1
|
Maino E, Scott O, Rizvi SZ, Chan WS, Visuvanathan S, Zablah YB, Li H, Sengar AS, Salter MW, Jia Z, Rossant J, Cohn RD, Gu B, Ivakine EA. An Irak1-Mecp2 tandem duplication mouse model for the study of MECP2 duplication syndrome. Dis Model Mech 2024; 17:dmm050528. [PMID: 38881329 PMCID: PMC11552499 DOI: 10.1242/dmm.050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.
Collapse
Affiliation(s)
- Eleonora Maino
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ori Scott
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Samar Z. Rizvi
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wing Suen Chan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Shagana Visuvanathan
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Youssif Ben Zablah
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hongbin Li
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Ameet S. Sengar
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Michael W. Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhengping Jia
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Neuroscience and Mental Health, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Janet Rossant
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Program in Developmental and Stem Cell Biology, the Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ronald D. Cohn
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Clinical Immunology and Allergy, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Madan U, Verma B, Awasthi A. Cenicriviroc, a CCR2/CCR5 antagonist, promotes the generation of type 1 regulatory T cells. Eur J Immunol 2024; 54:e2350847. [PMID: 38643381 DOI: 10.1002/eji.202350847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Cenicriviroc, a dual CCR2/CCR5 antagonist, initially developed as an anti-HIV drug, has shown promising results in nonalcoholic steatohepatitis phase 2 clinical trials. It inhibits the infiltration and activation of CCR2+/CCR5+ monocytes and macrophages to the site of liver injury, preventing liver fibrosis. However, the role of Cenicriviroc in the modulation of helper T cell differentiation and functions remains to be explored. In inflamed colons of Crohn's disease patients, CCR2+ and CCR5+ CD4+ T cells are enriched. Considering the role of CCR2+ and CCR5+ T cells in IBD pathogenesis, we investigated the potential role of Cenicriviroc in colitis. Our in vitro studies revealed that Cenicriviroc inhibits Th1-, Th2-, and Th17-cell differentiation while promoting the generation of type 1 regulatory T cells (Tr1), known for preventing inflammation through induction of IL-10. This study is the first to report that Cenicriviroc promotes Tr1 cell generation by up-regulating the signature of Tr1 cell transcription factors such as c-Maf, Prdm1, Irf-1, Batf, and EGR-2. Cenicriviroc displayed a protective effect in experimental colitis models by preventing body weight loss and intestinal inflammation and preserving epithelial barrier integrity. We show that Cenicriviroc induced IL-10 and inhibited the generation of pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and IL-1β during colitis. Based on our data, we propose Cenicriviroc as a potential therapeutic in controlling tissue inflammation by inhibiting the generation and functions of effector T cells and promoting the induction of anti-inflammatory Tr1 cells.
Collapse
Affiliation(s)
- Upasna Madan
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Bhawna Verma
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, NCR-Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
3
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
4
|
Paeoniflorin Inhibits LPS-Induced Activation of Splenic CD4+ T Lymphocytes and Relieves Pathological Symptoms in MRL/lpr Mice by Suppressing IRAK1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5161890. [DOI: 10.1155/2022/5161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
Abstract
Interleukin-1receptor-associated kinase 1 (IRAK1) plays a critical role in systemic lupus erythematosus (SLE). It was reported that SLE was associated with an inflammatory response mediated by defective immune tolerance, including overproduction of autoantibodies, chronic inflammation, and organ damage. Previous reports stated paeoniflorin (PF) had an immunosuppressive effect. The purpose of this study was to determine the anti-inflammatory effect of PF in SLE and its underlying mechanisms. Followed by induced with lipopolysaccharide (LPS), the splenocytes and the isolated CD4+ T lymphocytes of MRL/lpr mice were divided into three groups: control group, LPS group, and LPS + PF group, respectively. MRL/MP mice were used as the control group (treated with distilled water). The MRL/lpr mice were randomly divided into three groups: the model group (treated with distilled water), the prednisone group, and the PF group. The MRL/lpr mice were treated with prednisone acetate (5 mg/kg) and PF (25, 50, and 75 mg/kg) for eight weeks. Subsequently, ELISA, qRT-PCR, western blotting, HE, and Masson staining were performed to detect various indicators. The results of Cell Counting Kit-8 (CCK-8) showed that 10 μg/mL of LPS had the optimum effect on cell viability, and 50 μmol/L of PF had no obvious cytotoxicity to LPS-treated cells. PF reduced the expression level of IRAK1-nuclearfactor-κB (NF-κB) and its downstream inflammatory cytokines in the splenocytes and CD4+ T lymphocytes of MRL/lpr mice stimulated by LPS, especially in the latter. The serum antibody contents in the PF group mice were reduced, and the kidney damage was also alleviated accordingly. Moreover, the IRAK1/inhibitor of the nuclear factor-κB kinase (IKK)/NF-κB inhibitor (IκB)/NF-κB pathways was found to be involved in the anti-inflammation effect of PF in the kidney and spleen. In conclusion, it is thought that PF may have the potential to be used as a therapeutic agent to reduce the inflammatory activity of SLE. Inhibition of the IRAK1-NF-κB pathway may help formulate novel therapeutic tactics for SLE.
