1
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
2
|
Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022; 13:867189. [PMID: 35572552 PMCID: PMC9094409 DOI: 10.3389/fimmu.2022.867189] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In 1986, Mosmann and Coffman identified 2 functionally distinct subsets of activated CD4 T cells, Th1 and Th2 cells, being key in distinct T cell mediated responses. Over the past three decades, our understanding of CD4 T cell differentiation has expanded and the initial paradigm of a dichotomic CD4 T cell family has been revisited to accommodate a constantly growing number of functionally distinct CD4 T helper and regulatory subpopulations. Of note, CD4 T cells with cytotoxic functions have also been described, initially in viral infections, autoimmune disorders and more recently also in cancer settings. Here, we provide an historical overview on the discovery and characterization of cytotoxic CD4 T cells, followed by a description of their mechanisms of cytotoxicity. We emphasize the relevance of these cells in disease conditions, particularly in cancer, and we provide insights on how to exploit these cells in immunotherapy.
Collapse
Affiliation(s)
- Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Margaux Saillard
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhuang Z, Lai X, Sun J, Chen Z, Zhang Z, Dai J, Liu D, Li Y, Li F, Wang Y, Zhu A, Wang J, Yang W, Huang J, Li X, Hu L, Wen L, Zhuo J, Zhang Y, Chen D, Li S, Huang S, Shi Y, Zheng K, Zhong N, Zhao J, Zhou D, Zhao J. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med 2021; 218:e20202187. [PMID: 33464307 PMCID: PMC7814348 DOI: 10.1084/jem.20202187] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/06/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Virus-specific T cells play essential roles in protection against multiple virus infections, including SARS-CoV and MERS-CoV. While SARS-CoV-2-specific T cells have been identified in COVID-19 patients, their role in the protection of SARS-CoV-2-infected mice is not established. Here, using mice sensitized for infection with SARS-CoV-2 by transduction with an adenovirus expressing the human receptor (Ad5-hACE2), we identified SARS-CoV-2-specific T cell epitopes recognized by CD4+ and CD8+ T cells in BALB/c and C57BL/6 mice. Virus-specific T cells were polyfunctional and were able to lyse target cells in vivo. Further, type I interferon pathway was proved to be critical for generating optimal antiviral T cell responses after SARS-CoV-2 infection. T cell vaccination alone partially protected SARS-CoV-2-infected mice from severe disease. In addition, the results demonstrated cross-reactive T cell responses between SARS-CoV and SARS-CoV-2, but not MERS-CoV, in mice. Understanding the role of the T cell response will guide immunopathogenesis studies of COVID-19 and vaccine design and validation.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jicheng Huang
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Xiaobo Li
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dingbin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suxiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuxiang Huang
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Yongxia Shi
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Kui Zheng
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Baldwin SL, Reese VA, Larsen SE, Beebe E, Guderian J, Orr MT, Fox CB, Reed SG, Coler RN. Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS One 2021; 16:e0247990. [PMID: 33705411 PMCID: PMC7951850 DOI: 10.1371/journal.pone.0247990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
An estimated 10 million people developed tuberculosis (TB) disease in 2019 which underscores the need for a vaccine that prevents disease and reduces transmission. The aim of our current studies is to characterize and test a prophylactic tuberculosis vaccine comprised of ID93, a polyprotein fusion antigen, and a liposomal formulation [including a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant, GLA) and QS-21] in a preclinical mouse model of TB disease. Comparisons of the ID93+GLA-LSQ vaccines are also made to the highly characterized ID93+GLA-SE oil-in-water emulsion adjuvant, which are also included these studies. The recent success of vaccine candidate M72 combined with adjuvant AS01E (GlaxoSmithKline Biologicals) in reducing progression to active disease is promising and has renewed excitement for experimental vaccines currently in the TB vaccine pipeline. The AS01E adjuvant contains monophosphoryl lipid A (MPL) and QS-21 (a saponin) in a liposomal formulation. While AS01E has demonstrated potent adjuvant activity as a component of both approved and experimental vaccines, developing alternatives to this adjuvant system will become important to fill the high demand envisioned for future vaccine needs. Furthermore, replacement sources of potent adjuvants will help to supply the demand of a TB vaccine [almost one-quarter of the world's population are estimated to have latent Mycobacterium tuberculosis (Mtb) according to the WHO 2019 global TB report], addressing (a) cost of goods, (b) supply of goods, and (c) improved efficacy of subunit vaccines against Mtb. We show that both ID93+GLA-SE (containing an emulsion adjuvant) and ID93+GLA-LSQ (containing a liposomal adjuvant) induce ID93-specific TH1 cellular immunity including CD4+CD44+ T cells expressing IFNγ, TNF, and IL-2 (using flow cytometry and intracellular cytokine staining) and vaccine-specific IgG2 antibody responses (using an ELISA). In addition, both ID93+GLA-SE and ID93+GLA-LSQ effectively decrease the bacterial load within the lungs of mice infected with Mtb. Formulations based on this liposomal adjuvant formulation may provide an alternative to AS01 adjuvant systems.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- * E-mail:
