1
|
Zhang X, He J, Zhao K, Liu S, Xuan L, Chen S, Xue R, Lin R, Xu J, Zhang Y, Xiang AP, Jin H, Liu Q. Mesenchymal stromal cells ameliorate chronic GVHD by boosting thymic regeneration in a CCR9-dependent manner in mice. Blood Adv 2023; 7:5359-5373. [PMID: 37363876 PMCID: PMC10509672 DOI: 10.1182/bloodadvances.2022009646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Mature donor T cells within the graft contribute to severe damage of thymic epithelial cells (TECs), which are known as key mediators in the continuum of acute GVHD (aGVHD) and cGVHD pathology. Mesenchymal stromal cells (MSCs) are reportedly effective in the prevention and treatment of cGVHD. In our previous pilot clinical trial in patients with refractory aGVHD, the incidence and severity of cGVHD were decreased, along with an increase in levels of blood signal joint T-cell receptor excision DNA circles after MSCs treatment, which indicated an improvement in thymus function of patients with GVHD, but the mechanisms leading to these effects remain unknown. Here, we show in a murine GVHD model that MSCs promoted the quantity and maturity of TECs as well as elevated the proportion of Aire-positive medullary TECs, improving both CD4+CD8+ double-positive thymocytes and thymic regulatory T cells, balancing the CD4:CD8 ratio in the blood. In addition, CCL25-CCR9 signaling axis was found to play an important role in guiding MSC homing to the thymus. These studies reveal mechanisms through which MSCs ameliorate cGVHD by boosting thymic regeneration and offer innovative strategies for improving thymus function in patients with GVHD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiabao He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shiqi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
2
|
Su X, Li X, Wang S, Xue X, Liu R, Bai X, Gong P, Feng C, Cao L, Wang T, Ding Y, Jiang J, Chen Y, Shi Y, Shao C. Nitric oxide-dependent immunosuppressive function of thymus-derived mesenchymal stromal/stem cells. Biol Direct 2023; 18:59. [PMID: 37723551 PMCID: PMC10506207 DOI: 10.1186/s13062-023-00415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The thymus is required for T cell development and the formation of the adaptive immunity. Stromal cells, which include thymic epithelial cells (TECs) and mesenchymal stromal cells (MSCs), are essential for thymic function. However, the immunomodulatory function of thymus-derived MSCs (T-MSCs) has not been fully explored. METHODS MSCs were isolated from mouse thymus and their general characteristics including surface markers and multi-differentiation potential were characterized. The immunomodulatory function of T-MSCs stimulated by IFN-γ and TNF-α was evaluated in vitro and in vivo. Furthermore, the spatial distribution of MSCs in the thymus was interrogated by using tdTomato-flox mice corssed to various MSC lineage Cre recombinase lines. RESULTS A subset of T-MSCs express Nestin, and are mainly distributed in the thymic medulla region and cortical-medulla junction, but not in the capsule. The Nestin-positive T-MSCs exhibit typical immunophenotypic characteristics and differentiation potential. Additionally, when stimulated with IFN-γ and TNF-α, they can inhibit activated T lymphocytes as efficiently as BM-MSCs, and this function is dependent on the production of nitric oxide (NO). Additionally, the T-MSCs exhibit a remarkable therapeutic efficacy in acute liver injury and inflammatory bowel disease (IBD). CONCLUSIONS Nestin-positive MSCs are mainly distributed in medulla and cortical-medulla junction in thymus and possess immunosuppressive ability upon stimulation by inflammatory cytokines. The findings have implications in understanding the physiological function of MSCs in thymus.