Collapse
|
5
|
George PM, Reed A, Desai SR, Devaraj A, Faiez TS, Laverty S, Kanwal A, Esneau C, Liu MKC, Kamal F, Man WDC, Kaul S, Singh S, Lamb G, Faizi FK, Schuliga M, Read J, Burgoyne T, Pinto AL, Micallef J, Bauwens E, Candiracci J, Bougoussa M, Herzog M, Raman L, Ahmetaj-Shala B, Turville S, Aggarwal A, Farne HA, Dalla Pria A, Aswani AD, Patella F, Borek WE, Mitchell JA, Bartlett NW, Dokal A, Xu XN, Kelleher P, Shah A, Singanayagam A. A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae. Sci Transl Med 2022; 14:eabo5795. [PMID: 36383686 DOI: 10.1126/scitranslmed.abo5795] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.
Collapse
Affiliation(s)
- Peter M George
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anna Reed
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Sujal R Desai
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anand Devaraj
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Tasnim Shahridan Faiez
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Sarah Laverty
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Amama Kanwal
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Camille Esneau
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael K C Liu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - William D-C Man
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, UK
| | - Sundeep Kaul
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Suveer Singh
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Georgia Lamb
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Fatima K Faizi
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Michael Schuliga
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jane Read
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Thomas Burgoyne
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andreia L Pinto
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Jake Micallef
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Emilie Bauwens
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Julie Candiracci
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Mhammed Bougoussa
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Marielle Herzog
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Lavanya Raman
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- Chest and Allergy Department, St Mary's Hospital, Imperial College NHS Trust, London W2 1NY, UK
| | - Alessia Dalla Pria
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
| | - Andrew D Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Santersus AG, Buckhauserstrasse 34, Zurich 8048, Switzerland
| | - Francesca Patella
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Weronika E Borek
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Nathan W Bartlett
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arran Dokal
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Xiao-Ning Xu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Peter Kelleher
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
- Immunology of Infection Section, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of Infection and Immunity Sciences, North West London Pathology NHS Trust, London W2 1NY, UK
| | - Anand Shah
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
6
|
Hoyler T, Bannert B, André C, Beck D, Boulay T, Buffet D, Caesar N, Calzascia T, Dawson J, Kyburz D, Hennze R, Huppertz C, Littlewood-Evans A, Loetscher P, Mertz KD, Niwa S, Robert G, Rush JS, Ruzzante G, Sarret S, Stein T, Touil I, Wieczorek G, Zipfel G, Hawtin S, Junt T. Nonhematopoietic IRAK1 drives arthritis via neutrophil chemoattractants. JCI Insight 2022; 7:149825. [PMID: 35801586 PMCID: PMC9310529 DOI: 10.1172/jci.insight.149825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type–specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1β or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1β–dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Thomas Hoyler
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Cédric André
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Damian Beck
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Boulay
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Buffet
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nadja Caesar
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Calzascia
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Janet Dawson
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Robert Hennze
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christine Huppertz
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Amanda Littlewood-Evans
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pius Loetscher
