentic disease was a key risk factor associated with kidney failure in a national cohort of pediatric patients with membranoproliferative GN/C3 glomerulopathy and immune-complex GN. Presenting eGFR and crescentic disease help define prognostic groups in pediatric C3 glomerulopathy. Acquired abnormalities of the alternative pathway were commonly identified but not a risk factor for kidney failure.
Collapse
Affiliation(s)
- Edwin K.S. Wong
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Kevin J. Marchbank
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannah Lomax-Browne
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Isabel Y. Pappworth
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Harriet Denton
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katie Cooke
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sophie Ward
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy-Claire McLoughlin
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Grant Richardson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valerie Wilson
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Claire L. Harris
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - B. Paul Morgan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Svetlana Hakobyan
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul McAlinden
- Research and Development Department, Newcastle upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London, United Kingdom
| | | | - Martin Christian
- Nottingham Children’s Hospital, Queens Medical Centre, Nottingham, United Kingdom
| | - Roger Malcomson
- Histopathology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Timothy H.J. Goodship
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Stephen D. Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matthew C. Pickering
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - David Kavanagh
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Renal Medicine, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - H. Terence Cook
- Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Sally A. Johnson
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Nephrology, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Zhang X, Yu XJ, Li DY, Wang SX, Zhou FD, Zhao MH. C3 glomerulonephritis associated with monoclonal gammopathy: a retrospective case series study from a single institute in China. Ren Fail 2021; 43:1437-1445. [PMID: 34658305 PMCID: PMC8525950 DOI: 10.1080/0886022x.2021.1990949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the demographic and clinicopathological features and renal outcomes of Chinese patients with C3 glomerulonephritis in the setting of monoclonal gammopathy. Methods Patients with renal biopsy-proven C3 glomerulonephritis and detectable serum and/or urine monoclonal immunoglobulin from 2006 to 2018 in Peking University First Hospital were included, their clinical data, renal pathology type, treatment, and prognosis were collected and analyzed. Results Nineteen patients were enrolled, accounting for 24% of C3GN patients in the study period. The mean age of onset was 55 years old and the gender ratio was 4/15 (female/male). The mean eGFR at biopsy was 49.55 ± 29.81 ml/min/1.73m2. The prominent clinical manifestations included nephrotic syndrome (58%), anemia (68%), microscopic hematuria and leukocyturia (58%), and hypocomplementemia (13, 68%). The IgG was the most common isotype of monoclonal Ig on immunofixation electrophoresis. Kidney biopsies revealed a relatively prominent MPGN pattern. Only two patients had direct evidence of monocle immunoglobulins acting as C3GN pathogenic factors. Two patients had concurrent TMA-like renal injuries. The median renal survival was 12 and 15 months, respectively in patients receiving conservative therapy and immunosuppressant therapy, without statistical significance. The efficacy of clone-targeted therapy needed further investigation. Plasma exchange therapy only improved one patient’s renal outcome. Conclusions This is the first case series report of C3GN combined with monoclonal Ig in northern China. The renal prognosis of these patients is poor, and immunosuppressant therapies show no advantage over supportive therapy in renal prognosis, while the benefit of clone-targeted chemotherapy is still requiring investigation.
Collapse
Affiliation(s)
- Xin Zhang
- Renal Division, Department of Medicine, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China.,Renal Pathology Center, Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Department of Medicine, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China.,Renal Pathology Center, Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan-Yang Li
- Renal Division, Department of Medicine, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China.,Renal Pathology Center, Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Chinese Academy of Medical Sciences, Beijing, China
| | - Su-Xia Wang
- Renal Division, Department of Medicine, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China.,Renal Pathology Center, Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Chinese Academy of Medical Sciences, Beijing, China.,Laboratory of Electron Microscopy, Pathological Centre, Peking University First Hospital, Beijing, China
| | - Fu-de Zhou
- Renal Division, Department of Medicine, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China.,Renal Pathology Center, Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Institute of Nephrology, Peking University First Hospital, Peking University, Beijing, China.,Renal Pathology Center, Key laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Chinese Academy of Medical Sciences, Beijing, China.,Peking-Tsinghua Center for Life Science, Beijing, China
| |
Collapse
|
23
|
Complement and the prothrombotic state. Blood 2021; 139:1954-1972. [PMID: 34415298 DOI: 10.1182/blood.2020007206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
In 2007 and 2009 the regulatory approval of the first-in-class complement inhibitor Eculizumab has revolutionized the clinical management of two rare, life-threatening clinical conditions: paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). While being completely distinct diseases affecting blood cells and the glomerulus, PNH and aHUS remarkably share several features in their etiology and clinical presentation. An imbalance between complement activation and regulation at host surfaces underlies both diseases precipitating in severe thrombotic events that are largely resistant to anti-coagulant and/or anti-platelet therapies. Inhibition of the common terminal complement pathway by Eculizumab prevents the frequently occurring thrombotic events responsible for the high mortality and morbidity observed in patients not treated with anti-complement therapy. While many in vitro and ex vivo studies elaborate numerous different molecular interactions between complement activation products and hemostasis, this review focuses on the clinical evidence that links these two fields in humans. Several non-infectious conditions with known complement involvement are scrutinized for common patterns concerning a prothrombotic statues and the occurrence of certain complement activation levels. Next to PNH and aHUS, germline encoded CD59 or CD55 deficiency (the latter causing the disease Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy; CHAPLE), autoimmune hemolytic anemia (AIHA), (catastrophic) anti-phospholipid syndrome (APS, CAPS) and C3 glomerulopathy are considered. Parallels and distinct features among these conditions are discussed against the background of thrombosis, complement activation, and potential complement diagnostic and therapeutic avenues.
Collapse
|
24
|
Knoers N, Antignac C, Bergmann C, Dahan K, Giglio S, Heidet L, Lipska-Ziętkiewicz BS, Noris M, Remuzzi G, Vargas-Poussou R, Schaefer F. Genetic testing in the diagnosis of chronic kidney disease: recommendations for clinical practice. Nephrol Dial Transplant 2021; 37:239-254. [PMID: 34264297 PMCID: PMC8788237 DOI: 10.1093/ndt/gfab218] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/20/2022] Open
Abstract
The overall diagnostic yield of massively parallel sequencing–based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6–30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing–based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.
