1
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024:10.1038/s41579-024-01065-7. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Watson FN, Shears MJ, Kalata AC, Duncombe CJ, Seilie AM, Chavtur C, Conrad E, Cruz Talavera I, Raappana A, Sather DN, Chakravarty S, Sim BKL, Hoffman SL, Tsuji M, Murphy SC. Ultra-low volume intradermal administration of radiation-attenuated sporozoites with the glycolipid adjuvant 7DW8-5 completely protects mice against malaria. Sci Rep 2024; 14:2881. [PMID: 38311678 PMCID: PMC10838921 DOI: 10.1038/s41598-024-53118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/28/2024] [Indexed: 02/06/2024] Open
Abstract
Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8+ T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 µL) was completely protective and dose sparing compared to standard volumes (10-50 µL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective than IV RAS. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.
Collapse
Affiliation(s)
- Felicia N Watson
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Anya C Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Caroline J Duncombe
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - A Mariko Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Chris Chavtur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Ethan Conrad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sean C Murphy
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Center for Emerging and Re-emerging Infectious Diseases (CERID), University of Washington, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98109, USA.
- Washington National Primate Research Center, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, 98105, USA.
| |
Collapse
|
3
|
Duszenko N, van Schuijlenburg R, Chevalley-Maurel S, van Willigen DM, de Bes-Roeleveld L, van der Wees S, Naar C, Baalbergen E, Heieis G, Bunschoten A, Velders AH, Franke-Fayard B, van Leeuwen FWB, Roestenberg M. Chemically augmented malaria sporozoites display an altered immunogenic profile. Front Immunol 2023; 14:1204606. [PMID: 37720224 PMCID: PMC10500441 DOI: 10.3389/fimmu.2023.1204606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Despite promising results in malaria-naïve individuals, whole sporozoite (SPZ) vaccine efficacy in malaria-endemic settings has been suboptimal. Vaccine hypo-responsiveness due to previous malaria exposure has been posited as responsible, indicating the need for SPZ vaccines of increased immunogenicity. To this end, we here demonstrate a proof-of-concept for altering SPZ immunogenicity, where supramolecular chemistry enables chemical augmentation of the parasite surface with a TLR7 agonist-based adjuvant (SPZ-SAS(CL307)). In vitro, SPZ-SAS(CL307) remained well recognized by immune cells and induced a 35-fold increase in the production of pro-inflammatory IL-6 (p < 0.001). More promisingly, immunization of mice with SPZ-SAS(CL307) yielded improved SPZ-specific IFN-γ production in liver-derived NK cells (percentage IFN-γ+ cells 11.1 ± 1.8 vs. 9.4 ± 1.5%, p < 0.05), CD4+ T cells (4.7 ± 4.3 vs. 1.8 ± 0.7%, p < 0.05) and CD8+ T cells (3.6 ± 1.4 vs. 2.5 ± 0.9%, p < 0.05). These findings demonstrate the potential of using chemical augmentation strategies to enhance the immunogenicity of SPZ-based malaria vaccines.
Collapse
Affiliation(s)
- Nikolas Duszenko
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Danny M. van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Chanel Naar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Els Baalbergen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Graham Heieis
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Anton Bunschoten
- Laboratory of BioNanoTechnology, Wageningen University & Research, Wageningen, Netherlands
| | - Aldrik H. Velders
- Laboratory of BioNanoTechnology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Watson FN, Shears MJ, Kalata AC, Duncombe CJ, Seilie AM, Chavtur C, Conrad E, Talavera IC, Raappana A, Sather DN, Chakravarty S, Sim BKL, Hoffman SL, Tsuji M, Murphy SC. Ultra-low volume intradermal administration of radiation-attenuated sporozoites with the glycolipid adjuvant 7DW8-5 completely protects mice against malaria. RESEARCH SQUARE 2023:rs.3.rs-3243319. [PMID: 37609210 PMCID: PMC10441511 DOI: 10.21203/rs.3.rs-3243319/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Malaria is caused by Plasmodium parasites and was responsible for over 247 million infections and 619,000 deaths in 2021. Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage infection by inducing protective liver-resident memory CD8+ T cells. Such T cells can be induced by 'prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver. Prime-and-trap confers durable protection in mice, and efforts are underway to translate this vaccine strategy to the clinic. However, it is unclear whether the RAS trapping dose must be strictly administered by the IV route. Here we show that intradermal (ID) RAS administration can be as effective as IV administration if RAS are co-administrated with the glycolipid adjuvant 7DW8-5 in an ultra-low inoculation volume. In mice, the co-administration of RAS and 7DW8-5 in ultra-low ID volumes (2.5 μL) was completely protective and dose sparing compared to standard volumes (10-50 μL) and induced protective levels of CSP-specific CD8+ T cells in the liver. Our finding that adjuvants and ultra-low volumes are required for ID RAS efficacy may explain why prior reports about higher volumes of unadjuvanted ID RAS proved less effective. The ID route may offer significant translational advantages over the IV route and could improve sporozoite vaccine development.