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Satoru Niwa
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gautier Robert
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - James S Rush
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Giulia Ruzzante
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sophie Sarret
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Stein
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ismahane Touil
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grazyna Wieczorek
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geraldine Zipfel
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stuart Hawtin
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
7
|
Chen Y, Sun D, Yang R, Lim J, Sondey C, Presland J, Rakhilina L, Addona G, Kariv I, Chen H. Establishing and Validating Cellular Functional Target Engagement Assay for Selective IRAK4 Inhibitor Discovery. SLAS DISCOVERY 2021; 26:1040-1054. [PMID: 34130529 DOI: 10.1177/24725552211021074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the main reasons for the lack of drug efficacy in late-stage clinical trials is the lack of specific and selective target engagement. To increase the likelihood of success of new therapeutics, one approach is to conduct proximal target engagement testing during the early phases of preclinical drug discovery. To identify and optimize selective IRAK4 inhibitors, a kinase that has been implicated in multiple inflammatory and autoimmune diseases, we established an electrochemiluminescence (ECL)-based cellular endogenous IRAK1 activation assay as the most proximal functional evaluation of IRAK4 engagement to support structure-activity relationship (SAR) studies. Since IRAK1 activation is dependent on both the IRAK4 scaffolding function in Myddosome formation and IRAK4 kinase activity for signal transduction, this assay potentially captures inhibitors with different mechanisms of action. Data from this IRAK1 assay with compounds representing different structural classes showed statistically significant correlations when compared with results from both IRAK4 biochemical kinase activity and functional peripheral blood mononuclear cell (PBMC)-derived tumor necrosis factor α (TNFα) secretion assays, validating the biological relevancy of the IRAK1 target engagement as a biomarker of the IRAK4 activity. Plate uniformity and potency reproducibility evaluations demonstrated that this assay is amenable to high throughput. Using Bland-Altman assay agreement analysis, we demonstrated that incorporating such proximal pharmacological assessment of cellular target engagement to an in vitro screening funnel for SAR studies can prevent compound optimization toward off-target activity.
Collapse
Affiliation(s)
- Yiping Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Dongyu Sun
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ruojing Yang
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jongwon Lim
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Christopher Sondey
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jeremy Presland
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Larissa Rakhilina
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Hongmin Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
8
|
Chang R, Zheng W, Sun Y, Xu T. microRNA-1388-5p inhibits NF-κB signaling pathway in miiuy croaker through targeting IRAK1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104025. [PMID: 33539892 DOI: 10.1016/j.dci.2021.104025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Innate immune response is an important response mechanism for the host to achieve self-protection, and it plays an important role in identifying pathogens and resisting pathogen invasion. Growing evidences have shown that microRNA functions as a crucial regulator involved in the host innate immune response. In this study, the regulations of miR-1388-5p to regulate NF-κB signaling pathways via targeting the IRAK1 gene was studied in miiuy croaker. First, through bioinformatics software prediction, we found that IRAK1 is the direct target of miR-1388-5p, and then the prediction results were verified by using dual-luciferase assays. Next, we found that both miR-1388-5p mimics and pre-miR-1388 plasmids inhibit IRAK1 expression by complementing the seed sequence in the 3'-untranslated region (3'-UTR) of IRAK1. Finally, we observed that miR-1388-5p could negatively regulate NF-κB pathways through targeting IRAK1. These results provide new insights into the function of miR-1388-5p in fish innate immunity, meanwhile enriching miRNA-mediated regulatory networks.