Collapse
Affiliation(s)
- Nine Knoers
- Department of Genetics, University Medical Centre Groningen, The Netherlands
| | - Corinne Antignac
- Institut Imagine (Inserm U1163) et Département de Génétique, 24 bd du Montparnasse, 75015, Paris, France
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany.,Department of Medicine, Nephrology, University Hospital Freiburg, Germany
| | - Karin Dahan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate, 10, B-1200, Brussels, Belgium.,Center of Human Genetics, Institut de Pathologie et de Génétique, Avenue Lemaître, 25, B-6041, Gosselies, Belgium
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75743, Paris, Cedex 15, France
| | - Beata S Lipska-Ziętkiewicz
- BSL-Z - ORCID 0000-0002-4169-9685, Centre for Rare Diseases, Medical University of Gdansk, Gdansk, Poland.,Clinical Genetics Unit, Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Bergamo, Italy
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75908, Paris, Cedex 15, France
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University of Heidelberg, Germany
| | | |
Collapse
|
25
|
Piras R, Breno M, Valoti E, Alberti M, Iatropoulos P, Mele C, Bresin E, Donadelli R, Cuccarolo P, Smith RJH, Benigni A, Remuzzi G, Noris M. CFH and CFHR Copy Number Variations in C3 Glomerulopathy and Immune Complex-Mediated Membranoproliferative Glomerulonephritis. Front Genet 2021; 12:670727. [PMID: 34211499 PMCID: PMC8240960 DOI: 10.3389/fgene.2021.670727] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
C3 Glomerulopathy (C3G) and Immune Complex-Mediated Membranoproliferative glomerulonephritis (IC-MPGN) are rare diseases characterized by glomerular deposition of C3 caused by dysregulation of the alternative pathway (AP) of complement. In approximately 20% of affected patients, dysregulation is driven by pathogenic variants in the two components of the AP C3 convertase, complement C3 (C3) and Factor B (CFB), or in complement Factor H (CFH) and Factor I (CFI), two genes that encode complement regulators. Copy number variations (CNVs) involving the CFH-related genes (CFHRs) that give rise to hybrid FHR proteins also have been described in a few C3G patients but not in IC-MPGN patients. In this study, we used multiplex ligation-dependent probe amplification (MLPA) to study the genomic architecture of the CFH-CFHR region and characterize CNVs in a large cohort of patients with C3G (n = 103) and IC-MPGN (n = 96) compared to healthy controls (n = 100). We identified new/rare CNVs resulting in structural variants (SVs) in 5 C3G and 2 IC-MPGN patients. Using long-read single molecule real-time sequencing (SMRT), we detected the breakpoints of three SVs. The identified SVs included: 1) a deletion of the entire CFH in one patient with IC-MPGN; 2) an increased number of CFHR4 copies in one IC-MPGN and three C3G patients; 3) a deletion from CFHR3-intron 3 to CFHR3-3'UTR (CFHR34 - 6 Δ) that results in a FHR3-FHR1 hybrid protein in a C3G patient; and 4) a CFHR31 - 5-CFHR410 hybrid gene in a C3G patient. This work highlights the contribution of CFH-CFHR CNVs to the pathogenesis of both C3G and IC-MPGN.
Collapse
Affiliation(s)
- Rossella Piras
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elisabetta Valoti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marta Alberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Caterina Mele
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Elena Bresin
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Paola Cuccarolo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
26
|
Lemaire M, Noone D, Lapeyraque AL, Licht C, Frémeaux-Bacchi V. Inherited Kidney Complement Diseases. Clin J Am Soc Nephrol 2021; 16:942-956. [PMID: 33536243 PMCID: PMC8216622 DOI: 10.2215/cjn.11830720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 20 years, we have witnessed tremendous advances in our ability to diagnose and treat genetic diseases of the kidney caused by complement dysregulation. Staggering progress was realized toward a better understanding of the genetic underpinnings and pathophysiology of many forms of atypical hemolytic uremic syndrome (aHUS) and C3-dominant glomerulopathies that are driven by complement system abnormalities. Many of these seminal discoveries paved the way for the design and characterization of several innovative therapies, some of which have already radically improved patients' outcomes. This review offers a broad overview of the exciting developments that have occurred in the recent past, with a particular focus on single-gene (or Mendelian), complement-driven aHUS and C3-dominant glomerulopathies that should be of interest to both nephrologists and kidney researchers. The discussion is restricted to genes with robust associations with both aHUS and C3-dominant glomerulopathies (complement factor H, complement component 3, complement factor H-related proteins) or only aHUS (complement factor B, complement factor I, and membrane cofactor protein). Key questions and challenges are highlighted, along with potential avenues for future directions.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Damien Noone
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Laure Lapeyraque
- Division of Nephrology, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada,Department of Pediatrics, Faculty of Medicine, University of Montréal, Québec, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada,Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Laboratory of Immunology, Paris, France
| |
Collapse
|
27
|
Zhang Y, Ghiringhelli Borsa N, Shao D, Dopler A, Jones MB, Meyer NC, Pitcher GR, Taylor AO, Nester CM, Schmidt CQ, Smith RJH. Factor H Autoantibodies and Complement-Mediated Diseases. Front Immunol 2020; 11:607211. [PMID: 33384694 PMCID: PMC7770156 DOI: 10.3389/fimmu.2020.607211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
Factor H (FH), a member of the regulators-of-complement-activation (RCA) family of proteins, circulates in human plasma at concentrations of 180–420 mg/L where it controls the alternative pathway (AP) of complement in the fluid phase and on cell surfaces. When the regulatory function of FH is impaired, complement-mediated tissue injury and inflammation occur, leading to diseases such as atypical hemolytic uremic syndrome (a thrombotic microangiopathy or TMA), C3 glomerulopathy (C3G) and monoclonal gammopathy of renal significance (MGRS). A pathophysiological cause of compromised FH function is the development of autoantibodies to various domains of the FH protein. FH autoantibodies (FHAAs) are identified in 10.9% of patients with aHUS, 3.2% of patients with C3G, and rarely in patients with MGRS. The phenotypic variability of FHAA-mediated disease reflects both the complexity of FH and the epitope specificity of FHAA for select regions of the native protein. In this paper, we have characterized FHAA epitopes in a large cohort of patients diagnosed with TMA, C3G or MGRS. We explore the epitopes recognized by FHAAs in these diseases and the association of FHAAs with the genetic deletion of both copies of the CFHR1 gene to show how these disease phenotypes are associated with this diverse spectrum of autoantibodies.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Nicolo Ghiringhelli Borsa
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Dingwu Shao
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Michael B Jones
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Nicole C Meyer
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Gabriella R Pitcher
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Amanda O Taylor
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Carla M Nester
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Complement-mediated kidney diseases. Mol Immunol 2020; 128:175-187. [DOI: 10.1016/j.molimm.2020.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022]
|
29
|
Ohtani K. Complement-Related Proteins and Their Measurements: The Current Status of Clinical Investigation. Nephron Clin Pract 2020; 144 Suppl 1:7-12. [PMID: 33232963 DOI: 10.1159/000512494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Complement has been considered to be a factor that protects the host against invading microorganisms during infection. However, in recent years, complement-related protein deficiency has been found to be involved in the onset of various diseases, such as autoimmune and inflammatory diseases. In Japan, C3, C4, and CH50 tests were generally performed only when a complement system examination was necessary and there were not enough examinations for other complement factors. Since the complement system has a very complicated activation pathway, at present, it is not well known which molecule must be measured to understand the pathological condition or pathogenesis in complement-related diseases. Furthermore, since the frequency of complement factor gene alleles also differs depending on race, data from foreign countries cannot be directly applied to Japanese populations. Under these circumstances, the Japanese Association for Complement Research (JACR) has prepared approximately 20 items for complement-related examinations, including the 5 categories of functional analysis, complement factors, complement regulators, activation products, and autoantibodies.
Collapse
Affiliation(s)
- Katsuki Ohtani
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan,
| |
Collapse
|
30
|
Tzoumas N, Hallam D, Harris CL, Lako M, Kavanagh D, Steel DHW. Revisiting the role of factor H in age-related macular degeneration: Insights from complement-mediated renal disease and rare genetic variants. Surv Ophthalmol 2020; 66:378-401. [PMID: 33157112 DOI: 10.1016/j.survophthal.2020.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
Ophthalmologists are long familiar with the eye showing signs of systemic disease, but the association between age-related macular degeneration and abnormal complement activation, common to several renal disorders, has only recently been elucidated. Although complement activation products were identified in drusen almost three decades ago, it was not until the early 21st century that a single-nucleotide polymorphism in the complement factor H gene was identified as a major heritable determinant of age-related macular degeneration, galvanizing global efforts to unravel the pathogenesis of this common disease. Advances in proteomic analyses and familial aggregation studies have revealed distinctive clinical phenotypes segregated by the functional effects of common and rare genetic variants on the mature protein and its splice variant, factor H-like protein 1. The predominance of loss-of-function, N-terminal mutations implicate age-related macular degeneration as a disease of general complement dysregulation, offering several therapeutic avenues for its modulation. Here, we explore the molecular impact of these mutations/polymorphisms on the ability of variant factor H/factor H-like protein 1 to localize to polyanions, pentraxins, proinflammatory triggers, and cell surfaces across ocular and renal tissues and exert its multimodal regulatory functions and their clinical implications. Finally, we critically evaluate key therapeutic and diagnostic efforts in this rapidly evolving field.
