1
|
Elias HK, Mitra S, da Silva MB, Rajagopalan A, Gipson B, Lee N, Kousa AI, Ali MAE, Grassman S, Zhang X, DeWolf S, Smith M, Andrlova H, Argyropoulos KV, Sharma R, Fei T, Sun JC, Dunbar CE, Park CY, Leslie CS, Bhandoola A, van den Brink MRM. An epigenetically distinct HSC subset supports thymic reconstitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597775. [PMID: 38895335 PMCID: PMC11185715 DOI: 10.1101/2024.06.06.597775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) with multilineage potential are critical for effective T cell reconstitution and restoration of the adaptive immune system after allogeneic Hematopoietic Cell Transplantation (allo-HCT). The Kit lo subset of HSCs is enriched for multipotential precursors, 1, 2 but their T-cell lineage potential has not been well-characterized. We therefore studied the thymic reconstituting and T-cell potential of Kit lo HSCs. Using a preclinical allo-HCT model, we demonstrate that Kit lo HSCs support better thymic recovery, and T-cell reconstitution resulting in improved T cell responses to infection post-HCT. Furthermore, Kit lo HSCs with augmented BM lymphopoiesis mitigate age-associated thymic alterations, thus enhancing T-cell recovery in middle-aged hosts. We find the frequency of the Kit lo subset declines with age, providing one explanation for the reduced frequency of T-competent HSCs and reduced T-lymphopoietic potential in BM precursors of aged mice. 3, 4, 5 Chromatin profiling revealed that Kit lo HSCs exhibit higher activity of lymphoid-specifying transcription factors (TFs), including Zbtb1 . Deletion of Zbtb1 in Kit lo HSCs diminished their T-cell potential, while reinstating Zbtb1 in megakaryocytic-biased Kit hi HSCs rescued T-cell potential, in vitro and in vivo . Finally, we discover an analogous Kit lo HSC subset with enhanced lymphoid potential in human bone marrow. Our results demonstrate that Kit lo HSCs with enhanced lymphoid potential have a distinct underlying epigenetic program.
Collapse
|
2
|
Koizumi M, Kama Y, Hirano KI, Endo Y, Tanaka T, Hozumi K, Hosokawa H. Transcription factor Zbtb1 interacts with bridging factor Lmo2 and maintains the T-lineage differentiation capacity of lymphoid progenitor cells. J Biol Chem 2022; 298:102506. [PMID: 36126774 PMCID: PMC9582733 DOI: 10.1016/j.jbc.2022.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells can differentiate into all types of blood cells. Regulatory mechanisms underlying pluripotency in progenitors, such as the ability of lymphoid progenitor cells to differentiate into T-lineage, remain unclear. We have previously reported that LIM domain only 2 (Lmo2), a bridging factor in large transcriptional complexes, is essential to retain the ability of lymphoid progenitors to differentiate into T-lineage. However, biochemical characterization of Lmo2 protein complexes in physiological hematopoietic progenitors remains obscure. Here, we identified approximately 600 Lmo2-interacting molecules in a lymphoid progenitor cell line by two-step affinity purification with LC-MS/MS analysis. Zinc finger and BTB domain containing 1 (Zbtb1) and CBFA2/RUNX1 partner transcriptional corepressor 3 (Cbfa2t3) were found to be the functionally important binding partners of Lmo2. We determined CRISPR/Cas9-mediated acute disruption of Zbtb1 or Cbfa2t3 in the lymphoid progenitor or bone marrow–derived primary hematopoietic progenitor cells causes significant defects in the initiation of T-cell development when Notch signaling is activated. Our transcriptome analysis of Zbtb1- or Cbfa2t3-deficient lymphoid progenitors revealed that Tcf7 was a common target for both factors. Additionally, ChIP-seq analysis showed that Lmo2, Zbtb1, and Cbfa2t3 cobind to the Tcf7 upstream enhancer region, which is occupied by the Notch intracellular domain/RBPJ transcriptional complex after Notch stimulation, in lymphoid progenitors. Moreover, transduction with Tcf7 restored the defect in the T-lineage potential of Zbtb1-deficient lymphoid progenitors. Thus, in lymphoid progenitors, the Lmo2/Zbtb1/Cbfa2t3 complex directly binds to the Tcf7 locus and maintains responsiveness to the Notch-mediated inductive signaling to facilitate T-lineage differentiation.