| | - Valerie A. Reese
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Sasha E. Larsen
- Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Elyse Beebe
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Jeff Guderian
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Mark T. Orr
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, WA, United States of America
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
5
|
McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O'Shea AE, Peoples GE. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs 2020; 30:5-11. [PMID: 33191799 DOI: 10.1080/13543784.2021.1849140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION HER2 is a prevalent growth factor in a variety of malignancies, most prominently breast cancer. Over-expression has been correlated with the poorest overall survival and has been the target of successful therapies such as trastuzumab. AE37 is a novel, HER2-directed vaccine based on the AE36 hybrid peptide (aa776-790), which is derived from the intracellular portion of the HER2 protein, and the core portion of the MHC Class II invariant chain (the Ii-Key peptide). This hybrid peptide is given with GM-CSF immunoadjuvant as the AE37 vaccine. AREAS COVERED This article describes in detail the preclinical science leading to the creation of the AE37 vaccine and examines use of this agent in multiple clinical trials for breast and prostate cancer. The safety profile of AE37 is discussed and opinions on the potential of the vaccine in breast and prostate cancer patient subsets along with other malignancies, are offered. EXPERT OPINION Future trials utilizing the AE37 vaccine to treat other HER2-expressing malignancies are likely to see similar success, and this will be enhanced by combination immunotherapy. Ii-Key modification of other peptides of interest across oncology and virology could yield impressive results over the longer term.
Collapse
Affiliation(s)
- Patrick M McCarthy
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - G Travis Clifton
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Timothy J Vreeland
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Alexandra M Adams
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | - Anne E O'Shea
- Department of Surgery, Brooke Army Medical Center , Fort Sam Houston, TX, USA
| | | |
Collapse
|
6
|
The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J Immunother 2019; 41:385-398. [PMID: 30273198 DOI: 10.1097/cji.0000000000000246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD40 ligand (TNFSF5/CD154/CD40L), a member of the tumor necrosis factor (TNF) superfamily is a key regulator of the immune system. The cognate receptor CD40 (TNFRSF5) is expressed broadly on antigen-presenting cells and many tumor types, and has emerged as an attractive target for immunologic cancer treatment. Most of the CD40 targeting drugs in clinical development are antibodies which display some disadvantages: their activity typically depends on Fcγ receptor-mediated crosslinking, and depletion of CD40-expressing immune cells by antibody-dependent cellular cytotoxicity compromises an efficient antitumor response. To overcome the inadequacies of antibodies, we have developed the hexavalent receptor agonist (HERA) Technology. HERA compounds are fusion proteins composed of 3 receptor binding domains in a single chain arrangement, linked to an Fc-silenced human IgG1 thereby generating a hexavalent molecule. HERA-CD40L provides efficient receptor agonism on CD40-expressing cells and, importantly, does not require FcγR-mediated crosslinking. Strong activation of NFκB signaling was observed upon treatment of B cells with HERA-CD40L. Monocyte treatment with HERA-CD40L promoted differentiation towards the M1 spectrum and repolarization of M2 spectrum macrophages towards the M1 spectrum phenotype. Treatment of in vitro co-cultures of T and B cells with HERA-CD40L-triggered robust antitumor activation of T cells, which depended upon direct interaction with B cells. In contrast, bivalent anti-CD40 antibodies and trivalent soluble CD40L displayed weak activity which critically depended on crosslinking. In vivo, a murine surrogate of HERA-CD40L-stimulated clonal expansion of OT-I-specific murine CD8 T cells and showed single agent antitumor activity in the CD40 syngeneic MC38-CEA mouse model of colorectal cancer, suggesting an involvement of the immune system in controlling tumor growth. We conclude that HERA-CD40L is able to establish robust antitumor immune responses both in vitro and in vivo.