Collapse
Affiliation(s)
- Nikolaos Tzoumas
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Dean Hallam
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claire L Harris
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Sunderland Eye Infirmary, Sunderland, United Kingdom
| |
Collapse
|
31
|
The Immunopathology of Complement Proteins and Innate Immunity in Autoimmune Disease. Clin Rev Allergy Immunol 2020; 58:229-251. [PMID: 31834594 DOI: 10.1007/s12016-019-08774-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The complement is a powerful cascade of the innate immunity and also acts as a bridge between innate and acquired immune defence. Complement activation can occur via three distinct pathways, the classical, alternative and lectin pathways, each resulting in the common terminal pathway. Complement activation results in the release of a range of biologically active molecules that significantly contribute to immune surveillance and tissue homeostasis. Several soluble and membrane-bound regulatory proteins restrict complement activation in order to prevent complement-mediated autologous damage, consumption and exacerbated inflammation. The crucial role of complement in the host homeostasis is illustrated by association of both complement deficiency and overactivation with severe and life-threatening diseases. Autoantibodies targeting complement components have been described to alter expression and/or function of target protein resulting in a dysregulation of the delicate equilibrium between activation and inhibition of complement. The spectrum of diseases associated with complement autoantibodies depends on which complement protein and activation pathway are targeted, ranging from autoimmune disorders to kidney and vascular diseases. Nevertheless, these autoantibodies have been identified as differential biomarkers for diagnosis or follow-up of disease only in a small number of clinical conditions. For some autoantibodies, a clear relationship with clinical manifestations has been identified, such as anti-C1q, anti-Factor H, anti-C1 Inhibitor antibodies and C3 nephritic factor. For other autoantibodies, the origin and the functional consequences still remain to be elucidated, questioning about the pathophysiological significance of these autoantibodies, such as anti-mannose binding lectin, anti-Factor I, anti-Factor B and anti-C3b antibodies. The detection of autoantibodies targeting complement components is performed in specialized laboratories; however, there is no consensus on detection methods and standardization of the assays is a real challenge. This review summarizes the current panorama of autoantibodies targeting complement recognition proteins of the classical and lectin pathways, associated proteases, convertases, regulators and terminal components, with an emphasis on autoantibodies clearly involved in clinical conditions.
Collapse
|
32
|
Complement System: Promoter or Suppressor of Cancer Progression? Antibodies (Basel) 2020; 9:antib9040057. [PMID: 33113844 PMCID: PMC7709131 DOI: 10.3390/antib9040057] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Constituent of innate immunity, complement is present in the tumor microenvironment. The functions of complement include clearance of pathogens and maintenance of homeostasis, and as such could contribute to an anti-tumoral role in the context of certain cancers. However, multiple lines of evidence show that in many cancers, complement has pro-tumoral actions. The large number of complement molecules (over 30), the diversity of their functions (related or not to the complement cascade), and the variety of cancer types make the complement-cancer topic a very complex matter that has just started to be unraveled. With this review we highlight the context-dependent role of complement in cancer. Recent studies revealed that depending of the cancer type, complement can be pro or anti-tumoral and, even for the same type of cancer, different models presented opposite effects. We aim to clarify the current knowledge of the role of complement in human cancers and the insights from mouse models. Using our classification of human cancers based on the prognostic impact of the overexpression of complement genes, we emphasize the strong potential for therapeutic targeting the complement system in selected subgroups of cancer patients.
Collapse
|
33
|
Fakhouri F, Le Quintrec M, Frémeaux-Bacchi V. Practical management of C3 glomerulopathy and Ig-mediated MPGN: facts and uncertainties. Kidney Int 2020; 98:1135-1148. [PMID: 32622830 DOI: 10.1016/j.kint.2020.05.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 01/11/2023]
Abstract
In recent years, a substantial body of experimental and clinical work has been devoted to C3 glomerulopathy and Ig-mediated membranoproliferative glomerulonephritis. Despite the rapid accumulation of data, several uncertainties about these 2 rare forms of nephropathies persist. They concern their pathophysiology, classification, clinical course, relevance of biomarkers and of pathology findings, and assessment of the efficacy of the available therapies. The present review discusses the impact of these uncertainties on the clinical management of patients.
Collapse
Affiliation(s)
- Fadi Fakhouri
- Service of Nephrology and Hypertension, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Moglie Le Quintrec
- Department of nephrology, Université de Montpellier, CHU de Montpellier, Montpellier, France
| | - Véronique Frémeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Immunologie and Paris University, Paris, France
| |
Collapse
|
34
|
Hanna RM, Hou J, Hasnain H, Arman F, Selamet U, Wilson J, Olanrewaju S, Zuckerman JE, Barsoum M, Yabu JM, Kurtz I. Diverse Clinical Presentations of C3 Dominant Glomerulonephritis. Front Med (Lausanne) 2020; 7:293. [PMID: 32695788 PMCID: PMC7338606 DOI: 10.3389/fmed.2020.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
C3 dominant immunofluorescence staining is present in a subset of patients with idiopathic immune complex membranoproliferative glomerulonephritis (iMPGN). It is increasingly recognized that iMPGN may be complement driven, as are cases of "typical" C3 glomerulopathy (C3G). In both iMPGN and C3G, a frequent membranoproliferative pattern of glomerular injury may indicate common pathogenic mechanisms via complement activation and endothelial cell damage. Dysregulation of the alternative complement pathway and mutations in certain regulatory factors are highly implicated in C3 glomerulopathy (which encompasses C3 glomerulonephritis, dense deposit disease, and cases of C3 dominant MPGN). We report three cases that demonstrate that an initial biopsy diagnosis of iMPGN does not exclude complement alterations similar to the ones observed in patients with a diagnosis of C3G. The first patient is a 39-year-old woman with iMPGN and C3 dominant staining, with persistently low C3 levels throughout her course. The second case is a 22-year-old woman with elevated anti-factor H antibodies and C3 dominant iMPGN findings on biopsy. The third case is a 25-year-old woman with C3 dominant iMPGN, dense deposit disease, and a crescentic glomerulonephritis on biopsy. We present the varied phenotypic variations of C3 dominant MPGN and review clinical course, complement profiles, genetic testing, treatment course, and peri-transplantation plans. Testing for complement involvement in iMPGN is important given emerging treatment options and transplant planning.
Collapse
Affiliation(s)
- Ramy M Hanna
- Division of Nephrology, Department of Medicine, UCI School of Medicine, Irvine, CA, United States.,Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Huma Hasnain
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Farid Arman
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Umut Selamet
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States.,Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - James Wilson
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Samuel Olanrewaju
- David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Jonathan E Zuckerman
- Department of Pathology and Laboratory Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Marina Barsoum
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Julie M Yabu
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen UCLA School of Medicine, Los Angeles, CA, United States.,UCLA Brain Research Institute, Los Angeles, CA, United States
| |
Collapse
|
35
|
Lomas OC, Mouhieddine TH, Tahri S, Ghobrial IM. Monoclonal Gammopathy of Undetermined Significance (MGUS)-Not So Asymptomatic after All. Cancers (Basel) 2020; 12:E1554. [PMID: 32545521 PMCID: PMC7352603 DOI: 10.3390/cancers12061554] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Monoclonal Gammopathy of Undetermined Significance (MGUS) is considered to be a benign precursor condition that may progress to a lymphoproliferative disease or multiple myeloma. Most patients do not progress to an overt condition, but nevertheless, MGUS is associated with a shortened life expectancy and, in a minority of cases, a number of co-morbid conditions that include an increased fracture risk, renal impairment, peripheral neuropathy, secondary immunodeficiency, and cardiovascular disease. This review aims to consolidate current evidence for the significance of these co-morbidities before considering how best to approach these symptoms and signs, which are often encountered in primary care or within a number of specialties in secondary care.