Collapse
|
5
|
Diupotex M, Zamora-Chimal J, Cervantes-Sarabia RB, Salaiza-Suazo N, Becker I. Alpha-galactosylceramide as adjuvant induces protective cell-mediated immunity against Leishmania mexicana infection in vaccinated BALB/c mice. Cell Immunol 2023; 386:104692. [PMID: 36870122 DOI: 10.1016/j.cellimm.2023.104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Adjuvants represent a promising strategy to improve vaccine effectiveness against infectious diseases such as leishmaniasis. Vaccination with the invariant natural killer T cell ligand α-galactosylceramide (αGalCer) has been used successfully as adjuvant, generating a Th1-biased immunomodulation. This glycolipid enhances experimental vaccination platforms against intracellular parasites including Plasmodium yoelii and Mycobacterium tuberculosis. In the present study, we assessed the protective immunity induced by a single-dose intraperitoneal injection of αGalCer (2 μg) co-administrated with a lysate antigen of amastigotes (100 μg) against Leishmania mexicana infection in BALB/c mice. The prophylactic vaccination led to 5.0-fold reduction of parasite load at the infection site, compared to non-vaccinated mice. A predominant pro-inflammatory response was observed in challenged vaccinated mice, represented by a 1.9 and 2.8-fold-increase of IL-1β and IFN-γ producing cells, respectively, in the lesions, and by 23.7-fold-increase of IFN-γ production in supernatants of restimulated splenocytes, all compared to control groups. The co-administration of αGalCer also stimulated the maturation of splenic dendritic cells and modulated a Th1-skewed immune response, with high amounts of IFN-γ production in serum. Furthermore, peritoneal cells of αGalCer-immunized mice exhibited an elevated expression of Ly6G and MHCII. These findings indicate that αGalCer improves protection against cutaneous leishmaniasis, supporting evidence for its potential use as adjuvant in Leishmania-vaccines.
Collapse
Affiliation(s)
- Mariana Diupotex
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Rocely Buenaventura Cervantes-Sarabia
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, C.P. 04510 Ciudad de México, México.
| |
Collapse
|
6
|
Watson FN, Duncombe CJ, Kalata AC, Conrad E, Chakravarty S, Sim BKL, Hoffman SL, Tsuji M, Shears MJ, Murphy SC. Sex-Specific Differences in Cytokine Induction by the Glycolipid Adjuvant 7DW8-5 in Mice. Biomolecules 2022; 13:biom13010008. [PMID: 36671393 PMCID: PMC9855660 DOI: 10.3390/biom13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
7DW8-5 is a potent glycolipid adjuvant that improves malaria vaccine efficacy in mice by inducing IFN-γ and increasing protective CD8+ T cell responses. The addition of 7DW8-5 was previously shown to improve the efficacy of a CD8+ T cell-mediated heterologous 'prime-and-trap' malaria vaccine against Plasmodium yoelii sporozoite challenge in inbred female mice. Here, we report significant differential sex-specific responses to 7DW8-5 in inbred and outbred mice. Male mice express significantly less IFN-γ and IL-4 compared to females following intravenous 7DW8-5 administration. Additionally, unlike in female mice, 7DW8-5 did not improve the vaccine efficacy against sporozoite challenge in prime-and-trap vaccinated male mice. Our findings highlight the importance of including both female and male sexes in experimental adjuvant studies.
