1
|
Ochoa R, Soler MA, Gladich I, Battisti A, Minovski N, Rodriguez A, Fortuna S, Cossio P, Laio A. Computational Evolution Protocol for Peptide Design. Methods Mol Biol 2022; 2405:335-359. [PMID: 35298821 DOI: 10.1007/978-1-0716-1855-4_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
| | | | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- SISSA, Trieste, Italy
| | | | - Nikola Minovski
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Ljubljana, Slovenia
| | - Alex Rodriguez
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Alessandro Laio
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
- SISSA, Trieste, Italy
| |
Collapse
|
2
|
Ochoa R, Laskowski RA, Thornton JM, Cossio P. Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders. Front Mol Biosci 2021; 8:636562. [PMID: 34222328 PMCID: PMC8253603 DOI: 10.3389/fmolb.2021.636562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
The prediction of peptide binders to Major Histocompatibility Complex (MHC) class II receptors is of great interest to study autoimmune diseases and for vaccine development. Most approaches predict the affinities using sequence-based models trained on experimental data and multiple alignments from known peptide substrates. However, detecting activity differences caused by single-point mutations is a challenging task. In this work, we used interactions calculated from simulations to build scoring matrices for quickly estimating binding differences by single-point mutations. We modelled a set of 837 peptides bound to an MHC class II allele, and optimized the sampling of the conformations using the Rosetta backrub method by comparing the results to molecular dynamics simulations. From the dynamic trajectories of each complex, we averaged and compared structural observables for each amino acid at each position of the 9°mer peptide core region. With this information, we generated the scoring-matrices to predict the sign of the binding differences. We then compared the performance of the best scoring-matrix to different computational methodologies that range in computational costs. Overall, the prediction of the activity differences caused by single mutated peptides was lower than 60% for all the methods. However, the developed scoring-matrix in combination with existing methods reports an increase in the performance, up to 86% with a scoring method that uses molecular dynamics.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Medellin, Colombia.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Ochoa R, Laio A, Cossio P. Predicting the Affinity of Peptides to Major Histocompatibility Complex Class II by Scoring Molecular Dynamics Simulations. J Chem Inf Model 2019; 59:3464-3473. [PMID: 31290667 DOI: 10.1021/acs.jcim.9b00403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Predicting the binding affinity of peptides able to interact with major histocompatibility complex (MHC) molecules is a priority for researchers working in the identification of novel vaccines candidates. Most available approaches are based on the analysis of the sequence of peptides of known experimental affinity. However, for MHC class II receptors, these approaches are not very accurate, due to the intrinsic flexibility of the complex. To overcome these limitations, we propose to estimate the binding affinity of peptides bound to an MHC class II by averaging the score of the configurations from finite-temperature molecular dynamics simulations. The score is estimated for 18 different scoring functions, and we explored the optimal manner for combining them. To test the predictions, we considered eight peptides of known binding affinity. We found that six scoring functions correlate with the experimental ranking of the peptides significantly better than the others. We then assessed a set of techniques for combining the scoring functions by linear regression and logistic regression. We obtained a maximum accuracy of 82% for the predicted sign of the binding affinity using a logistic regression with optimized weights. These results are potentially useful to improve the reliability of in silico protocols to design high-affinity binding peptides for MHC class II receptors.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , 050010 Medellin , Colombia
| | - Alessandro Laio
- International School for Advanced Studies (SISSA) , Via Bonomea 265 , 34136 Trieste , Italy.,The Abdus Salam International Centre for Theoretical Physics (ICTP) , Strada Costiera 11 , 34151 Trieste , Italy
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , 050010 Medellin , Colombia.,Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany
| |
Collapse
|
4
|
Andreatta M, Jurtz VI, Kaever T, Sette A, Peters B, Nielsen M. Machine learning reveals a non-canonical mode of peptide binding to MHC class II molecules. Immunology 2017; 152:255-264. [PMID: 28542831 DOI: 10.1111/imm.12763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 02/01/2023] Open
Abstract
MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance of nine amino acids between the first and last residue in contact with the MHCII. While confirming that the great majority of peptides bind to the MHC using this canonical mode, we report evidence for an alternative, less common mode of interaction. A fraction of observed ligands were shown to have an unconventional spacing of the anchor residues that directly interact with the MHC, which could only be accommodated to the canonical MHC motif either by imposing a more stretched out peptide backbone (an 8mer core) or by the peptide bulging out of the MHC groove (a 10mer core). We estimated that on average 2% of peptides bind with a core deletion, and 0·45% with a core insertion, but the frequency of such non-canonical cores was as high as 10% for certain MHCII molecules. A mutational analysis and experimental validation of a number of these anomalous ligands demonstrated that they could only fit to their MHC binding motif with a non-canonical binding core of length different from nine. This previously undescribed mode of peptide binding to MHCII molecules gives a more complete picture of peptide presentation by MHCII and allows us to model more accurately this event.
Collapse
Affiliation(s)
- Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Vanessa I Jurtz
- Centre for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Kaever
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Centre for Biological Sequence Analysis, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Simioni PU, Fernandes LG, Tamashiro WM. Downregulation of L-arginine metabolism in dendritic cells induces tolerance to exogenous antigen. Int J Immunopathol Pharmacol 2017; 30:44-57. [PMID: 27903843 PMCID: PMC5806782 DOI: 10.1177/0394632016678873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are potential tools for therapeutic applications and several strategies to generate tolerogenic DCs are under investigation. When activated by cytokines and microbial products, DCs express mediators that modulate immune responses. In this regard, the metabolites generated by the activities of inducible nitric oxide synthase (iNOS) and arginase in DCs seem to play important roles. Here, we evaluated the effects of adoptive transfer of DCs generated in vitro from bone marrow precursors (BMDC) modulated with L-NAME (Nω-nitro-L-arginine methyl ester) and NOHA (NG-Hydroxy-L-arginine), inhibitors of iNOS and arginase, respectively, upon the immune response of the wild type (BALB/c) and OVA-TCR transgenic (DO11.10) mice. The modulation with L-NAME increased CD86 expression in BMDC, whereas treatment with NOHA increased both CD80 and CD86 expression. Adoptive transfer of either L-NAME- or NOHA-modulated BMDCs to BALB/c mice reduced the plasma levels of ovalbumin-specific antibody as well as proliferation and cytokine secretion in cultures of spleen cells in comparison adoptive transfer of non-modulated DCs. Conversely, transfer of both modulated and non-modulated BMDCs had no effect on immune response of DO11.10 mice. Together, these results show that the treatment with iNOS and Arg inhibitors leads to increased expression of co-stimulatory molecules in DCs, and provides evidences that L-arginine metabolism may be an important therapeutic target for modulating immune responses in inflammatory disorders.
Collapse
Affiliation(s)
- Patricia U Simioni
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil.,2 Department of Biomedical Science, Faculty of Americana, FAM, Americana, SP, Brazil.,3 Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Luis Gr Fernandes
- 2 Department of Biomedical Science, Faculty of Americana, FAM, Americana, SP, Brazil.,4 Medical School, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Wirla Msc Tamashiro
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| |
Collapse
|