1
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner SN, Khurana Hershey GK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. Sci Immunol 2024; 9:eadd3085. [PMID: 38335270 PMCID: PMC11107477 DOI: 10.1126/sciimmunol.add3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic comorbidities remain ill-defined. Here, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aeroallergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed coincident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine tumor necrosis factor-α. These observations provide important insights into a potential mechanism underlying the development of allergic comorbidity in early life in children with AD, which involves altered NK cell functional responses, and define an endotype of severe AD.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Stanley B. DeVore
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
| | - Wan-Chi Chang
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Durga Krishnamurthy
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Harsha Seelamneni
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
| | - Brittany Grashel
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Daniel Spagna
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jocelyn M. Biagini
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Cancer and Cell Biology Program, University of Cincinnati College of Medicine
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
2
|
Sim JH, Bell R, Feng Z, Chyou S, Shipman WD, Kataru RP, Ivashkiv L, Mehrara B, Lu TT. Langerhans cells regulate immunity in adulthood by regulating postnatal dermal lymphatic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603312. [PMID: 39071369 PMCID: PMC11275746 DOI: 10.1101/2024.07.12.603312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The communication between skin and draining lymph nodes is crucial for well-regulated immune responses to skin insults. The skin sends antigen and other signals via lymphatic vessels to regulate lymph node activity, and regulating dermal lymphatic function is another means to control immunity. Here, we show that Langerhans cells (LCs), epidermis-derived antigen-presenting cells, mediate dermal lymphatic expansion and phenotype acquisition postnatally, a function is independent of LC entry into lymphatic vessels. This postnatal LC-lymphatic axis serves in part to control inflammatory systemic T cell responses in adulthood. Our data provide a tissue-based mechanism by which LCs regulate T cells remotely across time and space and raise the possibility that immune diseases in adulthood could reflect compromise of the LC-lymphatic axis in childhood.
Collapse
Affiliation(s)
- Ji Hyun Sim
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard Bell
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
| | - Zhonghui Feng
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
| | - Susan Chyou
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Raghu P Kataru
- Department of Plastic Surgery, Memorial Sloan Kettering, New York, NY 10021, USA
| | - Lionel Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Babak Mehrara
- Department of Plastic Surgery, Memorial Sloan Kettering, New York, NY 10021, USA
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research Institute, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Division of Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Pediatrics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
3
|
Ochayon DE, DeVore SB, Chang WC, Krishnamurthy D, Seelamneni H, Grashel B, Spagna D, Andorf S, Martin LJ, Biagini JM, Waggoner S, Hershey GKK. Progressive accumulation of hyperinflammatory NKG2D low NK cells in early childhood severe atopic dermatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.02.23290884. [PMID: 37333102 PMCID: PMC10274972 DOI: 10.1101/2023.06.02.23290884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that often precedes the development of food allergy, asthma, and allergic rhinitis. The prevailing paradigm holds that a reduced frequency and function of natural killer (NK) cell contributes to AD pathogenesis, yet the underlying mechanisms and contributions of NK cells to allergic co-morbidities remain ill-defined. Herein, analysis of circulating NK cells in a longitudinal early life cohort of children with AD revealed a progressive accumulation of NK cells with low expression of the activating receptor NKG2D, which was linked to more severe AD and sensitivity to allergens. This was most notable in children co-sensitized to food and aero allergens, a risk factor for development of asthma. Individual-level longitudinal analysis in a subset of children revealed co-incident reduction of NKG2D on NK cells with acquired or persistent sensitization, and this was associated with impaired skin barrier function assessed by transepidermal water loss. Low expression of NKG2D on NK cells was paradoxically associated with depressed cytolytic function but exaggerated release of the proinflammatory cytokine TNF-α. These observations provide important insights into a potential mechanism underlying the development of allergic co-morbidity in early life in children with AD which involves altered NK-cell functional responses, and define an endotype of severe AD.
Collapse
|
4
|
Borriello F, Zanoni I, Granucci F. Cellular and molecular mechanisms of antifungal innate immunity at epithelial barriers: The role of C-type lectin receptors. Eur J Immunol 2020; 50:317-325. [PMID: 31986556 PMCID: PMC10668919 DOI: 10.1002/eji.201848054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022]
Abstract
Humans are constantly exposed to fungi, either in the form of commensals at epithelial barriers or as inhaled spores. Innate immune cells play a pivotal role in maintaining commensal relationships and preventing skin, mucosal, or systemic fungal infections due to the expression of pattern recognition receptors that recognize fungal cell wall components and modulate both their activation status and the ensuing adaptive immune response. Commensal fungi also play a critical role in the modulation of homeostasis and disease susceptibility at epithelial barriers. This review will outline cellular and molecular mechanisms of anti-fungal innate immunity focusing on C-type lectin receptors and their relevance in the context of host-fungi interactions at skin and mucosal surfaces in murine experimental models as well as patients susceptible to fungal infections.