Collapse
Affiliation(s)
- Oliver C. Lomas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (O.C.L.); (T.H.M.); (S.T.)
| | - Tarek H. Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (O.C.L.); (T.H.M.); (S.T.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrin Tahri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (O.C.L.); (T.H.M.); (S.T.)
| | - Irene M. Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (O.C.L.); (T.H.M.); (S.T.)
| |
Collapse
|
36
|
Anti-complement factor H autoantibodies may be protective in lupus nephritis. Clin Chim Acta 2020; 508:1-8. [PMID: 32387092 DOI: 10.1016/j.cca.2020.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND This study aimed to investigate the role of anti-CFH autoantibodies in lupus nephritis based on a well-defined cohort. METHODS One hundred twenty patients with biopsy-proven active lupus nephritis were collected as the discovery cohort, sixty patients served as the validation cohort, thirty-four patients with SLE without renal involvement (NR-SLE) were as disease controls, and thirty healthy donors were also included. The anti-CFH autoantibodies and IgG subclasses were detected by ELISA, and epitopes were evaluated by western blot. Anti-CFH autoantibodies were purified by affinity chromatography column, and the interference on the biofunctions of CFH was further studied by the C3b binding assay and cofactor activity assay in vitro. RESULTS The prevalence of anti-CFH autoantibodies in lupus nephritis was significantly higher than that in healthy controls (8.3% (10/120) vs. 0% (0/30), P = 0.017), and no significant difference was found between the discovery and the validation group (8.3% (10/120) vs. 11.7% (7/60), P = 0.268) or the discovery and the NR-SLE group (8.3% (10/120) vs. 11.8% (4/34), P = 0.231). The subclass was mainly IgG2 (7/10), and major epitopes were in the middle (8/10 in SCRs 11-14) and N-terminal (7/10 in SCRs 1-4) regions of CFH. Patients with anti-CFH autoantibodies had a significantly lower prevalence of acute kidney injury (0% (0/10) vs. 40.0%(4/10), P = 0.025), lower serum creatinine levels (0.76 (0.40, 1.06) vs. 1.43 (0.46, 11.15), mg/dL, P = 0.023), and higher hemoglobin levels (113.8 ± 24.63 vs. 90.0 ± 22.53, g/L, P = 0.037) than those who were negative after further stratified analysis. A functional study showed that anti-CFH autoantibodies purified from patients with lupus nephritis could improve the binding between CFH and C3b, and also enhance the cofactor activity of CFH in vitro. CONCLUSIONS Anti-CFH autoantibodies were detected in patients with lupus nephritis in approximately 10% of patients with polyepitopes and IgG2 subclass predominance. Patients with anti-CFH autoantibodies presented with milder renal damage, and the purified autoantibodies could enhance the C3b binding and CFI cofactor activity of CFH in vitro, which suggested a protective role in the lupus nephritis.
Collapse
|
37
|
Radanova M, Mihaylova G, Ivanova D, Daugan M, Lazarov V, Roumenina L, Vasilev V. Clinical and functional consequences of anti-properdin autoantibodies in patients with lupus nephritis. Clin Exp Immunol 2020; 201:135-144. [PMID: 32306375 DOI: 10.1111/cei.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Properdin is the only positive regulator of the complement system. In this study, we characterize the prevalence, functional consequences and disease associations of autoantibodies against properdin in a cohort of patients with autoimmune disease systemic lupus erythematosus (SLE) suffering from lupus nephritis (LN). We detected autoantibodies against properdin in plasma of 22·5% of the LN patients (16 of 71) by enzyme-linked immunosorbent assay (ELISA). The binding of these autoantibodies to properdin was dose-dependent and was validated by surface plasmon resonance. Higher levels of anti-properdin were related to high levels of anti-dsDNA and anti-nuclear antibodies and low concentrations of C3 and C4 in patients, and also with histological signs of LN activity and chronicity. The high negative predictive value (NPV) of anti-properdin and anti-dsDNA combination suggested that patients who are negative for both anti-properdin and anti-dsDNA will not have severe nephritis. Immunoglobulin G from anti-properdin-positive patients' plasma increased the C3b deposition on late apoptotic cells by flow cytometry. Nevertheless, these IgGs did not modify substantially the binding of properdin to C3b, the C3 convertase C3bBb and the pro-convertase C3bB, evaluated by surface plasmon resonance. In conclusion, anti-properdin autoantibodies exist in LN patients. They have weak but relevant functional consequences, which could have pathological significance.
Collapse
Affiliation(s)
- M Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - G Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - D Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, Varna, Bulgaria
| | - M Daugan
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - V Lazarov
- Clinic of Nephrology, University Hospital "Tzaritza Yoanna, ISUL", Medical University of Sofia, Sofia, Bulgaria
| | - L Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université de Paris, Paris, France
| | - V Vasilev
- Clinic of Nephrology, University Hospital "Tzaritza Yoanna, ISUL", Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
38
|
Zuo C, Zhu Y, Xu G. An update to the pathogenesis for monoclonal gammopathy of renal significance. Crit Rev Oncol Hematol 2020; 149:102926. [PMID: 32199132 DOI: 10.1016/j.critrevonc.2020.102926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Monoclonal gammopathy of renal significance (MGRS) is characterized by the nephrotoxic monoclonal immunoglobulin (MIg) secreted by an otherwise asymptomatic or indolent B-cell or plasma cell clone, without hematologic criteria for treatment. The spectrum of MGRS-associated disorders is wide, including non-organized deposits or inclusions such as C3 glomerulopathy with monoclonal glomerulopathy (MIg-C3G), monoclonal immunoglobulin deposition disease, proliferative glomerulonephritis with monoclonal immunoglobulin deposits and organized deposits like immunoglobulin related amyloidosis, type I and type II cryoglobulinaemic glomerulonephritis, light chain proximal tubulopathy, and so on. Kidney biopsy should be conducted to identify the exact disease associated with MGRS. These MGRS-associated diseases can involve one or more renal compartments, including glomeruli, tubules and vessels. Hydrophobic residues replacement, N-glycosylated, increase in isoelectric point in MIg causes it to transform from soluble form to tissue deposition, causing glomerular damage. Complement deposition is found in MIg-C3G, which is caused by an abnormality of the alternative pathway and may involve multiple factors including complement component 3 nephritic factor, anti-complement factor auto-antibodies or MIg which directly cleaves C3. The effect of transforming growth factor beta and platelet-derived growth factor-β on mesangial extracellular matrix is associated with glomerular and tubular basement membrane thickening, nodular glomerulosclerosis, and interstitial fibrosis. Furthermore, inflammatory factors, growth factors and virus infection may play an important role in the development of the diseases. In this review, for the first time, we discussed current highlights in the mechanism of MGRS-related lesions.