Collapse
|
7
|
Richards DM, Sefrin JP, Gieffers C, Hill O, Merz C. Concepts for agonistic targeting of CD40 in immuno-oncology. Hum Vaccin Immunother 2019; 16:377-387. [PMID: 31403344 PMCID: PMC7062441 DOI: 10.1080/21645515.2019.1653744] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
TNF Receptor Superfamily (TNF-R-SF) signaling is a structurally well-defined event that requires proper receptor clustering and trimerization. While the TNF-SF ligands naturally exist as trivalent functional units, the receptors are usually separated on the cell surface. Critically, receptor assembly into functional trimeric signaling complexes occurs through binding of the natural ligand unit. TNF-R-SF members, including CD40, have been key immunotherapeutic targets for over 20 years. CD40, expressed by antigen-presenting cells, endothelial cells, and many tumors, plays a fundamental role in connecting innate and adaptive immunity. The multiple investigated strategies to induce CD40 signaling can be broadly grouped into antibody-based or CD40L-based approaches. Currently, seven different antibodies and one CD40L-based hexavalent fusion protein are in active clinical trials. In this review, we describe the biology and structural properties of CD40, requirements for agonistic signal transduction through CD40 and summarize current attempts to exploit the CD40 signaling pathway for the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Oliver Hill
- Research and Development, Apogenix AG, Heidelberg, Germany
| | - Christian Merz
- Research and Development, Apogenix AG, Heidelberg, Germany
| |
Collapse
|
8
|
Kotov DI, Kotov JA, Goldberg MF, Jenkins MK. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. THE JOURNAL OF IMMUNOLOGY 2018; 200:2004-2012. [PMID: 29436413 DOI: 10.4049/jimmunol.1700420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022]
Abstract
CD4+ Th cells can have cytotoxic activity against cells displaying relevant peptide-MHC class II (p:MHCII) ligands. Cytotoxicity may be a property of Th1 cells and depends on perforin and the Eomes transcription factor. We assessed these assertions for polyclonal p:MHCII-specific CD4+ T cells activated in vivo in different contexts. Mice immunized with an immunogenic peptide in adjuvant or infected with lymphocytic choriomeningitis virus or Listeria monocytogenes bacteria induced cytotoxic Th cells that killed B cells displaying relevant p:MHCII complexes. Cytotoxicity was dependent on Fas expression by target cells but was independent of Eomes or perforin expression by T cells. Although the priming regimens induced different proportions of Th1, Th17, regulatory T cells, and T follicular helper cells, the T cells expressed Fas ligand in all cases. Reciprocally, Fas was upregulated on target cells in a p:MHCII-specific manner. These results indicate that many Th subsets have cytotoxic potential that is enhanced by cognate induction of Fas on target cells.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Jessica A Kotov
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Michael F Goldberg
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
9
|
Haidari G, Cope A, Miller A, Venables S, Yan C, Ridgers H, Reijonen K, Hannaman D, Spentzou A, Hayes P, Bouliotis G, Vogt A, Joseph S, Combadiere B, McCormack S, Shattock RJ. Combined skin and muscle vaccination differentially impact the quality of effector T cell functions: the CUTHIVAC-001 randomized trial. Sci Rep 2017; 7:13011. [PMID: 29026141 PMCID: PMC5638927 DOI: 10.1038/s41598-017-13331-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Targeting of different tissues via transcutaneous (TC), intradermal (ID) and intramuscular (IM) injection has the potential to tailor the immune response to DNA vaccination. In this Phase I randomised controlled clinical trial in HIV-1 negative volunteers we investigate whether the site and mode of DNA vaccination influences the quality of the cellular immune responses. We adopted a strategy of concurrent immunization combining IM injection with either ID or TC administration. As a third arm we assessed the response to IM injection administered with electroporation (EP). The DNA plasmid encoded a MultiHIV B clade fusion protein designed to induce cellular immunity. The vaccine and regimens were well tolerated. We observed differential shaping of vaccine induced virus-specific CD4 + and CD8 + cell-mediated immune responses. DNA given by IM + EP promoted strong IFN-γ responses and potent viral inhibition. ID + IM without EP resulted in a similar pattern of response but of lower magnitude. By contrast TC + IM (without EP) shifted responses towards a more Th-17 dominated phenotype, associated with mucosal and epidermal protection. Whilst preliminary, these results offer new perspectives for differential shaping of desired cellular immunity required to fight the wide range of complex and diverse infectious diseases and cancers.