Collapse
Affiliation(s)
- Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuichi Kama
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Chiba, Japan; Department of Omics Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan.
| |
Collapse
|
3
|
Wang J, Shi C, Cheng M, Lu Y, Zhang X, Li F, Sun Y, Li X, Li X, Zeng Y, Wang C, Cao X. Effects of the Zbtb1 Gene on Chromatin Spatial Structure and Lymphatic Development: Combined Analysis of Hi-C, ATAC-Seq and RNA-Seq. Front Cell Dev Biol 2022; 10:874525. [PMID: 35547816 PMCID: PMC9081333 DOI: 10.3389/fcell.2022.874525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Zbtb1 (zinc finger and BTB domain containing 1) is a member of mammalian zbtb gene family. A series of bioinformatics analysis was carried out for the EL4 cell and the Zbtb1-deficient EL4 cell by Hi-C, ATAC-seq and RNA-seq techniques. Finally, Hi-C results showed that the intensity of chromatin interaction in the deletion group decreased with distance, the degree of chromosome interaction decreased significantly, the AB division region changed significantly, and the compactness of TAD structure decreased; The results of ATAC-seq showed that the open area and degree of chromatin in the deletion group decreased; 7778 differentially expressed mRNAs were found by RNA-seq. Our experimental results for the first time expounded the significance of Zbtb1 gene for T cell development, lymphocyte production and apoptosis from the aspects of chromosome spatial structure and chromatin opening degree, and provided relevant theoretical basis and data support for the in-depth study of related Zbtb1 genes in the future.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoyu Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Fengdi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xinyang Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Yan Zeng, ; Chunfeng Wang, ; Xin Cao,
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Yan Zeng, ; Chunfeng Wang, ; Xin Cao,
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
- *Correspondence: Yan Zeng, ; Chunfeng Wang, ; Xin Cao,
| |
Collapse
|
4
|
Wang J, Li X, Lu Y, Huang Q, Sun Y, Cheng M, Li F, Shi C, Zeng Y, Wang C, Cao X. Analysis of lncRNAs and mRNA Expression in the ZBTB1 Knockout Monoclonal EL4 Cell Line and Combined Analysis With miRNAs and circRNAs. Front Cell Infect Microbiol 2021; 11:806290. [PMID: 34956935 PMCID: PMC8695857 DOI: 10.3389/fcimb.2021.806290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
In previous experiments, we identified the effect of deletion of the Zbtb1 gene on circRNAs and microRNAs. In this study, we examined the expression profiles of lncRNAs and mRNAs using the RNA-seq method for Zbtb1-deficient EL4 cells and performed a clustering analysis of differentially expressed lncRNAs and mRNAs. GO term histograms and KEGG scatter plots were drawn. For the experimental results, a joint analysis was performed, which predicted the regulatory relationships among lncRNAs, mRNAs, microRNAs and circRNAs. For the regulatory relationship between lncRNAs and target genes, the chromatin structure and the degree of openness were verified for the possible target gene locations regulated by lncRNA using experimental methods such as Hi-C and ATAC-seq. Ultimately, the possible differential regulation of the Brcal and Dennd5d genes by lncRNAs and the differential changes in transcription factor binding sites in the promoter region were identified. For neRNA-regulated target genes with significantly differentially expressed mRNAs, a combined screen was performed, and the final obtained candidate target genes were subjected to GO and KEGG term enrichment analyses. Our results illustrate that the Zbtb1 gene can not only function as a regulatory factor but also regulate EL4 cells from multiple perspectives based on ceRNA theory.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoxu Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Quntao Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Fengdi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Cheng M, Zeng Y, Sun Y, Shi C, Wang J, Li F, Lu Y, Wang J, Wang R, Li X, Li X, Fan S, Yang G, Cao X, Xu B, Wang C. Preliminary analysis of the expression of ZBTB1 in human pancreatic carcinoma. J Cell Mol Med 2021; 25:8573-8576. [PMID: 34312970 PMCID: PMC8419179 DOI: 10.1111/jcmm.16804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
|
6
|
Ming R, Wang E, Wei J, Shen J, Zong S, Xiao H. The Prognostic Value of the DNA Repair Gene Signature in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:710694. [PMID: 34395285 PMCID: PMC8362833 DOI: 10.3389/fonc.2021.710694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To construct a prognostic signature composed of DNA repair genes to effectively predict the prognosis of patients with head and neck squamous cell carcinoma (HNSCC). Methods After downloading the transcriptome and clinical data of HNSCC from the Cancer Genome Atlas (TCGA), 499 patients with HNSCC were equally divided into training and testing sets. In the training set, 13 DNA repair genes were screened using univariate proportional hazard (Cox) regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct a risk model, which was validated in the testing set. Results In the training and testing sets, there were significant differences in the clinical outcomes of patients in the high- and low-risk groups showed by Kaplan-Meier survival curves (P < 0.001). Univariate and multivariate Cox regression analyses showed that the risk score had independent prognostic predictive ability (P < 0.001). At the same time, the immune cell infiltration, immune score, immune-related gene expression, and tumor mutation burden (TMB) of patients with HNSCC were also different between the high- and low-risk groups (P < 0.05). Finally, we screened several chemotherapeutics for HNSCC, which showed significant differences in drug sensitivity between the high- and low-risk groups (P < 0.05). Conclusion This study constructed a 13-DNA-repair-gene signature for the prognosis of HNSCC, which could accurately and independently predict the clinical outcome of the patient. We then revealed the immune landscape, TMB, and sensitivity to chemotherapy drugs in different risk groups, which might be used to guide clinical treatment decisions.