Collapse
Affiliation(s)
- Chao Zuo
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China; Grade 2016, the Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuge Zhu
- Grade 2016, the First Clinical Medical College of Nanchang University, Nanchang, China
| | - Gaosi Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
39
|
An update to the pathogenesis for monoclonal gammopathy of renal significance. Ann Hematol 2020; 99:703-714. [PMID: 32103323 DOI: 10.1007/s00277-020-03971-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023]
Abstract
Monoclonal gammopathy of renal significance (MGRS) is characterized by the nephrotoxic monoclonal immunoglobulin secreted by an otherwise asymptomatic or indolent B cell or plasma cell clone, without hematologic criteria for treatment. These MGRS-associated diseases can involve one or more renal compartments, including glomeruli, tubules, and vessels. Hydrophobic residue replacement, N-glycosylated, increase in isoelectric point in monoclonal immunoglobulin (MIg) causes it to transform from soluble form to tissue deposition, and consequently resulting in glomerular damage. In addition to MIg deposition, complement deposition is also found in C3 glomerulopathy with monoclonal glomerulopathy, which is caused by an abnormality of the alternative pathway and may involve multiple factors including complement component 3 nephritic factor, anti-complement factor auto-antibodies, or MIg which directly cleaves C3. Furthermore, inflammatory factors, growth factors, and virus infection may also participate in the development of the diseases. In this review, for the first time, we discussed current highlights in the mechanism of MGRS-related lesions.
Collapse
|
40
|
Chauvet S, Berthaud R, Devriese M, Mignotet M, Vieira Martins P, Robe-Rybkine T, Miteva MA, Gyulkhandanyan A, Ryckewaert A, Louillet F, Merieau E, Mestrallet G, Rousset-Rouvière C, Thervet E, Hogan J, Ulinski T, Villoutreix BO, Roumenina L, Boyer O, Frémeaux-Bacchi V. Anti-Factor B Antibodies and Acute Postinfectious GN in Children. J Am Soc Nephrol 2020; 31:829-840. [PMID: 32034108 DOI: 10.1681/asn.2019080851] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The pathophysiology of the leading cause of pediatric acute nephritis, acute postinfectious GN, including mechanisms of the pathognomonic transient complement activation, remains uncertain. It shares clinicopathologic features with C3 glomerulopathy, a complement-mediated glomerulopathy that, unlike acute postinfectious GN, has a poor prognosis. METHODS This retrospective study investigated mechanisms of complement activation in 34 children with acute postinfectious GN and low C3 level at onset. We screened a panel of anticomplement protein autoantibodies, carried out related functional characterization, and compared results with those of 60 children from the National French Registry who had C3 glomerulopathy and persistent hypocomplementemia. RESULTS All children with acute postinfectious GN had activation of the alternative pathway of the complement system. At onset, autoantibodies targeting factor B (a component of the alternative pathway C3 convertase) were found in a significantly higher proportion of children with the disorder versus children with hypocomplementemic C3 glomerulopathy (31 of 34 [91%] versus 4 of 28 [14%], respectively). In acute postinfectious GN, anti-factor B autoantibodies were transient and correlated with plasma C3 and soluble C5b-9 levels. We demonstrated that anti-factor B antibodies enhance alternative pathway convertase activity in vitro, confirming their pathogenic effect. We also identified crucial antibody binding sites on factor B, including one correlated to disease severity. CONCLUSIONS These findings elucidate the pathophysiologic mechanisms underlying acute postinfectious GN by identifying anti-factor B autoantibodies as contributing factors in alternative complement pathway activation. At onset of a nephritic syndrome with low C3 level, screening for anti-factor B antibodies might help guide indications for kidney biopsy to avoid misdiagnosed chronic glomerulopathy, such as C3 glomerulopathy, and to help determine therapy.
Collapse
Affiliation(s)
- Sophie Chauvet
- Inflammation, Complement and Cancer Team, Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) S1138, Paris, France.,Departments of Nephrology and.,Paris University, Paris, France
| | - Romain Berthaud
- Paris University, Paris, France.,Department of Pediatric Nephrology, AP-HP, Necker Hospital - Sick Children, Paris, France
| | - Magali Devriese
- Immunology, Assistance Publique-Hôpitaux de Paris (AP-HP), Georges Pompidou European Hospital, Paris, France
| | - Morgane Mignotet
- Immunology, Assistance Publique-Hôpitaux de Paris (AP-HP), Georges Pompidou European Hospital, Paris, France
| | - Paula Vieira Martins
- Immunology, Assistance Publique-Hôpitaux de Paris (AP-HP), Georges Pompidou European Hospital, Paris, France
| | - Tania Robe-Rybkine
- Inflammation, Complement and Cancer Team, Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) S1138, Paris, France
| | - Maria A Miteva
- Paris University, Paris, France.,INSERM U1268 Medicinal Chemistry and Translational Research, Cibles Thérapeutiques et Conception du Médicament UMR8038 Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Aram Gyulkhandanyan
- University of Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR S973, Paris, France
| | | | | | - Elodie Merieau
- Department of Pediatric Nephrology, Tours Hospital, Tours, France
| | - Guillaume Mestrallet
- Department of Pediatry, Villefranche sur Soane Hospital, Villefranche sur Soane, France
| | | | - Eric Thervet
- Departments of Nephrology and.,Paris University, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology, AP-HP, Robert Debré Hospital, Paris, France
| | - Tim Ulinski
- Department of Pediatric Nephrology, AP-HP, Trousseau Hospital, Paris, France
| | - Bruno O Villoutreix
- Paris University, Paris, France.,Laboratory of cristallography and biological Nuclear magnetic resonance, UMR 8015 CNRS, Paris, France; and
| | - Lubka Roumenina
- Inflammation, Complement and Cancer Team, Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) S1138, Paris, France
| | - Olivia Boyer
- Paris University, Paris, France.,Department of Pediatric Nephrology, AP-HP, Necker Hospital - Sick Children, Paris, France.,Reference Center for Hereditary Kidney and Childhood Diseases (MARHEA), Imagine Institute, Paris, France
| | - Véronique Frémeaux-Bacchi
- Inflammation, Complement and Cancer Team, Cordeliers Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) S1138, Paris, France; .,Immunology, Assistance Publique-Hôpitaux de Paris (AP-HP), Georges Pompidou European Hospital, Paris, France.,Paris University, Paris, France
| |
Collapse
|
41
|
Schena FP, Esposito P, Rossini M. A Narrative Review on C3 Glomerulopathy: A Rare Renal Disease. Int J Mol Sci 2020; 21:E525. [PMID: 31947692 PMCID: PMC7013756 DOI: 10.3390/ijms21020525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
In April 2012, a group of nephrologists organized a consensus conference in Cambridge (UK) on type II membranoproliferative glomerulonephritis and decided to use a new terminology, "C3 glomerulopathy" (C3 GP). Further knowledge on the complement system and on kidney biopsy contributed toward distinguishing this disease into three subgroups: dense deposit disease (DDD), C3 glomerulonephritis (C3 GN), and the CFHR5 nephropathy. The persistent presence of microhematuria with or without light or heavy proteinuria after an infection episode suggests the potential onset of C3 GP. These nephritides are characterized by abnormal activation of the complement alternative pathway, abnormal deposition of C3 in the glomeruli, and progression of renal damage to end-stage kidney disease. The diagnosis is based on studying the complement system, relative genetics, and kidney biopsies. The treatment gap derives from the absence of a robust understanding of their natural outcome. Therefore, a specific treatment for the different types of C3 GP has not been established. Recommendations have been obtained from case series and observational studies because no randomized clinical trials have been conducted. Current treatment is based on corticosteroids and antiproliferative drugs (cyclophosphamide, mycophenolate mofetil), monoclonal antibodies (rituximab) or complement inhibitors (eculizumab). In some cases, it is suggested to include sessions of plasma exchange.