Collapse
Affiliation(s)
- Felicia N. Watson
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Caroline J. Duncombe
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Anya C. Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Ethan Conrad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD 20850, USA
| | - B. Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD 20850, USA
| | - Stephen L. Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD 20850, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Melanie J. Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
| | - Sean C. Murphy
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Center for Emerging and Re-Emerging Infectious Diseases (CERID), University of Washington, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA 98109, USA
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
7
|
iNKT cell agonists as vaccine adjuvants to combat infectious diseases. Carbohydr Res 2022; 513:108527. [DOI: 10.1016/j.carres.2022.108527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
|
8
|
Lang GA, Norman K, Amadou Amani S, Shadid TM, Ballard JD, Lang ML. Use of a Clostridioides difficile Murine Immunization and Challenge Model to Evaluate Single and Combination Vaccine Adjuvants Consisting of Alum and NKT Cell-Activating Ligands. Front Immunol 2022; 12:818734. [PMID: 35095921 PMCID: PMC8794951 DOI: 10.3389/fimmu.2021.818734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/27/2021] [Indexed: 01/14/2023] Open
Abstract
Adjuvant combinations may enhance or broaden the expression of immune responses to vaccine antigens. Information on whether established Alum type adjuvants can be combined with experimental CD1d ligand adjuvants is currently lacking. In this study, we used a murine Clostridioides difficile immunization and challenge model to evaluate Alum (Alhydrogel™), α-galactosylceramide (α-GC), and one of its analogs 7DW8-5 singly and in combination as vaccine adjuvants. We observed that the Alum/α-GC combination caused modest enhancement of vaccine antigen-specific IgG1 and IgG2b responses, and a broadening to include IgG2c that did not significantly impact overall protection. Similar observations were made using the Alum/7DW8-5 combination. Examination of the impact of adjuvants on NKT cells revealed expansion of invariant NKT (iNKT) cells with modest expansion of their iNKTfh subset and little effect on diverse NKT (dNKT) cells. Side effects of the adjuvants was determined and revealed transient hepatotoxicity when Alum/α-GC was used in combination but not singly. In summary these results showed that the Alum/α-GC or the Alum/7DW8-5 combination could exert distinct effects on the NKT cell compartment and on isotype switch to produce Th1-driven IgG subclasses in addition to Alum/Th2-driven subclasses. While Alum alone was efficacious in stimulating IgG-mediated protection, and α-GC offered no apparent additional benefit in the C. difficile challenge model, the work herein reveals immune response features that could be optimized and harnessed in other vaccine contexts.
Collapse
|
9
|
Bharadwaj NS, Gumperz JE. Harnessing invariant natural killer T cells to control pathological inflammation. Front Immunol 2022; 13:998378. [PMID: 36189224 PMCID: PMC9519390 DOI: 10.3389/fimmu.2022.998378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate T cells that are recognized for their potent immune modulatory functions. Over the last three decades, research in murine models and human observational studies have revealed that iNKT cells can act to limit inflammatory pathology in a variety of settings. Since iNKT cells are multi-functional and can promote inflammation in some contexts, understanding the mechanistic basis for their anti-inflammatory effects is critical for effectively harnessing them for clinical use. Two contrasting mechanisms have emerged to explain the anti-inflammatory activity of iNKT cells: that they drive suppressive pathways mediated by other regulatory cells, and that they may cytolytically eliminate antigen presenting cells that promote excessive inflammatory responses. How these activities are controlled and separated from their pro-inflammatory functions remains a central question. Murine iNKT cells can be divided into four functional lineages that have either pro-inflammatory (NKT1, NKT17) or anti-inflammatory (NKT2, NKT10) cytokine profiles. However, in humans these subsets are not clearly evident, and instead most iNKT cells that are CD4+ appear oriented towards polyfunctional (TH0) cytokine production, while CD4- iNKT cells appear more predisposed towards cytolytic activity. Additionally, structurally distinct antigens have been shown to induce TH1- or TH2-biased responses by iNKT cells in murine models, but human iNKT cells may respond to differing levels of TCR stimulation in a way that does not neatly separate TH1 and TH2 cytokine production. We discuss the implications of these differences for translational efforts focused on the anti-inflammatory activity of iNKT cells.