Collapse
Affiliation(s)
- Ruijie Ming
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Enhao Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wei
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiong Shen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Tang J, Chen R, Wang L, Yu L, Zuo D, Cui G, Gong X. Melatonin Attenuates Thrombin-induced Inflammation in BV2 Cells and Then Protects HT22 Cells from Apoptosis. Inflammation 2021; 43:1959-1970. [PMID: 32705396 DOI: 10.1007/s10753-020-01270-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing evidence has revealed that the uncontrolled thrombin-induced inflammation following intracerebral hemorrhage (ICH) plays a key role in ICH. Oxidative stress and neuroinflammatory responses are interdependent and bidirectional events. Melatonin is now recognized as an antioxidant and a free radical scavenger due to its roles in various physiological and pathological processes. The aim of this study was to explore the molecular mechanisms underlying the effects of melatonin on thrombin-induced microglial inflammation and its indirect protection of HT22 cells from p53-associated apoptosis. Melatonin treatment attenuated the expression of IL-1β, IL-18, cleaved caspase-1, and NLRP3 and decreased the production of reactive oxygen species (ROS), revealing its inhibitory effects against ROS-NLRP3 inflammasome activation. In further experiments investigating the protection conferred by melatonin, incubating HT22 cells with conditioned medium (CM) from thrombin-stimulated microglia induced HT22 cell apoptosis, and this effect was reversed after treating CM with either melatonin or N-acetyl-L-cysteine (NAC). Additionally, the Bax/Bcl-2 ratio and the levels of cleaved caspase-3 and p53 were markedly lower in the cells cultured in thrombin + melatonin-CM than in the cells cultured in thrombin-CM. Furthermore, the levels of MMP, ROS, SOD, MDA, and GSH-PX in bystander HT22 cells suggested that melatonin decreased HT22 cell apoptosis instigated via the p53-associated apoptotic pathway. Therefore, these findings strongly indicate the anti-inflammatory properties of melatonin that may suppress ROS-NLRP3 inflammasome activation and protect HT22 cells against apoptosis by inhibiting the ROS-mediated p53-dependent mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Neurology, Yan Cheng City No.1 People's Hospital, Yancheng, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Second People's Hospital of Huai'an and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu Province, China
| | - Lingling Wang
- Department of Hematology, Yan Cheng City No.1 People's Hospital, Yancheng, Jiangsu Province, China
| | - Lu Yu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dandan Zuo
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Xiaoqian Gong
- Department of Neurology, Yan Cheng City No.1 People's Hospital, Yancheng, Jiangsu Province, China.
| |
Collapse
|
9
|
Wang JH, Shi CW, Lu YY, Zeng Y, Cheng MY, Wang RY, Sun Y, Jiang YL, Yang WT, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. MicroRNA and circRNA Expression Analysis in a Zbtb1 Gene Knockout Monoclonal EL4 Cell Line. Front Cell Infect Microbiol 2021; 11:706919. [PMID: 34290994 PMCID: PMC8287301 DOI: 10.3389/fcimb.2021.706919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger and BTB domain containing 1(Zbtb1) is a transcriptional suppressor protein, and a member of the mammalian Zbtb gene family. Previous studies have shown that Zbtb1 is essential for T-cell development. However, the role of Zbtb1 in T-cell lymphoma is undetermined. In this study, an EL4 cell line with Zbtb1 deletion was constructed using the CRISPR-Cas9 technique. The expression profiles of microRNA and circRNA produced by the control and gene deletion groups were determined by RNA-seq. In general, 24 differentially expressed microRNA and 16 differentially expressed circRNA were found between normal group and gene deletion group. Through further analysis of differentially expressed genes, GO term histogram and KEGG scatter plot were drawn, and three pairs of miRNA and circRNA regulatory relationships were found. This study describes the differentially expressed microRNA and circRNA in normal and Zbtb1-deficient EL4 cell lines, thus providing potential targets for drug development and clinical treatment of T-cell lymphoma.