Collapse
Affiliation(s)
- Francesco Paolo Schena
- Department of Emergency and Organ Transplantation, Renal Unit, University of Bari, 70124 Bari, Italy;
- Schena Foundation, European Center for the Study of Renal Diseases, 70010 Valenzano, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, Division of Nephrology, Dialysis and Transplantation, University of Genoa and IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Michele Rossini
- Department of Emergency and Organ Transplantation, Renal Unit, University of Bari, 70124 Bari, Italy;
| |
Collapse
|
42
|
Leung N, Bridoux F, Batuman V, Chaidos A, Cockwell P, D'Agati VD, Dispenzieri A, Fervenza FC, Fermand JP, Gibbs S, Gillmore JD, Herrera GA, Jaccard A, Jevremovic D, Kastritis E, Kukreti V, Kyle RA, Lachmann HJ, Larsen CP, Ludwig H, Markowitz GS, Merlini G, Mollee P, Picken MM, Rajkumar VS, Royal V, Sanders PW, Sethi S, Venner CP, Voorhees PM, Wechalekar AD, Weiss BM, Nasr SH. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol 2019; 15:45-59. [PMID: 30510265 PMCID: PMC7136169 DOI: 10.1038/s41581-018-0077-4] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The term monoclonal gammopathy of renal significance (MGRS) was introduced by the International Kidney and Monoclonal Gammopathy Research Group (IKMG) in 2012. The IKMG met in April 2017 to refine the definition of MGRS and to update the diagnostic criteria for MGRS-related diseases. Accordingly, in this Expert Consensus Document, the IKMG redefines MGRS as a clonal proliferative disorder that produces a nephrotoxic monoclonal immunoglobulin and does not meet previously defined haematological criteria for treatment of a specific malignancy. The diagnosis of MGRS-related disease is established by kidney biopsy and immunofluorescence studies to identify the monotypic immunoglobulin deposits (although these deposits are minimal in patients with either C3 glomerulopathy or thrombotic microangiopathy). Accordingly, the IKMG recommends a kidney biopsy in patients suspected of having MGRS to maximize the chance of correct diagnosis. Serum and urine protein electrophoresis and immunofixation, as well as analyses of serum free light chains, should also be performed to identify the monoclonal immunoglobulin, which helps to establish the diagnosis of MGRS and might also be useful for assessing responses to treatment. Finally, bone marrow aspiration and biopsy should be conducted to identify the lymphoproliferative clone. Flow cytometry can be helpful in identifying small clones. Additional genetic tests and fluorescent in situ hybridization studies are helpful for clonal identification and for generating treatment recommendations. Treatment of MGRS was not addressed at the 2017 IKMG meeting; consequently, this Expert Consensus Document does not include any recommendations for the treatment of patients with MGRS. This Expert Consensus Document from the International Kidney and Monoclonal Gammopathy Research Group includes an updated definition of monoclonal gammopathy of renal significance (MGRS) and recommendations for the use of kidney biopsy and other modalities for evaluating suspected MGRS
Collapse
Affiliation(s)
- Nelson Leung
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Frank Bridoux
- Department of Nephrology, Centre Hospitalier Universitaire et Université de Poitiers, Poitiers, France; CNRS UMR7276, Limoges, France; and Centre de Référence Amylose AL et Autres Maladies par Dépôt d'Immunoglobulines Monoclonales, Poitiers, France
| | - Vecihi Batuman
- Veterans Administration Medical Center, New Orleans, LA, USA and Tulane University Medical School, Tulane, LA, USA
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Medicine, Imperial College London and Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Paul Cockwell
- Department of Nephrology, Renal Medicine - University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, UK
| | - Vivette D D'Agati
- Department of Pathology, Renal Pathology Laboratory, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Angela Dispenzieri
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Fernando C Fervenza
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jean-Paul Fermand
- Department of Haematology and Immunology, University Hospital St Louis, Paris, France
| | - Simon Gibbs
- The Victorian and Tasmanian Amyloidosis Service, Department of Haematology, Monash Univerity Easter Health Clinical School, Melbourne, Victoria, Australia
| | - Julian D Gillmore
- National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Guillermo A Herrera
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arnaud Jaccard
- Service d'Hématologie et de Thérapie Cellulaire, Centre de Référence des Amyloses Primitives et des Autres Maladies par Dépôts d'Immunoglobuline, CHU Limoges, Limoges, France
| | - Dragan Jevremovic
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine National and Kapodistrian University of Athens Alexandra Hospital, Athens, Greece
| | - Vishal Kukreti
- University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | - Robert A Kyle
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Helen J Lachmann
- National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK
| | | | - Heinz Ludwig
- Wilhelminen Cancer Research Institute, Wilhelminenspital, Vienna, Austria
| | - Glen S Markowitz
- Department of Pathology, Renal Pathology Laboratory, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Peter Mollee
- Haematology Department, Princess Alexandra Hospital and School of Medicine, University of Queensland, Brisbane, Australia
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Vincent S Rajkumar
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Virginie Royal
- Department of Pathology, Hôpital Maisonneuve-Rosemont, Université de Montreal, Montreal, Quebec, Canada
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham and Department of Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Sanjeev Sethi
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Peter M Voorhees
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium System, Charlotte, NC, USA
| | - Ashutosh D Wechalekar
- National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Brendan M Weiss
- Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Samih H Nasr
- Division of Nephrology, Hematology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
43
|
Abstract
Glomerulonephritis (GN) refers to a group of renal diseases affecting the glomeruli due to the damage mediated by immunological mechanisms. A large proportion of the disease manifestations are caused by disturbances in the complement system. They can be due to genetic errors, autoimmunity, microbes or abnormal immunoglobulins, like modified IgA or paraproteins. The common denominator in most of the problems is an overactive or misdirected alternative pathway complement activation. An assessment of kidney function, amount of proteinuria and hematuria are crucial elements to evaluate, when glomerulonephritis is suspected. However, the cornerstones of the diagnoses are renal biopsy and careful examination of the complement abnormality. Differential diagnostics between the various forms of GN is not possible based on clinical features, as they may vary greatly. This review describes the known mechanisms of complement dysfunction leading to different forms of primary GN (like IgA glomerulonephritis, dense deposit disease, C3 glomerulonephritis, post-infectious GN, membranous GN) and differences to atypical hemolytic uremic syndrome. It also covers the basic elements of etiology-directed therapy and prognosis of the most common forms of GN. Common principles in the management of GN include treatment of hypertension and reduction of proteinuria, some require immunomodulating treatment. Complement inhibition is an emerging treatment option. A thorough understanding of the basic disease mechanism and a careful follow-up are needed for optimal therapy.
Collapse
Affiliation(s)
- Kati Kaartinen
- Department of Nephrology, Abdominal Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Adrian Safa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Soumya Kotha
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Giorgio Ratti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Department of Bacteriology and Immunology, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland; HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
44
|
Nasr SH, Larsen CP, Sirac C, Theis JD, Domenger C, Chauvet S, Javaugue V, Hogan JJ, Said SM, Dasari S, Vrana JA, McPhail ED, Cornell LD, Vilaine E, Massy ZA, Boffa JJ, Buob D, Toussaint S, Guincestre T, Touchard G, D'Agati VD, Leung N, Bridoux F. Light chain only variant of proliferative glomerulonephritis with monoclonal immunoglobulin deposits is associated with a high detection rate of the pathogenic plasma cell clone. Kidney Int 2019; 97:589-601. [PMID: 32001067 DOI: 10.1016/j.kint.2019.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
IgG (mainly IgG3) is the most commonly involved isotype in proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID). Here we describe the first series of PGNMID with deposition of monoclonal immunoglobulin light chain only (PGNMID-light chain). This multicenter cohort of 17 patients presented with nephritic or nephrotic syndrome with underlying hematologic conditions of monoclonal gammopathy of renal significance (71%) or multiple myeloma (29%). Monoclonal immunoglobulin was identified by serum and urine immunofixation in 65% and 73%, respectively, with abnormal serum free light chain in 83%, and a detectable bone marrow plasma cell clone in 88% of patients. Renal biopsy showed a membranoproliferative pattern in most patients. By immunofluorescence, deposits were restricted to glomeruli and composed of restricted light chain (kappa in 71%) and C3, with granular appearance and subendothelial, mesangial and subepithelial distribution by electron microscopy. Proteomic analysis in four cases of kappa PGNMID-light chain revealed spectra for kappa constant and variable domains, without evidence of Ig heavy chains; spectra for proteins of the alternative pathway of complement and terminal complex were detected in three. The classical pathway was not detected in three cases. After median follow up of 70 months, the renal response was dependent on a hematologic response and occurred in six of ten patients treated with plasma cell-directed chemotherapy but none of five patients receiving other therapies. Thus, PGNMID-light chain differs from PGNMID-IgG by higher frequency of a detectable pathogenic plasma cell clone. Hence, proper recognition is crucial as anti-myeloma agents may improve renal prognosis. Activation of an alternative pathway of complement by monoclonal immunoglobulin light chain likely plays a role in its pathogenesis.