Collapse
Affiliation(s)
- Renjie Chang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
9
|
Zhang Q, Wang SF. miR-330 alleviates dextran sodium sulfate-induced ulcerative colitis through targeting IRAK1 in rats. Kaohsiung J Med Sci 2021; 37:497-504. [PMID: 33508876 DOI: 10.1002/kjm2.12359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic multifactorial inflammatory bowel disease that severely impairs patients' life quality. microRNAs (miRNAs) have been reported to exhibit potential therapeutic effects in the management of UC. With the aim to investigate the regulatory effects of miR-330 on UC-related colon tissue damage and inflammation, a rat model of experimental colitis was established by oral administration of dextran sodium sulfate (DSS). DSS-treated rats showed mucosal damage, colonic inflammation, and elevated myeloperoxidase activity compared with the healthy controls. Dual-luciferase reporter assay confirmed the binding of interleukin-1 receptor-associated kinase 1 (IRAK1) and miR-330. Subsequently, rats were intracolonically injected with miR-330 argomir with/without administration of IRAK1 during DSS treatment. The miR-330 overexpression reduced DSS-induced colonic injury and the production of proinflammatory cytokines. The level of IRAK1 was negatively regulated by the expression of miR-330. IRAK1 overexpression abolished the protective effect of miR-330 on DSS-induced colonic inflammation and mucosal injury in rats. In conclusion, we clarify the role of miR-330 in pathogenesis of UC, suggesting miR-330 alleviated DSS-induced colitis by downregulating IRAK1, shedding lights on miR-330 as a therapeutic candidate for UC treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Spleen-stomach Hepatobiliary, Lianyungang Hospital of Traditional Chinese Medicine, Jiangsu Province, China
| | - Shu-Fang Wang
- Department of Digestive Internal Medicine, Lianyungang Second People's Hospital, Jiangsu Province, China
| |
Collapse
|
10
|
Mousavi MJ, Mahmoudi M, Ghotloo S. Escape from X chromosome inactivation and female bias of autoimmune diseases. Mol Med 2020; 26:127. [PMID: 33297945 PMCID: PMC7727198 DOI: 10.1186/s10020-020-00256-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, autoimmune diseases are more prevalent in females than males. Various predisposing factors, including female sex hormones, X chromosome genes, and the microbiome have been implicated in the female bias of autoimmune diseases. During embryogenesis, one of the X chromosomes in the females is transcriptionally inactivated, in a process called X chromosome inactivation (XCI). This equalizes the impact of two X chromosomes in the females. However, some genes escape from XCI, providing a basis for the dual expression dosage of the given gene in the females. In the present review, the contribution of the escape genes to the female bias of autoimmune diseases will be discussed.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Ji L, Fan X, Hou X, Fu D, Bao J, Zhuang A, Chen S, Fan Y, Li R. Jieduquyuziyin Prescription Suppresses Inflammatory Activity of MRL/lpr Mice and Their Bone Marrow-Derived Macrophages via Inhibiting Expression of IRAK1-NF-κB Signaling Pathway. Front Pharmacol 2020; 11:1049. [PMID: 32760274 PMCID: PMC7372094 DOI: 10.3389/fphar.2020.01049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Jieduquyuziyin prescription (JP) has been used to treat systemic lupus erythematosus (SLE). Although the effectiveness of JP in the treatment of SLE has been clinically proven, the underlying mechanisms have yet to be completely understood. We observed the therapeutic actions of JP in MRL/lpr mice and their bone marrow-derived macrophages (BMDMs) and the potential mechanism of their inhibition of inflammatory activity. To estimate the effect of JP on suppressing inflammatory activity, BMDMs of MRL/lpr and MRL/MP mice were treated with JP-treated serum, and MRL/lpr mice were treated by JP for 8 weeks. Among them, JP and its treated serum were subjected to quality control, and BMDMs were separated and identified. The results showed that in the JP group of BMDMs stimulated by Lipopolysaccharide (LPS) in MRL/lpr mice, the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) reduced, and the expressions of Interleukin-1 receptor-associated kinase 1 (IRAK1) and its downstream nuclear factor κB (NF-κB) pathway decreased. Meanwhile, the alleviation of renal pathological damage, the decrease of urinary protein and serum anti-dsDNA contents, the inhibition of TNF-α level, and then the suppression of the IRAK1-NF-κB inflammatory signaling in the spleen and kidney, confirmed that the therapeutic effect of JP. These results demonstrated that JP could inhibit the inflammatory activity of MRL/lpr mice and their BMDMs by suppressing the activation of IRAK1-NF-κB signaling and was supposed to be a good choice for the treatment of SLE.