Collapse
Affiliation(s)
- Xiao Su
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaolei Li
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Shiqing Wang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaotong Xue
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Rui Liu
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaojing Bai
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Pixia Gong
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Lijuan Cao
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Tingting Wang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yayun Ding
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Junjie Jiang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yongjing Chen
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China.
| | - Changshun Shao
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Depoërs L, Dumont-Lagacé M, Trinh VQH, Houques C, Côté C, Larouche JD, Brochu S, Perreault C. Klf4 protects thymus integrity during late pregnancy. Front Immunol 2023; 14:1016378. [PMID: 37180153 PMCID: PMC10174329 DOI: 10.3389/fimmu.2023.1016378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Pregnancy causes abrupt thymic atrophy. This atrophy is characterized by a severe decrease in the number of all thymocyte subsets and qualitative (but not quantitative) changes in thymic epithelial cells (TECs). Pregnancy-related thymic involution is triggered by progesterone-induced functional changes affecting mainly cortical TECs (cTECs). Remarkably, this severe involution is rapidly corrected following parturition. We postulated that understanding the mechanisms of pregnancy-related thymic changes could provide novel insights into signaling pathways regulating TEC function. When we analyzed genes whose expression in TECs was modified during late pregnancy, we found a strong enrichment in genes bearing KLF4 transcription factor binding motifs. We, therefore, engineered a Psmb11-iCre : Klf4lox/lox mouse model to study the impact of TEC-specific Klf4 deletion in steady-state conditions and during late pregnancy. Under steady-state conditions, Klf4 deletion had a minimal effect on TEC subsets and did not affect thymic architecture. However, pregnancy-induced thymic involution was much more pronounced in pregnant females lacking Klf4 expression in TECs. These mice displayed a substantial ablation of TECs with a more pronounced loss of thymocytes. Transcriptomic and phenotypic analyses of Klf4 -/- TECs revealed that Klf4 maintains cTEC numbers by supporting cell survival and preventing epithelial-to-mesenchymal plasticity during late pregnancy. We conclude that Klf4 is essential for preserving TEC's integrity and mitigating thymic involution during late pregnancy.
Collapse
Affiliation(s)
- Lucyle Depoërs
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Maude Dumont-Lagacé
- ExCellThera, Inc., Montréal, QC, Canada
- Piercing Star Technologies, Rabat, Morocco
| | - Vincent Quoc-Huy Trinh
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cellular Biology, Institute for Research in Immunology and Cancer, and Centre de recherche du Centre hospitalier de l’Université de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Chloé Houques
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Caroline Côté
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-David Larouche
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Brochu
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| | - Claude Perreault
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Sylvie Brochu, ; Claude Perreault,
| |
Collapse
|
4
|
Bhalla P, Du Q, Kumar A, Xing C, Moses A, Dozmorov I, Wysocki CA, Cleaver OB, Pirolli TJ, Markert ML, de la Morena MT, Baldini A, van Oers NS. Mesenchymal cell replacement corrects thymic hypoplasia in murine models of 22q11.2 deletion syndrome. J Clin Invest 2022; 132:e160101. [PMID: 36136514 PMCID: PMC9663160 DOI: 10.1172/jci160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.