Collapse
Affiliation(s)
- Nikhila S Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jenny E Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
10
|
Lee C, Hong SN, Kim YH. A glycolipid adjuvant, 7DW8-5, provides a protective effect against colonic inflammation in mice by the recruitment of CD1d-restricted natural killer T cells. Intest Res 2020; 18:402-411. [PMID: 32248672 PMCID: PMC7609397 DOI: 10.5217/ir.2019.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 01/31/2023] Open
Abstract
Background/Aims The modulation of CD1d-restricted natural killer T (NKT) cells by glycolipids has been considered as a potential therapy against immunologic diseases, including inflammatory bowel disease. A recently identified a glycolipid analog, 7DW8-5, which is derived from α-galactosylceramide (α-GalCer), is as much as 100-fold more active at stimulating both human and mice NKT cells when compared to α-GalCer. We explored the effects of 7DW8-5 in mouse models of acute and chronic colitis. Methods We investigated the effects of 7DW8-5 on intestinal inflammation by assessing the effects of 7dW8-5 on a murine dextran sulfate sodium (DSS)-induced acute colitis model and a chronic colitis-associated tumor model. Results The acute DSS-induced colitis model showed a dose-dependent response to 7DW8-5, as mice administered 7DW8-5 showed a significant improvement in DSS-induced colitis based on their disease activity index, histologic analysis, and serum C-reactive protein levels, when compared to mice administered vehicle alone. However, DSS-induced colitis in CD1d-KO mice showed no response to 7DW8-5. A fluorescence-activating cell sorting analysis revealed an increase in NKT cells in colonic tissues of 7DW8-5-treated mice. RNA-seq and real-time quantitative polymerase chain reaction showed a significant increase in the expression of interleukin (IL)-4, IL-13, and interferon-gamma in 7DW8-5-treated mice. In addition, 7DW8-5 treatment reduced colitis-associated tumor development in an azoxymethane/DSS mouse model. Conclusions 7DW8-5 activates NKT cells through CD1d and provides a protective effect against intestinal inflammation in mice. Therefore, 7DW8-5 may be a promising therapeutic agent for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Chansu Lee
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Sung Noh Hong
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Ho Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Abdel-Latif M, Sakran T, Abdel-Haleem HM, Eissa MF, Al-Sayed SE. Immunoprotective responses against murine sarcocystosis by β - Irradiated sporocysts. Exp Parasitol 2018; 191:73-81. [DOI: 10.1016/j.exppara.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
|
12
|
Othman AS, Franke-Fayard BM, Imai T, van der Gracht ETI, Redeker A, Salman AM, Marin-Mogollon C, Ramesar J, Chevalley-Maurel S, Janse CJ, Arens R, Khan SM. OX40 Stimulation Enhances Protective Immune Responses Induced After Vaccination With Attenuated Malaria Parasites. Front Cell Infect Microbiol 2018; 8:247. [PMID: 30073152 PMCID: PMC6060232 DOI: 10.3389/fcimb.2018.00247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/28/2018] [Indexed: 01/15/2023] Open
Abstract
Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.
Collapse
Affiliation(s)
- Ahmad Syibli Othman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Takashi Imai
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Esmé T I van der Gracht
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M Salman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands.,The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Catherin Marin-Mogollon
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Abstract
The inability to elicit strong and durable cellular responses is a major obstacle in the development of successful vaccines, in particular those against malaria. In this regard, the generation of novel adjuvants that will potently boost cell-mediated immunity induced by candidate vaccines is helpful. We and others have found a glycolipid, called α-galactosylceramide (α-GalCer), which could be presented on CD1d expressed by antigen-presenting cells (APCs) and stimulate natural killer T (NKT) cells. This triggers the activation/maturation of APCs, particularly dendritic cells (DCs). By activating NKT cells and subsequently DCs, α-GalCer has been shown to enhance adaptive immune responses, particularly of CD8
+ T cells, induced by the vaccines. More recently, we identified an analogue of α-GalCer, which can display a potent adjuvant activity in conjunction with malaria vaccines in mice and non-human primates. It is anticipated that CD1d-binding, NKT cell-stimulating glycolipids will be tested as adjuvants in humans in the near future.
Collapse
Affiliation(s)
- Jordana Grazziela Coelho-Dos-Reis
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil.,Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| | - Xiangming Li
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA.,Sanofi, Cambridge, MA, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY, USA
| |
Collapse
|
14
|
Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines. PLoS One 2018; 13:e0190940. [PMID: 29329308 PMCID: PMC5766151 DOI: 10.1371/journal.pone.0190940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022] Open
Abstract
Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model.