Collapse
Affiliation(s)
- Samih H Nasr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
| | | | - Christophe Sirac
- Department of Immunology, Joint Research Unit CNRS 7276, INSERM 1262, University of Limoges, French Reference Center for AL Amyloidosis, University Hospital Dupuytren, Limoges, France
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Camille Domenger
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Poitiers, French Reference Center for AL Amyloidosis, Poitiers, France
| | - Sophie Chauvet
- Assistance Publique-Hôpitaux de Paris, European Hospital Georges Pompidou, Department of Nephrology, Paris, France; INSERM UMRS1138, Research Center Cordeliers, Paris Descartes Sorbonne Paris-Cité University, Paris, France
| | - Vincent Javaugue
- Department of Immunology, Joint Research Unit CNRS 7276, INSERM 1262, University of Limoges, French Reference Center for AL Amyloidosis, University Hospital Dupuytren, Limoges, France; Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Poitiers, French Reference Center for AL Amyloidosis, Poitiers, France
| | - Jonathan J Hogan
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samar M Said
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lynn D Cornell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eve Vilaine
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology, Ambroise Paré Hospital, Boulogne-Billancourt, France; Inserm U1018 Team5 UVSQ, University Paris Saclay, Villejuif, France
| | - Ziad A Massy
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology, Ambroise Paré Hospital, Boulogne-Billancourt, France; Inserm U1018 Team5 UVSQ, University Paris Saclay, Villejuif, France
| | - Jean-Jacques Boffa
- Assistance Publique-Hôpitaux de Paris, Department of Nephrology, Hôpital Tenon, Paris Sorbonne University, Paris, France
| | - David Buob
- Assistance Publique-Hôpitaux de Paris, Department of Pathology, Hôpital Tenon, Paris Sorbonne University, Paris, France
| | - Stéphanie Toussaint
- Department of Nephrology, Bourg-en-Bresse General Hospital, Bourg-en-Bresse, France
| | | | - Guy Touchard
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Poitiers, French Reference Center for AL Amyloidosis, Poitiers, France
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Nelson Leung
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank Bridoux
- Department of Immunology, Joint Research Unit CNRS 7276, INSERM 1262, University of Limoges, French Reference Center for AL Amyloidosis, University Hospital Dupuytren, Limoges, France; Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Poitiers, French Reference Center for AL Amyloidosis, Poitiers, France
| |
Collapse
|
45
|
Garam N, Prohászka Z, Szilágyi Á, Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G, Bajcsi D, Brunner J, Dumfarth A, Cejka D, Flaschberger S, Flögelova H, Haris Á, Hartmann Á, Heilos A, Mueller T, Rusai K, Arbeiter K, Hofer J, Jakab D, Sinkó M, Szigeti E, Bereczki C, Janko V, Kelen K, Reusz GS, Szabó AJ, Klenk N, Kóbor K, Kojc N, Knechtelsdorfer M, Laganovic M, Lungu AC, Meglic A, Rus R, Kersnik-Levart T, Macioniene E, Miglinas M, Pawłowska A, Stompór T, Podracka L, Rudnicki M, Mayer G, Romana Rysava, Reiterova J, Saraga M, Tomáš Seeman, Zieg J, Sládková E, Szabó T, Capitanescu A, Stancu S, Tisljar M, Galesic K, Tislér A, Vainumäe I, Windpessl M, Zaoral T, Zlatanova G, Csuka D. C4 nephritic factor in patients with immune-complex-mediated membranoproliferative glomerulonephritis and C3-glomerulopathy. Orphanet J Rare Dis 2019; 14:247. [PMID: 31703608 PMCID: PMC6839100 DOI: 10.1186/s13023-019-1237-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/22/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acquired or genetic abnormalities of the complement alternative pathway are the primary cause of C3glomerulopathy(C3G) but may occur in immune-complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) as well. Less is known about the presence and role of C4nephritic factor(C4NeF) which may stabilize the classical pathway C3-convertase. Our aim was to examine the presence of C4NeF and its connection with clinical features and with other pathogenic factors. RESULTS One hunfe IC-MPGN/C3G patients were enrolled in the study. C4NeF activity was determined by hemolytic assay utilizing sensitized sheep erythrocytes. Seventeen patients were positive for C4NeF with lower prevalence of renal impairment and lower C4d level, and higher C3 nephritic factor (C3NeF) prevalence at time of diagnosis compared to C4NeF negative patients. Patients positive for both C3NeF and C4NeF had the lowest C3 levels and highest terminal pathway activation. End-stage renal disease did not develop in any of the C4NeF positive patients during follow-up period. Positivity to other complement autoantibodies (anti-C1q, anti-C3) was also linked to the presence of nephritic factors. Unsupervised, data-driven cluster analysis identified a group of patients with high prevalence of multiple complement autoantibodies, including C4NeF. CONCLUSIONS In conclusion, C4NeF may be a possible cause of complement dysregulation in approximately 10-15% of IC-MPGN/C3G patients.
Collapse
Affiliation(s)
- Nóra Garam
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary.