Collapse
Affiliation(s)
| | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Departments of Bioinformatics and
- Population and Data Sciences, Departments of
| | | | | | | | | | - Timothy J. Pirolli
- Division of Pediatric Cardiothoracic Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Louise Markert
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Antonio Baldini
- Department Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicolai S.C. van Oers
- Department of Immunology
- Pediatrics
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
6
|
Ferreirinha P, Pinheiro RGR, Landry JJM, Alves NL. Identification of fibroblast progenitors in the developing mouse thymus. Development 2022; 149:275509. [PMID: 35587733 PMCID: PMC9188757 DOI: 10.1242/dev.200513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
Abstract
The thymus stroma constitutes a fundamental microenvironment for T-cell generation. Despite the chief contribution of thymic epithelial cells, recent studies emphasize the regulatory role of mesenchymal cells in thymic function. Mesenchymal progenitors are suggested to exist in the postnatal thymus; nonetheless, an understanding of their nature and the mechanism controlling their homeostasis in vivo remains elusive. We resolved two new thymic fibroblast subsets with distinct developmental features. Whereas CD140αβ+GP38+SCA-1− cells prevailed in the embryonic thymus and declined thereafter, CD140αβ+GP38+SCA-1+ cells emerged in the late embryonic period and predominated in postnatal life. The fibroblastic-associated transcriptional programme was upregulated in CD140αβ+GP38+SCA-1+ cells, suggesting that they represent a mature subset. Lineage analysis showed that CD140αβ+GP38+SCA-1+ maintained their phenotype in thymic organoids. Strikingly, CD140αβ+GP38+SCA-1− generated CD140αβ+GP38+SCA-1+, inferring that this subset harboured progenitor cell activity. Moreover, the abundance of CD140αβ+GP38+SCA-1+ fibroblasts was gradually reduced in Rag2−/− and Rag2−/−Il2rg−/− thymi, indicating that fibroblast maturation depends on thymic crosstalk. Our findings identify CD140αβ+GP38+SCA-1− as a source of fibroblast progenitors and define SCA-1 as a marker for developmental stages of thymic fibroblast differentiation. Summary: This study resolves previously unidentified subsets of immature and mature thymic fibroblasts, providing further evidence that their homeostasis is controlled by signals provided by developing thymocytes.
Collapse
Affiliation(s)
- Pedro Ferreirinha
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto 1 , 4200-135, Porto , Portugal
- Instituto de Biologia Molecular e Celular 2 , 4200-135, Porto , Portugal
| | - Ruben G. R. Pinheiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto 1 , 4200-135, Porto , Portugal
- Instituto de Biologia Molecular e Celular 2 , 4200-135, Porto , Portugal
- Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar 3 , , 4200-135, Porto , Portugal
- Universidade do Porto 3 , , 4200-135, Porto , Portugal
| | - Jonathan J. M. Landry
- Genomics Core Facility, European Molecular Biology Laboratory 4 , 69117 Heidelberg , Germany
| | - Nuno L. Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto 1 , 4200-135, Porto , Portugal
- Instituto de Biologia Molecular e Celular 2 , 4200-135, Porto , Portugal
| |
Collapse
|
7
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2021; 11:620894. [PMID: 33519827 PMCID: PMC7840694 DOI: 10.3389/fimmu.2020.620894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
9
|
Iwasa M, Fujii S, Fujishiro A, Maekawa T, Andoh A, Takaori-Kondo A, Ichinohe T, Miura Y. Impact of 2 Gy γ-irradiation on the hallmark characteristics of human bone marrow-derived MSCs. Int J Hematol 2021; 113:703-711. [PMID: 33386593 DOI: 10.1007/s12185-020-03072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Two gray γ-irradiation is a widely employed basic module for total body irradiation (TBI) in allogeneic hematopoietic cell transplantation (HCT). The effects of γ-irradiation on hematopoietic and immune cells have been well investigated, but its effects on the bone marrow microenvironment (BMM) are unknown. Given the crucial contribution of mesenchymal/stromal stem cells (MSCs) in the BMM to hematopoiesis and osteogenesis, we investigated whether γ-irradiation affects the hallmark characteristics of human bone marrow-derived MSCs (BM-MSCs). Expansion of 2 Gy γ-irradiated BM-MSCs was delayed but eventually recovered. Colony formation and osteogenic, adipogenic, and chondrogenic differentiation capabilities of these cells were extensively suppressed. Irradiation of BM-MSCs did not affect the expansion of CD34 + hematopoietic stem and progenitor cells or production of CD11b + mature myeloid cells in co-cultures. However, it reduced production of CD19 + B-cells, as well as expression of CXCL12 and interleukin-7, which are essential for B-cell lymphopoiesis, in 2 Gy γ-irradiated BM-MSCs. Collectively, colony formation, osteogenic differentiation, and B-cell lymphopoiesis-supportive capabilities of γ-irradiated BM-MSCs were reduced. These effects may predispose survivors receiving HCT with TBI to defective bone formation and a perturbed humoral immune response.