Collapse
|
15
|
Li X, Huang J, Kaneko I, Zhang M, Iwanaga S, Yuda M, Tsuji M. A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice. Expert Rev Vaccines 2017; 16:73-80. [PMID: 27801602 PMCID: PMC5526659 DOI: 10.1080/14760584.2017.1256208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES A CD1d-binding invariant natural killer T (iNKT)-cell stimulatory glycolipid, namely 7DW8-5, is shown to enhance the efficacy of radiation-attenuated sporozoites (RAS)-based malaria vaccine in mice. In the current study, we aim to determine whether 7DW8-5 can display a potent adjuvant effect in human immune system (HIS) mice. METHODS HIS-A2/hCD1d mice, which possess both functional human iNKT cells and CD8+ T cells, were generated by the transduction of NSG mice with adeno-associated virus serotype 9 expressing genes that encode human CD1d molecules and HLA-A*0201, followed by the engraftment of human hematopoietic stem cells. The magnitudes of human iNKT-cell response against 7DW8-5 and HLA-A*0201-restricted human CD8+ T-cell response against a human malaria antigen in HIS-A2/hCD1d mice were determined by using human CD1d tetramer and human HLA-A*0201 tetramer, respectively. RESULTS We found that 7DW8-5 stimulates human iNKT cells in HIS-A2/hCD1d mice, as well as those derived from HIS-A2/hCD1d mice in vitro. We also found that 7DW8-5 significantly increases the level of a human malarial antigen-specific HLA-A*0201-restricted human CD8+ T-cell response in HIS-A2/hCD1d mice. CONCLUSIONS Our study indicates that 7DW8-5 can display a potent adjuvant effect on RAS vaccine-induced anti-malarial immunity by augmenting malaria-specific human CD8+ T-cell response.
Collapse
Affiliation(s)
- Xiangming Li
- a HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center , Affiliate of The Rockefeller University , New York , NY , USA
| | - Jing Huang
- a HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center , Affiliate of The Rockefeller University , New York , NY , USA
| | - Izumi Kaneko
- b Department of Medical Zoology , Mie University Graduate School of Medicine , Tsu , Mie , Japan
| | - Min Zhang
- a HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center , Affiliate of The Rockefeller University , New York , NY , USA
- c Department of Pathology , New York University School of Medicine , New York , NY , USA
| | - Shiroh Iwanaga
- b Department of Medical Zoology , Mie University Graduate School of Medicine , Tsu , Mie , Japan
| | - Masao Yuda
- b Department of Medical Zoology , Mie University Graduate School of Medicine , Tsu , Mie , Japan
| | - Moriya Tsuji
- a HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center , Affiliate of The Rockefeller University , New York , NY , USA
| |
Collapse
|
16
|
Marzabadi CH, Franck RW. Small-Molecule Carbohydrate-Based Immunostimulants. Chemistry 2016; 23:1728-1742. [PMID: 27385422 DOI: 10.1002/chem.201601539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 01/07/2023]
Abstract
In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.
Collapse
Affiliation(s)
- Cecilia H Marzabadi
- Department of Chemistry & Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA
| | - Richard W Franck
- Department of Chemistry & Biochemistry, Hunter College/CUNY, 695 Park Ave., New York, NY, 10065, USA
| |
Collapse
|
17
|
Kharkwal SS, Arora P, Porcelli SA. Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics 2016; 68:597-610. [PMID: 27377623 DOI: 10.1007/s00251-016-0925-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Natural Killer T cells (NKT cells) are a subpopulation of T lymphocytes with unique phenotypic properties and a remarkably broad range of immune effector and regulatory functions. One subset of these cells, known as invariant NKT cells (iNKT cells), has become a significant focus in the search for new and better ways to enhance immunotherapies and vaccination. These unconventional T cells are characterized by their ability to be specifically activated by a range of foreign and self-derived glycolipid antigens presented by CD1d, an MHC class I-related antigen presenting molecule that has evolved to bind and present lipid antigens. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here we review the basic background biology of iNKT cells that is relevant to their potential for improving immune responses, and summarize recent work supporting the further development of glycolipid activators of iNKT cells as a new class of vaccine adjuvants.
Collapse
Affiliation(s)
- Shalu Sharma Kharkwal
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pooja Arora
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven A Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|