Collapse
Affiliation(s)
- Francesco Borriello
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- WAO Center of Excellence, Naples, Italy
| | - Ivan Zanoni
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
- INGM-National Institute of Molecular Genetics "Romeo ed Enrica Invernizzi,", Milan, Italy
| |
Collapse
|
5
|
Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol 2019; 97:700-713. [PMID: 30989674 DOI: 10.1111/imcb.12253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Langerhans cells (LCs) are epidermal immune cells of myeloid origin. Although these cells were primarily thought to play a defensive role in the skin, evidence now indicates a diverse range of LC-mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection. LCs may have a protective or suppressive function in pathologies of the skin, with differing functions being driven by the skin milieu. Understanding LC function will help guide the development of interventions that modulate these cells for therapeutic benefit.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Rasid O, Cavaillon JM. Compartment diversity in innate immune reprogramming. Microbes Infect 2018; 20:156-165. [PMID: 29287986 DOI: 10.1016/j.micinf.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
|
7
|
Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol 2018; 89:78-90. [PMID: 29366628 DOI: 10.1016/j.semcdb.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Abstract
Fungal infections remain a significant global health problem in humans. Fungi infect millions of people worldwide and cause from acute superficial infections to life-threatening systemic disease to chronic illnesses. Trying to decipher the complex innate and adaptive immune mechanisms that protect humans from pathogenic fungi is therefore a key research goal that may lead to immune-based therapeutic strategies and improved patient outcomes. In this review, we summarize how the cells and molecules of the innate immune system activate the adaptive immune system to elicit long-term immunity to fungi. We present current knowledge and exciting new advances in the context of organ-specific immunity, outlining the tissue-specific tropisms for the major pathogenic fungi of humans, the antifungal functions of tissue-resident myeloid cells, and the adaptive immune responses required to protect specific organs from fungal challenge.
Collapse
|
8
|
Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol 2017; 18:1068-1075. [PMID: 28926543 DOI: 10.1038/ni.3815] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
Collapse
|
9
|
Peng H, Tian Z. Natural Killer Cell Memory: Progress and Implications. Front Immunol 2017; 8:1143. [PMID: 28955346 PMCID: PMC5601391 DOI: 10.3389/fimmu.2017.01143] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/30/2017] [Indexed: 01/23/2023] Open
Abstract
Immunological memory is a cardinal feature of adaptive immunity. Although natural killer (NK) cells have long been considered short-lived innate lymphocytes that respond rapidly to transformed and virus-infected cells without prior sensitization, accumulating evidence has recently shown that NK cells develop long-lasting and antigen-specific memory to haptens and viruses. Additionally, cytokine stimulation alone can induce memory-like NK cells with longevity and functional competence, leading to emerging interest in harnessing NK cell memory for cancer immunotherapy. Here, we review the evidence of NK cell memory in different settings, summarize recent advances in mechanisms driving the formation of NK cell memory, and discuss the therapeutic potential of NK cells with memory-like properties in the clinical setting.
Collapse
Affiliation(s)
- Hui Peng
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Kashem SW, Kaplan DH. Skin Immunity to Candida albicans. Trends Immunol 2016; 37:440-450. [PMID: 27178391 DOI: 10.1016/j.it.2016.04.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Candida albicans is a dimorphic commensal fungus that colonizes healthy human skin, mucosa, and the reproductive tract. C. albicans is also a predominantly opportunistic fungal pathogen, leading to disease manifestations such as disseminated candidiasis and chronic mucocutaneous candidiasis (CMC). The differing host susceptibilities for the sites of C. albicans infection have revealed tissue compartmentalization with tailoring of immune responses based on the site of infection. Furthermore, extensive studies of host genetics in rare cases of CMC have identified conserved genetic pathways involved in immune recognition and the response to the extracellular pathogen. We focus here on human and mouse skin as a site of C. albicans infection, and we review established and newly discovered insights into the cellular pathways that promote cutaneous antifungal immunity.
Collapse
Affiliation(s)
- Sakeen W Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
11
|
Seillet C, Belz GT. Differentiation and diversity of subsets in group 1 innate lymphoid cells. Int Immunol 2015; 28:3-11. [PMID: 26346810 DOI: 10.1093/intimm/dxv051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 02/04/2023] Open
Abstract
NK cells were first identified in 1975 and represent the prototypical group 1 innate lymphoid cell (ILC). More recently, the discovery of new members of the ILC family has highlighted the complexity of this innate lymphoid lineage. Importantly, it has been recognized that different subsets exist within the group 1 ILC, which have potential roles in mediating immune protection and immunosurveillance, and in regulating tissue homeostasis and inflammation. Here, we review the developmental relationships between the different group 1 ILC, which have been identified to date and discuss how heterogeneity within this expanding family may have arisen.
Collapse
Affiliation(s)
- Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|