Collapse
Affiliation(s)
- Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan.
| | - Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Hematology/Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Fujishiro
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Hematology/Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
10
|
Yuan Y, Bar-Joseph Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol 2020; 21:300. [PMID: 33303016 PMCID: PMC7726911 DOI: 10.1186/s13059-020-02214-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Most methods for inferring gene-gene interactions from expression data focus on intracellular interactions. The availability of high-throughput spatial expression data opens the door to methods that can infer such interactions both within and between cells. To achieve this, we developed Graph Convolutional Neural networks for Genes (GCNG). GCNG encodes the spatial information as a graph and combines it with expression data using supervised training. GCNG improves upon prior methods used to analyze spatial transcriptomics data and can propose novel pairs of extracellular interacting genes. The output of GCNG can also be used for downstream analysis including functional gene assignment.Supporting website with software and data: https://github.com/xiaoyeye/GCNG .
Collapse
Affiliation(s)
- Ye Yuan
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Ziv Bar-Joseph
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Benhammadi M, Mathé J, Dumont-Lagacé M, Kobayashi KS, Gaboury L, Brochu S, Perreault C. IFN-λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1268-1280. [PMID: 32690660 DOI: 10.4049/jimmunol.2000225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Regulation of MHC class I (MHC I) expression has been studied almost exclusively in hematolymphoid cells. We report that thymic epithelial cells (TECs), particularly the medullary TECs, constitutively express up to 100-fold more cell surface MHC I proteins than epithelial cells (ECs) from the skin, colon, and lung. Differential abundance of cell surface MHC I in primary ECs is regulated via transcription of MHC I and of genes implicated in the generation of MHC I-binding peptides. Superior MHC I expression in TECs is unaffected by deletion of Ifnar1 or Ifngr1, but is lessened by deletion of Aire, Ifnlr1, Stat1, or Nlrc5, and is driven mainly by type III IFN produced by medullary TECs. Ifnlr1 -/- mice show impaired negative selection of CD8 thymocytes and, at 9 mo of age, present autoimmune manifestations. Our study shows unanticipated variation in MHC I expression by ECs from various sites and provides compelling evidence that superior expression of MHC I in TECs is crucial for proper thymocyte education.
Collapse
Affiliation(s)
- Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843.,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; and
| | - Louis Gaboury
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
12
|
Abstract
Understanding the pathogenesis of certain viral agents is essential for developing new treatments and obtaining a clinical cure. With the onset of the new coronavirus (SARS-CoV-2) pandemic in the beginning of 2020, a rush to conduct studies and develop drugs has led to the publication of articles that seek to address knowledge gaps and contribute to the global scientific research community. There are still no reports on the infectivity or repercussions of SARS-CoV-2 infection on the central lymphoid organ, the thymus, nor on thymocytes or thymic epithelial cells. In this brief review, we present a hypothesis about lymphopenia observed in SARS patients and the probable pathological changes that the thymus may undergo due to this new virus.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Matsushima S, Aoshima Y, Akamatsu T, Enomoto Y, Meguro S, Kosugi I, Kawasaki H, Fujisawa T, Enomoto N, Nakamura Y, Inui N, Funai K, Suda T, Iwashita T. CD248 and integrin alpha-8 are candidate markers for differentiating lung fibroblast subtypes. BMC Pulm Med 2020; 20:21. [PMID: 31964365 PMCID: PMC6975017 DOI: 10.1186/s12890-020-1054-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background Lung fibrosis is a serious life-threatening condition whose manifestation varies according to the localization and characteristics of fibroblasts, which are considered heterogeneous. Therefore, to better understand the pathology and improve diagnosis and treatment of this disease, it is necessary to elucidate the nature of this heterogeneity and identify markers for the accurate classification of human lung fibroblast subtypes. Methods We characterized distinct mouse lung fibroblast subpopulations isolated by fluorescence-activated cell sorting (FACS) and performed microarray analysis