Collapse
Affiliation(s)
- Lina Ji
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuemin Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Sixiang Chen
- The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
IRAK family in inflammatory autoimmune diseases. Autoimmun Rev 2020; 19:102461. [DOI: 10.1016/j.autrev.2020.102461] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
|
13
|
Muñoz-San Martín M, Reverter G, Robles-Cedeño R, Buxò M, Ortega FJ, Gómez I, Tomàs-Roig J, Celarain N, Villar LM, Perkal H, Fernández-Real JM, Quintana E, Ramió-Torrentà L. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J Neuroinflammation 2019; 16:220. [PMID: 31727077 PMCID: PMC6857276 DOI: 10.1186/s12974-019-1590-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported as deregulated in active brain lesions derived from patients with multiple sclerosis (MS). In there, these post-transcriptional regulators may elicit very important effects but proper identification of miRNA candidates as potential biomarkers and/or therapeutic targets is scarcely available. OBJECTIVE The aim of the study was to detect the presence of a set of candidate miRNAs in cell-free cerebrospinal fluid (CSF) and to determine their association with gadolinium-enhancing (Gd+) lesions in order to assess their value as biomarkers of MS activity. METHODS Assessment of 28 miRNA candidates in cell-free CSF collected from 46 patients with MS (26 Gd+ and 20 Gd- patients) was performed by TaqMan assays and qPCR. Variations in their relative abundance were analyzed by the Mann-Whitney U test and further evaluated by receiver operating characteristic (ROC) analysis. Signaling pathways and biological functions of miRNAs were analyzed using bioinformatic tools (miRTarBase, Enrichr, REVIGO, and Cytoscape softwares). RESULTS Seven out of 28 miRNA candidates were detected in at least 75% of CSF samples. Consistent increase of miR-21 and miR-146a/b was found in Gd+ MS patients. This increase was in parallel to the number of Gd+ lesions and neurofilament light chain (NF-L) levels. Gene Ontology enrichment analysis revealed that the target genes of these miRNAs are involved in biological processes of key relevance such as apoptosis, cell migration and proliferation, and in cytokine-mediated signaling pathways. CONCLUSION Levels of miR-21 and miR-146a/b in cell-free CSF may represent valuable biomarkers to identify patients with active MS lesions.
Collapse
Affiliation(s)
- María Muñoz-San Martín
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Gemma Reverter
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Rene Robles-Cedeño
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- REEM. Red Española de Esclerosis Múltiple, Madrid, Spain
- Medical Sciences Department, Faculty of Medicine, University of Girona, Girona, Spain
| | - Maria Buxò
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Francisco José Ortega
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Imma Gómez
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Tomàs-Roig
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Naiara Celarain
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luisa María Villar
- REEM. Red Española de Esclerosis Múltiple, Madrid, Spain
- Immunology Department, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Hector Perkal
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - José Manuel Fernández-Real
- Medical Sciences Department, Faculty of Medicine, University of Girona, Girona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Ester Quintana
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- REEM. Red Española de Esclerosis Múltiple, Madrid, Spain
- Medical Sciences Department, Faculty of Medicine, University of Girona, Girona, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Department, Dr. Josep Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
- REEM. Red Española de Esclerosis Múltiple, Madrid, Spain
- Medical Sciences Department, Faculty of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
14
|
Systemic lupus erythematosus: genetic variants in Xq28 region. Reumatologia 2019; 57:264-270. [PMID: 31844338 PMCID: PMC6911245 DOI: 10.5114/reum.2019.89517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 11/23/2022] Open
Abstract
Objectives Methyl-CpG-binding protein 2 (MECP2) and interleukin-1 receptor-associated kinase (IRAK1) are encoded by adjacent X-linked genes and recognized for their role in regulation of inflammation. The present case control study was conducted to detect the genetic association between MECP2 (rs1734791) and IRAK1 (rs1059703) single nucleotide polymorphisms (SNPs) and susceptibility to systemic lupus erythematosus (SLE), and the possible association of these SNPs and severity of SLE. Material and methods Fifty patients with SLE and 100 healthy controls were included in this study. Systemic Lupus International Collaborating Clinics (SLICC) criteria were used to classify SLE patients and the activity of the disease was assessed by SLEDAI score. Disease severity was assessed by the SLICC damage index (SLICC DI). Genetic association of both SNPs with SLE was assessed by Taq Man allelic discrimination technique. Results Analyses of MECP2 (rs1734791) SNP genotypes revealed that homozygous TT genotype was significantly higher in the control group than SLE patients (p < 0.001, odds ratio [OR] = 0.120). Frequency of allele (A) was significantly higher in SLE patients, (p < 0.001, OR = 0.334). SLE patients had significantly higher frequency of the homozygous AA and heterozygous AG genotype of IRAK1 (rs1059703) SNP in comparison to healthy controls (p = 0.0029, OR = 4.17 and 6.30 respectively). T+G and T+A of rs1734791 and rs1059703 SNPs are protective haplotypes (OR = 0.47 and 0.3, p = 0.0046 and < 0.012 respectively). No significant association between either SNP and disease activity or severity was found. Conclusions There is a possible genetic association between both rs1734791 and rs1059703 SNPs and susceptibility to SLE, while no significant association between either SNP and disease activity or severity was detected.