Collapse
Affiliation(s)
- G Haidari
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Cope
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Miller
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - S Venables
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - C Yan
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - H Ridgers
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | | | - D Hannaman
- Ichor Medical Systems Inc, San Diego, CA, United States
| | - A Spentzou
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - P Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - G Bouliotis
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom
| | - A Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - S Joseph
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - B Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013, Paris, France
| | - S McCormack
- Medical Research Council Clinical Trials Unit at UCL, University College London, London, UK
| | - R J Shattock
- Imperial College London, Department of Medicine, Section of Virology, Group of Mucosal Infection and Immunity, London, United Kingdom.
| |
Collapse
|
10
|
Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017; 8:66656-66667. [PMID: 29029545 PMCID: PMC5630445 DOI: 10.18632/oncotarget.19105] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tumors are closely related to chronic inflammation, during which there are various changes in inflammatory sites, such as immune cells infiltration, pro-inflammation cytokines production, and interaction between immune cells and tissue cells. Besides, substances, released from both tissue cells attacked by exogenous etiologies, also act on local cells. These changes induce a dynamic and complex microenvironment favorable for tumor growth, invasion, and metastasis. The toll-like receptor 4 (TLR4) is the first identified member of the toll-like receptor family that can recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMPs). TLR4 expresses not only on immune cells but also on tumor cells. Accumulating evidences demonstrated that the activation of TLR4 in tumor microenvironment can not only boost the anti-tumor immunity but also give rise to immune surveillance and tumor progression. This review will summarize the expression and function of TLR4 on dendritic cells (DCs), tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), tumor cells as well as stromal cells in tumor microenvironment. Validation of the multiple role of TLR4 in tumors could primarily pave the road for the development of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
11
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Beebe EA, Orr MT. Assessment of Antigen-Specific Cellular Immunogenicity Using Intracellular Cytokine Staining, ELISpot, and Culture Supernatants. Methods Mol Biol 2017; 1494:313-320. [PMID: 27718205 DOI: 10.1007/978-1-4939-6445-1_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quantification of cytokine production by CD4 and CD8 T cells after in vitro recall stimulation with the immunizing antigen is a powerful approach to characterize the cellular immune responses to immunization. Here we describe three complementary methods for such quantification including flow cytometric analysis of cytokine production by intracellular staining, ELISpot determination of the numbers of cytokine-producing cells, and generation of secreted cytokines and chemokines in culture supernatants for analysis by ELISA and/or cytometric bead arrays.
Collapse
Affiliation(s)
- Elyse A Beebe
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA, USA. .,Department of Global Health, University of Washington, 1616 Eastlake Ave E, Suite 400, Seattle, WA, USA.