| | - Ágnes Szilágyi
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dóra Bajcsi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Jürgen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Dumfarth
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz - Elisabethinen, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Geriatric Department, Ordensklinikum Linz - Elisabethinen, Linz, Austria
| | | | - Hana Flögelova
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Moravia, Czech Republic
| | - Ágnes Haris
- Department of Nephrology, Szent Margit Hospital, Budapest, Hungary
| | - Ágnes Hartmann
- Department of Pediatrics, University of Pécs, Pécs, Hungary
| | - Andreas Heilos
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mueller
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Neurology of Senses and Language, Hospital of St John of God, Linz, Austria
- Research Institute for Developmental Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Dániel Jakab
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Mária Sinkó
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Erika Szigeti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | | | - Kata Kelen
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György S Reusz
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Klenk
- FMC Center of Dialysis, Miskolc, Hungary
| | | | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hopital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | | | - Anamarija Meglic
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik-Levart
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ernesta Macioniene
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Anna Pawłowska
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Michael Rudnicki
- Dept. of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Dept. of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Romana Rysava
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Reiterova
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marijan Saraga
- Department of Pathology, University Hospital Split University of Split, School of Medicine, Split, Croatia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Prague, Czech Republic
| | - Eva Sládková
- Department of Pediatrics, Charles University in Prague, Faculty of Medicine in Pilsen, Prague, Czech Republic
| | - Tamás Szabó
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | | | - Simona Stancu
- Carol Davila Nephrology Hospital, Bucharest, Romania
| | - Miroslav Tisljar
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Kresimir Galesic
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - András Tislér
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Inga Vainumäe
- Department of Pathology of Tartu University Hospital, Tartu, Estonia
| | - Martin Windpessl
- Internal Medicine IV, Section of Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Tomas Zaoral
- Department of Pediatrics, University Hospital and Faculty of Medicine Ostrava, Ostrava, Czech Republic
| | - Galia Zlatanova
- University Children's Hospital Medical University, Sofia, Bulgaria
| | - Dorottya Csuka
- Research Laboratory, 3rd Department of Internal Medicine, and MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Kútvölgyi St 4, Budapest, H-1125, Hungary
| |
Collapse
|
46
|
Fung AWS, Sugumar V, Ren AH, Kulasingam V. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol 2019; 73:61-69. [PMID: 31690564 DOI: 10.1136/jclinpath-2019-206269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022]
Abstract
Mass spectrometry-based assays have been increasingly implemented in various disciplines in clinical diagnostic laboratories for their combined advantages in multiplexing capacity and high analytical specificity and sensitivity. It is now routinely used in areas including reference methods development, therapeutic drug monitoring, toxicology, endocrinology, paediatrics, immunology and microbiology to identify and quantify biomolecules in a variety of biological specimens. As new ionisation methods, instrumentation and techniques are continuously being improved and developed, novel mass spectrometry-based clinical applications will emerge for areas such as proteomics, metabolomics, haematology and anatomical pathology. This review will summarise the general principles of mass spectrometry and specifically highlight current and future clinical applications in anatomical pathology.
Collapse
Affiliation(s)
- Angela W S Fung
- Department of Pathology and Laboratory Medicine, St Paul's Hospital, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Vijithan Sugumar
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Annie He Ren
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada .,Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
47
|
|
48
|
Autoimmune abnormalities of the alternative complement pathway in membranoproliferative glomerulonephritis and C3 glomerulopathy. Pediatr Nephrol 2019; 34:1311-1323. [PMID: 29948306 DOI: 10.1007/s00467-018-3989-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023]
Abstract
Membranoproliferative glomerulonephritis (MPGN) is a rare chronic kidney disease associated with complement activation. Recent immunofluorescence-based classification distinguishes between immune complex (IC)-mediated MPGN, with glomerular IgG and C3 deposits, and C3 glomerulopathies (C3G), with predominant C3 deposits. Genetic and autoimmune abnormalities causing hyperactivation of the complement alternative pathway have been found as frequently in patients with immune complex-associated MPGN (IC-MPGN) as in those with C3G. In the last decade, there have been great advances in research into the autoimmune causes of IC-MPGN and C3G. The complement-activating autoantibodies called C3-nephritic factors (C3NeFs), which are present in 40-80% of patients, form a heterogeneous group of autoantibodies that stabilise the C3 convertase or the C5 convertase of the alternative pathway or both. A few patients, mainly with IC-MPGN, carry autoantibodies directed against the two components of the alternative pathway C3 convertase, factors B and C3b. Finally, autoantibodies against factor H, the main regulator of the alternative pathway, have been reported in a small proportion of patients with IC-MPGN or C3G. The identification of distinct pathogenetic patterns leading to kidney injury and of targets in the complement cascade may pave the way for tailored therapies for IC-MPGN and C3G, with specific complement inhibitors in the development pipeline.
Collapse
|
49
|
Sharkey K, Beernink PT, Langley JM, Gantt S, Quach C, Dold C, Liu Q, Galvan M, Granoff DM. Anti-Factor H Antibody Reactivity in Young Adults Vaccinated with a Meningococcal Serogroup B Vaccine Containing Factor H Binding Protein. mSphere 2019; 4:e00393-19. [PMID: 31270173 PMCID: PMC6609231 DOI: 10.1128/msphere.00393-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
Meningococcal serogroup B (MenB) vaccines contain recombinant factor H binding protein (FHbp), which can complex with complement factor H (CFH) and thereby risk eliciting anti-FH autoantibodies. While anti-FH antibodies can be present in sera of healthy persons, the antibodies are implicated in autoimmune atypical hemolytic uremic syndrome and C3 glomerulopathies. We immunized 120 students with a MenB vaccine (Bexsero). By enzyme-linked immunosorbent assay (ELISA), there were small increases in serum anti-FH levels at 3 weeks postvaccination (geometric mean optical density at 405 nm [OD405], 0.54 versus 0.51 preimmunization, P ≤ 0.003 for each schedule tested). There was a similar small increase in anti-FH antibody levels in a second historical MenB study of 20 adults with stored paired preimmunization and postimmunization sera (P = 0.007) but not in three other studies of 57 adults immunized with other meningococcal vaccines that did not contain recombinant FHbp (P = 0.17, 0.84, and 0.60, respectively). Thus, humans vaccinated with MenB-4C develop small increases in serum anti-FH antibody reactivity. Although not likely to be clinically important, the data indicate a host response to FH. In the prospective MenB study, three subjects (2.5%) developed higher anti-FH titers postimmunization. The elevated titers returned to baseline within 3 to 4 months, and none of the subjects reported adverse events during the follow-up. Although anti-FH antibodies can decrease FH function, the postimmunization sera with high anti-FH antibody levels did not impair serum FH function as measured using a hemolytic assay. Thus, while additional studies are warranted, there is no evidence that the anti-FH antibodies elicited by MenB-4C are likely to cause anti-FH-mediated autoimmune disorders. (This study has been registered at ClinicalTrials.gov under registration no. NCT02583412.)IMPORTANCE Meningococci are bacteria that cause sepsis and meningitis. Meningococcal species are subdivided into serogroups on the basis of different sugar capsules. Vaccines that target serogroup A, C, Y, and W capsules are safe and highly effective. New serogroup B (MenB) vaccines target a bacterial protein that can bind to a blood protein called complement factor H (FH). While serogroup B vaccines appear to be safe and effective, there is a theoretical risk that immunization with a bacterial protein that binds host FH might elicit anti-FH autoantibodies. Autoantibodies to FH have been detected in healthy persons but in rare cases can cause certain autoimmune diseases. We found small and/or transient increases in serum antibody to FH after MenB immunization. While no serious adverse events were reported in the subjects with elevated anti-FH titers, since onset of autoimmune disease is a rare event and may occur months or years after vaccination, additional, larger studies are warranted.
Collapse
Affiliation(s)
- Kelsey Sharkey
- Center for Immunobiology and Vaccine Development, University of California San Francisco Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Peter T Beernink
- Center for Immunobiology and Vaccine Development, University of California San Francisco Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Joanne M Langley
- IWK Health Centre and the Nova Scotia Health Authority, Canadian Center for Vaccinology at Dalhousie University, Halifax, Nova Scotia, Canada
| | - Soren Gantt
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Caroline Quach
- McGill University Health Centre Research Institute and CHU Sainte Justine, Montreal, Quebec, Canada
| | | | - Qin Liu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Manuel Galvan
- National Jewish Health Complement Laboratory, Denver, Colorado, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, University of California San Francisco Benioff Children's Hospital Oakland, Oakland, California, USA
| |
Collapse
|
50
|
Beernink PT, Vianzon V, Lewis LA, Moe GR, Granoff DM. A Meningococcal Outer Membrane Vesicle Vaccine with Overexpressed Mutant FHbp Elicits Higher Protective Antibody Responses in Infant Rhesus Macaques than a Licensed Serogroup B Vaccine. mBio 2019; 10:e01231-19. [PMID: 31213564 PMCID: PMC6581866 DOI: 10.1128/mbio.01231-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies.IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Vianca Vianzon
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Lisa A Lewis
- Division of Immunology and Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gregory R Moe
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|