Collapse
|
15
|
Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Induces Interleukin-17 Production via Activation of the IRAK1-PI3K-p38MAPK-C/EBPβ/CREB Pathways. J Virol 2019; 93:JVI.01100-19. [PMID: 31413135 DOI: 10.1128/jvi.01100-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is widely prevalent in pigs, resulting in significant economic losses worldwide. A compelling impact of PRRSV infection is severe pneumonia. In the present study, we found that interleukin-17 (IL-17) was upregulated by PRRSV infection. Subsequently, we demonstrated that PI3K and p38MAPK signaling pathways were essential for PRRSV-induced IL-17 production as addition of phosphatidylinositol 3-kinase (PI3K) and p38MAPK inhibitors dramatically reduced IL-17 production. Furthermore, we show here that deleting the C/EBPβ and CREB binding motif in porcine IL-17 promoter abrogated its activation and that knockdown of C/EBPβ and CREB remarkably impaired PRRSV-induced IL-17 production, suggesting that IL-17 expression was dependent on C/EBPβ and CREB. More specifically, we demonstrate that PRRSV nonstructural protein 11 (nsp11) induced IL-17 production, which was also dependent on PI3K-p38MAPK-C/EBPβ/CREB pathways. We then show that Ser74 and Phe76 amino acids were essential for nsp11 to induce IL-17 production and viral rescue. In addition, IRAK1 was required for nsp11 to activate PI3K and enhance IL-17 expression by interacting with each other. Importantly, we demonstrate that PI3K inhibitor significantly suppressed IL-17 production and lung inflammation caused by HP-PRRSV in vivo, implicating that higher IL-17 level induced by HP-PRRSV might be associated with severe lung inflammation. These findings provide new insights onto the molecular mechanisms of the PRRSV-induced IL-17 production and help us further understand the pathogenesis of PRRSV infection.IMPORTANCE Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) associated with severe pneumonia has been one of the most important viral pathogens in pigs. IL-17 is a proinflammatory cytokine that might be associated with the strong inflammation caused by PRRSV. Therefore, we sought to determine whether PRRSV infection affects IL-17 expression, and if so, determine this might partially explain the underlying mechanisms for the strong inflammation in HP-PRRSV-infected pigs, especially in lungs. Here, we show that PRRSV significantly induced IL-17 expression, and we subsequently dissected the molecular mechanisms about how PRRSV regulated IL-17 production. Furthermore, we show that Ser74 and Phe76 in nsp11 were indispensable for IL-17 production and viral replication. Importantly, we demonstrated that PI3K inhibitor impaired IL-17 production and alleviated lung inflammation caused by HP-PRRSV infection. Our findings will help us for a better understanding of PRRSV pathogenesis.