| |
Collapse
|
13
|
Anastasopoulou EA, Voutsas IF, Papamichail M, Baxevanis CN, Perez SA. MHC class II tetramer analyses in AE37-vaccinated prostate cancer patients reveal vaccine-specific polyfunctional and long-lasting CD4(+) T-cells. Oncoimmunology 2016; 5:e1178439. [PMID: 27622033 DOI: 10.1080/2162402x.2016.1178439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/31/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022] Open
Abstract
Realizing the basis for generating long-lasting clinical responses in cancer patients after therapeutic vaccinations provides the means to further ameliorate clinical efficacy. Peptide cancer vaccines stimulating CD4(+) T helper cells are often promising for inducing immunological memory and persistent CD8(+) cytotoxic T cell responses. Recent reports from our clinical trial with the AE37 vaccine, which is a HER2 hybrid polypeptide, documented its efficacy to induce CD4(+) T cell immunity, which was associated with clinical improvements preferentially among HLA-DRB1*11(+) prostate cancer patients. Here, we performed in-depth investigation of the CD4(+) T cell response against the AE37 vaccine. We used the DR11/AE37 tetramer in combination with multicolor flow cytometry to identify and characterize AE37-specific CD4(+) T cells regarding memory and Tregs phenotype in HLA-DRB1*11(+) vaccinated patients. To verify vaccine-specific immunological memory in vivo, we also assessed AE37-specific CD4(+) T cells in defined CD4(+) memory subsets by cell sorting. Finally, vaccine-induced AE37-specific CD4(+) T cells were assessed regarding their functional profile. AE37-specific memory CD4(+) T cells could be detected in peptide-stimulated cultures from prostate cancer patients following vaccination even 4 y post-vaccination. The vast majority of vaccine-induced AE37-specific CD4(+) T cells exhibited a multifunctional, mostly Th1 cytokine signature, with the potential of granzyme B production. In contrast, we found relatively low frequencies of Tregs among AE37-specific CD4(+) T cells. This is the first report on the identification of vaccine-induced HER2-specific multifunctional long-lasting CD4(+) T cells in vaccinated prostate cancer patients.
Collapse
Affiliation(s)
| | - Ioannis F Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | - Constantin N Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | - Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| |
Collapse
|
14
|
Gholami E, Zahedifard F, Rafati S. Delivery systems for Leishmania vaccine development. Expert Rev Vaccines 2016; 15:879-95. [DOI: 10.1586/14760584.2016.1157478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran (the Islamic Republic of)
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Zahedifard
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran (the Islamic Republic of)
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran (the Islamic Republic of)
| |
Collapse
|
15
|
Brown DM, Lampe AT, Workman AM. The Differentiation and Protective Function of Cytolytic CD4 T Cells in Influenza Infection. Front Immunol 2016; 7:93. [PMID: 27014272 PMCID: PMC4783394 DOI: 10.3389/fimmu.2016.00093] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells that recognize peptide antigen in the context of class II MHC can differentiate into various subsets that are characterized by their helper functions. However, increasing evidence indicates that CD4 cells with direct cytolytic activity (CD4 CTL) play a role in chronic as well as acute infections, such as influenza A virus (IAV) infection. In the last couple of decades, techniques to measure the frequency and activity of these cytolytic cells has demonstrated their abundance in infections, such as human immunodeficiency virus, mouse pox, murine gamma herpes virus, cytomegalovirus, Epstein-Barr virus, and influenza among others. We now appreciate a greater role for CD4 CTL as direct effectors in viral infections and antitumor immunity through their ability to acquire perforin-mediated cytolytic activity and contribution to lysis of virally infected targets or tumors. As early as the 1980s, CD4 T cell clones with cytolytic potential were identified after influenza virus infection, yet much of this early work was dependent on in vitro culture and little was known about the physiological relevance of CD4 CTL. Here, we discuss the direct role CD4 CTL play in protection against lethal IAV infection and the factors that drive the generation of perforin-mediated lytic activity in CD4 cells in vivo during IAV infection. While focusing on CD4 CTL generated during IAV infection, we pull comparisons from the literature in other antiviral and antitumor systems. Further, we highlight what is currently known about CD4 CTL secondary and memory responses, as well as vaccination strategies to induce these potent killer cells that provide an extra layer of cell-mediated immune protection against heterosubtypic IAV infection.
Collapse
Affiliation(s)
- Deborah M Brown
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anna T Lampe
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aspen M Workman
- Nebraska Center for Virology, University of Nebraska-Lincoln , Lincoln, NE , USA
| |
Collapse
|