to identify molecular markers that could be useful for human lung fibroblast classification. Based on the expression of these markers, we evaluated the fibroblast-like cell subtype localization in normal human lung samples and lung samples from patients with idiopathic pulmonary fibrosis (IPF). Results Mouse lung fibroblasts were classified into Sca-1high fibroblasts and Sca-1low fibroblasts by in vitro biological analyses. Through microarray analysis, we demonstrated CD248 and integrin alpha-8 (ITGA8) as cell surface markers for Sca-1high fibroblasts and Sca-1low fibroblasts, respectively. In mouse lungs, Sca-1high fibroblasts and Sca-1low fibroblasts were localized in the collagen fiber-rich connective tissue and elastic fiber-rich connective tissue, respectively. In normal human lungs and IPF lungs, two corresponding major fibroblast-like cell subtypes were identified: CD248highITGA8low fibroblast-like cells and CD248lowITGA8high fibroblast-like cells, localized in the collagen fiber-rich connective tissue and in the elastic fiber-rich connective tissue, respectively. Conclusion CD248highITGA8low fibroblast-like cells and CD248lowITGA8high fibroblast-like cells were localized in an almost exclusive manner in human lung specimens. This human lung fibroblast classification using two cell surface markers may be helpful for further detailed investigations of the functions of lung fibroblast subtypes, which can provide new insights into lung development and the pathological processes underlying fibrotic lung diseases.
Collapse
Affiliation(s)
- Sayomi Matsushima
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.,Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Yoichiro Aoshima
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.,Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Taisuke Akamatsu
- Division of Respiratory Medicine, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka City, Shizuoka, 420-8527, Japan
| | - Yasunori Enomoto
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.,Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Shiori Meguro
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.
| |
Collapse
|
14
|
Dumont-Lagacé M, Gerbe H, Daouda T, Laverdure JP, Brochu S, Lemieux S, Gagnon É, Perreault C. Detection of Quiescent Radioresistant Epithelial Progenitors in the Adult Thymus. Front Immunol 2017; 8:1717. [PMID: 29259606 PMCID: PMC5723310 DOI: 10.3389/fimmu.2017.01717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Thymic aging precedes that of other organs and is initiated by the gradual loss of thymic epithelial cells (TECs). Based on in vitro culture and transplantation assays, recent studies have reported on the presence of thymic epithelial progenitor cells (TEPCs) in young adult mice. However, the physiological role and properties of TEPC populations reported to date remain unclear. Using an in vivo label-retention assay, we previously identified a population of quiescent but non-senescent TECs. The goals of this study were therefore (i) to evaluate the contribution of these quiescent TECs to thymic regeneration following irradiation-induced acute thymic injury and (ii) to characterize their phenotypic and molecular profiles using flow cytometry, immunohistology, and transcriptome sequencing. We report that while UEA1+ cells cycle the most in steady state, they are greatly affected by irradiation, leading to cell loss and proliferative arrest following acute thymic involution. On the opposite, the UEA1– subset of quiescent TECs is radioresistant and proliferate in situ following acute thymic involution, thereby contributing to thymic regeneration in 28- to 30-week-old mice. UEA1– quiescent TECs display an undifferentiated phenotype (co-expression of K8 and K5 cytokeratins) and express high levels of genes that regulate stem cell activity in different tissues (e.g., Podxl and Ptprz1). In addition, two features suggest that UEA1– quiescent TECs occupy discrete stromal niches: (i) their preferential location in clusters adjacent to the cortico-medullary junction and (ii) their high expression of genes involved in cross talk with mesenchymal cells. The ability of UEA1– quiescent TECs to participate to TEC regeneration qualifies them as in vivo progenitor cells particularly relevant in the context of regeneration following acute thymic injury.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hervé Gerbe
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Tariq Daouda
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | | | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Informatics and Operational Research, Université de Montréal, Montréal, QC, Canada
| | - Étienne Gagnon
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|