Collapse
|
16
|
Zhang Y, Chen X, Yuan L, Zhang Y, Wu J, Guo N, Chen X, Liu J. Down-regulation of IRAK1 attenuates podocyte apoptosis in diabetic nephropathy through PI3K/Akt signaling pathway. Biochem Biophys Res Commun 2018; 506:529-535. [DOI: 10.1016/j.bbrc.2018.09.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
|
17
|
Zhou Z, Tian Z, Zhang M, Zhang Y, Ni B, Hao F. Upregulated IL-1 Receptor-associated Kinase 1 (IRAK1) in Systemic Lupus Erythematosus: IRAK1 Inhibition Represses Th17 Differentiation with Therapeutic Potential. Immunol Invest 2018; 47:468-483. [PMID: 29611775 DOI: 10.1080/08820139.2018.1458105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhou Zhou
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Mengjie Zhang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuxun Zhang
- College of Liberal Arts and Sciences, University of lowa, lowa City, USA
| | - Bing Ni
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun 2018; 87:69-81. [DOI: 10.1016/j.jaut.2017.12.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
|
19
|
Chen X, Xie ZH, Lv YX, Tang QP, Zhang H, Zhang JY, Wu B, Jiang WH. A proteomics analysis reveals that A2M might be regulated by STAT3 in persistent allergic rhinitis. Clin Exp Allergy 2017; 46:813-24. [PMID: 27228572 DOI: 10.1111/cea.12711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Proteomics tools can be used to identify the differentially expressed proteins related to allergic rhinitis (AR). However, the large numbers of proteins related to AR have not yet been explored using an advanced quantitative proteomics approach, known as isobaric tags for relative and absolute quantitation (iTRAQ). OBJECTIVES To identify differentially expressed proteins in persistent AR patients and to explore the regulatory signalling pathways involving the identified proteins. METHODS Forty-five persistent AR patients and 20 healthy controls were recruited for this study. iTRAQ was used to identify the proteins that were differentially expressed between these two groups, and a bioinformatics analysis was then conducted to identify the signalling pathways associated with the identified proteins. Immunofluorescence labelling was performed to detect alpha-2-macroglobulin (A2M), STAT3, p-STAT3 and IL17 in the nasal mucosa. RESULTS A total of 133 differentially expressed proteins were identified. We then determined the top 10 regulatory pathways associated with these proteins and found that the blood coagulation pathway had the most significant association. A2M, a protein involved in the blood coagulation pathway, was found to be differentially expressed in the serum of AR patients. The bioinformatics analysis indicated that STAT3 is an upstream transcription factor that might regulate A2M expression. An immunofluorescence study further confirmed that STAT3 and A2M are co-localized in nasal mucosa cells. Additionally, A2M, STAT3, p-STAT3, and IL17 are elevated in AR patients. The expressional level of A2M is positively related to IL17 and the symptom of the congestion in AR subjects. CONCLUSIONS The blood coagulation pathway may be a key regulatory network pathway contributing to the allergic inflammatory response in AR patients. A2M, which is regulated by STAT3, may be an important protein in the pathogenesis of allergic rhinitis in AR patients.
Collapse
Affiliation(s)
- X Chen
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Z H Xie
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Y X Lv
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Q P Tang
- Department of Rehabilitation, Brain Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - H Zhang
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - J Y Zhang
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - B Wu
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - W H Jiang
- Department of Otolaryngology-Skull Base Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Wang Y, Wang Y, Duan X, Wang Y, Zhang Z. Interleukin-1 receptor-associated kinase 1 correlates with metastasis and invasion in endometrial carcinoma. J Cell Biochem 2017; 119:2545-2555. [PMID: 28980703 DOI: 10.1002/jcb.26416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Endometrial carcinoma (EC) is one of the most common malignancies in the world. Previous studies have investigated the altered expression of interleukin-1 receptor-associated kinase 1 (IRAK1) in various cancers. We aimed at exploring the biological function and the underlying molecular mechanism of IRAK1 in EC. In this study, IRAK1 was found elevated in EC compared with normal tissues. Further, high IRAK1 expression level was correlated with higher tumor stage, lymph node metastasis, myometrial invasion, and lower survival rate. Knockdown of IRAK1 in two EC cell lines, HEC-1-B and JEC, significantly inhibited cell proliferation