Collapse
Affiliation(s)
- Jun-Hong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Zhang P, Yang Y, Qian K, Li L, Zhang C, Fu X, Zhang X, Chen H, Liu Q, Cao S, Cui J. A novel tumor suppressor ZBTB1 regulates tamoxifen resistance and aerobic glycolysis through suppressing HER2 expression in breast cancer. J Biol Chem 2020; 295:14140-14152. [PMID: 32690611 DOI: 10.1074/jbc.ra119.010759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Transcriptional repressor zinc finger and BTB domain containing 1 (ZBTB1) is required for DNA repair. Because DNA repair defects often underlie genome instability and tumorigenesis, we determined to study the role of ZBTB1 in cancer. In this study, we found that ZBTB1 is down-regulated in breast cancer and this down-regulation is associated with poor outcome of breast cancer patients. ZBTB1 suppresses breast cancer cell proliferation and tumor growth. The majority of breast cancers are estrogen receptor (ER) positive and selective estrogen receptor modulators such as tamoxifen have been widely used in the treatment of these patients. Unfortunately, many patients develop resistance to endocrine therapy. Tamoxifen-resistant cancer cells often exhibit higher HER2 expression and an increase of glycolysis. Our data revealed that ZBTB1 plays a critical role in tamoxifen resistance in vitro and in vivo To see if ZBTB1 regulates HER2 expression, we tested the recruitments of ZBTB1 on HER2 regulatory sequences. We observed that over-expressed ZBTB1 occupies the estrogen receptor α (ERα)-binding site of the HER2 intron in tamoxifen-resistant cells, suppressing tamoxifen-induced transcription. In an effort to identify potential microRNAs (miRNAs) regulating ZBTB1, we found that miR-23b-3p directly targets ZBTB1. MiR-23b-3p regulates HER2 expression and tamoxifen resistance via targeting ZBTB1. Finally, we found that miR-23b-3p/ZBTB1 regulates aerobic glycolysis in tamoxifen-resistant cells. Together, our data demonstrate that ZBTB1 is a tumor suppressor in breast cancer cells and that targeting the miR-23b-3p/ZBTB1 may serve as a potential therapeutic approach for the treatment of tamoxifen resistant breast cancer.
Collapse
Affiliation(s)
- Panhong Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Yutao Yang
- Department of Neurobiology, Capital Medical University, Beijing, P.R. China
| | - Kai Qian
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Lianlian Li
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoyi Fu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China.,Department of Pathology, 2nd Affiliated Hospital, Yichun University, Yichun, Jiangxi, P.R. China
| | - Xiumei Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Huan Chen
- Department of Pathology, The 1st affiliated Hospital, Yichun University, Yichun, Jiangxi, P.R. China
| | - Qiongqing Liu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Shengnan Cao
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Jiajun Cui
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| |
Collapse
|
11
|
Cao X, Ma XX, Du JL, Zeng Y, Zhang XY, Lu Y, Xue YJ, Ma P, Chang QY, Li LJ, Zhou XY, Cai KZ, Kovalovsky D, Ma ZR. Reciprocal suppression between Zbtb1 expression and IL-7Rα signalling during T-cell development. J Cell Mol Med 2018; 22:4012-4015. [PMID: 29885067 PMCID: PMC6050490 DOI: 10.1111/jcmm.13663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Affiliation(s)
- Xin Cao
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xiao-Xia Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiang-Long Du
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yan Zeng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian-Yu Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Jia Xue
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Peng Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Qiu-Yan Chang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Lin-Jie Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xue-Yan Zhou
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Kui-Zheng Cai
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Damian Kovalovsky
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhong-Ren Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering & Technology Research Center for Animal Cell, Gansu, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
12
|
Zhu C, Chen G, Zhao Y, Gao XM, Wang J. Regulation of the Development and Function of B Cells by ZBTB Transcription Factors. Front Immunol 2018; 9:580. [PMID: 29616049 PMCID: PMC5869932 DOI: 10.3389/fimmu.2018.00580] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