in vitro and in vivo. We also found that down-regulation of IRAK1 in EC cells notably induced cell cycle arrest and apoptois, and also inhibited cell migration and invasion. Gene set enrichment analysis on The Cancer Genome Atlas dataset showed that Kyoto Encyclopedia of Genes and Genomes (KEGG) mitotic cell cycle and cell division pathways were correlative with the IRAK1 expression, which was further confirmed in EC cells by Western blot. The expression of mitotic cell cycle (CDK1 and Cdc45) and cell division pathway (Cdc7 and MCM2) related factors was significantly suppressed by IRAK1 knockdown. These collective data indicated that IRAK1 overexpression promotes EC tumorigenesis by activating mitotic cell cycle and cell division pathways, and IRAK1 may serve as a promising therapeutic strategy for EC.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China.,Department of Gynecology and Obstetrics, People's Hospital of the Inner Mongolia Autonomous Region, Hohhot, China
| | - Yanyan Wang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xianzhi Duan
- Department of Gynecology and Obstetrics, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yinuo Wang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Longitudinal Examination of the Intestinal Lamina Propria Cellular Compartment of Simian Immunodeficiency Virus-Infected Rhesus Macaques Provides Broader and Deeper Insights into the Link between Aberrant MicroRNA Expression and Persistent Immune Activation. J Virol 2016; 90:5003-5019. [PMID: 26937033 DOI: 10.1128/jvi.00189-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic immune activation/inflammation driven by factors like microbial translocation is a key determinant of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) disease progression. Although extensive research on inflammation has focused on studying protein regulators, increasing evidence suggests a critical role for microRNAs (miRNAs) in regulating several aspects of the immune/inflammatory response and immune cell proliferation, differentiation, and activation. To understand their immunoregulatory role, we profiled miRNA expression sequentially in intestinal lamina propria leukocytes (LPLs) of eight macaques before and at 21, 90, and 180 days postinfection (dpi). At 21 dpi, ∼20 and 9 miRNAs were up- and downregulated, respectively. However, at 90 dpi (n = 60) and 180 dpi (n = 44), ≥75% of miRNAs showed decreased expression. Notably, the T-cell activation-associated miR-15b, miR-142-3p, miR-142-5p, and miR-150 expression was significantly downregulated at 90 and 180 dpi. Out of ∼10 downregulated miRNAs predicted to regulate CD69, we confirmed miR-92a to directly target CD69. Interestingly, the SIV-induced miR-190b expression was elevated at all time points. Additionally, elevated lipopolysaccharide (LPS)-responsive miR-146b-5p expression at 180 dpi was confirmed in primary intestinal macrophages following LPS treatment in vitro Further, reporter and overexpression assays validated IRAK1 (interleukin-1 receptor 1 kinase) as a direct miR-150 target. Furthermore, IRAK1 protein levels were markedly elevated in intestinal LPLs and epithelium. Finally, blockade of CD8(+) T-cell activation/proliferation with delta-9 tetrahydrocannabinol (Δ(9)-THC) significantly prevented miR-150 downregulation and IRAK1 upregulation. Our findings suggest that miR-150 downregulation during T-cell activation disrupts the translational control of IRAK1, facilitating persistent gastrointestinal (GI) inflammation. Finally, the ability of Δ(9)-THC to block the miR-150-IRAK1 regulatory cascade highlights the potential of cannabinoids to inhibit persistent inflammation/immune activation in HIV/SIV infection. IMPORTANCE Persistent GI tract disease/inflammation is a cardinal feature of HIV/SIV infection. Increasing evidence points to a critical role for miRNAs in controlling several aspects of the immune/inflammatory response. Here, we show significant dysregulation of miRNA expression exclusively in the intestinal lamina propria cellular compartment through the course of SIV infection. Specifically, the study identified miRNA signatures associated with key pathogenic events, such as viral replication, T-cell activation, and microbial translocation. The T-cell-enriched miR-150 showed significant downregulation throughout SIV infection and was confirmed to target IRAK1, a critical signal-transducing component of the IL-1 receptor and TLR signaling pathways. Reduced miR-150 expression was associated with markedly elevated IRAK1 expression in the intestines of chronically SIV-infected macaques. Finally, Δ(9)-THC-mediated blockade of CD8(+) T-cell activation in vitro significantly inhibited miR-150 downregulation and IRAK1 upregulation, suggesting its potential for targeted immune modulation in HIV infection.
Collapse
|