The large ZBTB family comprises a diverse group of transcriptional factors. Several ZBTB proteins have emerged as critical factors that regulate the lineage commitment, differentiation, and function of lymphoid cells as well as many other developmental events. For instance, dysfunctions of ZBTB20 or ZBTB24 have been linked to multisystem failures in humans. Within the B-cell lineage, BCL6, ZBTB7A, ZBTB17, and ZBTB1 regulate the development/differentiation of B cells in both bone marrow and peripheral lymphoid organs, while ZBTB20 and ZBTB32 seem to mainly impact the maintenance of terminal plasma cells. Given the importance of B cells in the prevention and treatment of infectious or autoimmune disorders, we herein summarize the roles of seven ZBTB family members (BCL6, ZBTB7A, ZBTB17, ZBTB20, ZBTB32, ZBTB1, and ZBTB24) in the development, differentiation, and function of B cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Can Zhu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ge Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Zhang X, Lu Y, Cao X, Zhen T, Kovalovsky D. Zbtb1 prevents default myeloid differentiation of lymphoid-primed multipotent progenitors. Oncotarget 2018; 7:58768-58778. [PMID: 27542215 PMCID: PMC5312274 DOI: 10.18632/oncotarget.11356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022] Open
Abstract
Zbtb1 is a transcription factor that prevents DNA damage and p53-mediated apoptosis in replicating immune progenitors, affecting lymphoid as well as myeloid development when hematopoietic progenitors are in competition in mixed bone marrow chimeras. However, Zbtb1-deficient mice do not have an apparent myeloid deficiency. We report here that Zbtb1-deficient lymphoid-primed multipotent progenitors (LMPPs) are biased to develop towards the myeloid fate in detriment of lymphoid development, contributing to the apparent unaffected myeloid development. Zbtb1 expression was maintained during lymphoid development of LMPP cells but downregulated during myeloid development. Deficiency of Zbtb1 in LMPP cells was sufficient to direct a myeloid fate in lymphoid-inducing conditions and in the absence of myeloid cytokines as shown by upregulation of a myeloid gene signature and the generation of myeloid cells in vitro. Finally, biased myeloid differentiation of Zbtb1-deficient LMPP cells was not due to increased p53-dependent apoptosis as it was not reverted by transgenic Bcl2 expression or p53 deficiency. Altogether, our results show that Zbtb1 expression prevents activation of a default myeloid program in LMPP cells, ensuring the generation of lymphoid cells.
Collapse
Affiliation(s)
- Xianyu Zhang
- Experimental Immunology Branch, NCI, NIH, Maryland, USA
| | - Ying Lu
- Experimental Immunology Branch, NCI, NIH, Maryland, USA
| | - Xin Cao
- College of Life Science and Engineering, Northwest University for Nationalities, Gansu Engineering Research Center for Animal Cell, Lanzhou, China
| | - Tao Zhen
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Maryland, USA
| | | |
Collapse
|
14
|
Lu Y, Zhang X, Bouladoux N, Kaul SN, Jin K, Sant'Angelo D, Belkaid Y, Kovalovsky D. Zbtb1 controls NKp46 + ROR-gamma-T + innate lymphoid cell (ILC3) development. Oncotarget 2017; 8:55877-55888. [PMID: 28915559 PMCID: PMC5593530 DOI: 10.18632/oncotarget.19645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 11/25/2022] Open
Abstract
Innate lymphoid cells (ILCs) play a central role conferring protection at the mucosal frontier. In this study, we have identified a requirement of the transcription factor Zbtb1 for the development of RORγt+ ILCs (ILC3s). Zbtb1-deficient mice lacked NKp46+ ILC3 cells in the lamina propria of the small and large intestine. This requirement of Zbtb1 was cell intrinsic, as NKp46+ ILC3s were not generated from Zbtb1-deficient progenitors in bone marrow chimeras and Zbtb1-deficient RORγt+ CCR6−NKp46− ILC3s didn't generate NKp46+ ILC3s in co-cultures with OP9-DL1 stroma. In correlation with this impairment, Zbtb1-deficient ILC3 cells failed to upregulate T-bet expression, and to acquire IFN-γ production characteristic of NKp46+ cells. Finally, absence of NKp46+ILC3 cells combined with the absence of T-cells in Zbtb1-deficient mice, led to a transient susceptibility to C. rodentium infections. Altogether, these results establish that Zbtb1 is essential for the development of NKp46+ ILC3 cells.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | - Xianyu Zhang
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA
| | - Nicolas Bouladoux
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | | | - Kangxin Jin
- Zhongshan Ophthalmic Center, State Key Laboratory for Ophthalmic Researches, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Derek Sant'Angelo
- Cancer Metabolism and Growth Program, Rutgers, Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Damian Kovalovsky
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD, USA.,Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, MD, USA
| |
Collapse
|