1
|
Dahmani M, Zhu JC, Cook JH, Riley SP. Anaphylatoxin signaling activates macrophages to control intracellular Rickettsia proliferation. Microbiol Spectr 2023; 11:e0253823. [PMID: 37855623 PMCID: PMC10714731 DOI: 10.1128/spectrum.02538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Pathogenic Rickettsia species are extremely dangerous bacteria that grow within the cytoplasm of host mammalian cells. In most cases, these bacteria are able to overpower the host cell and grow within the protected environment of the cytoplasm. However, a dramatic conflict occurs when Rickettsia encounter innate immune cells; the bacteria can "win" by taking over the host, or the bacteria can "lose" if the host cell efficiently fights the infection. This manuscript examines how the immune complement system is able to detect the presence of Rickettsia and alert nearby cells. Byproducts of complement activation called anaphylatoxins are signals that "activate" innate immune cells to mount an aggressive defensive strategy. This study enhances our collective understanding of the innate immune reaction to intracellular bacteria and will contribute to future efforts at controlling these dangerous infections.
Collapse
Affiliation(s)
- Mustapha Dahmani
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jinyi C. Zhu
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Jack H. Cook
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
| | - Sean P. Riley
- Department of Veterinary Medicine, University of Maryland-College Park, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
2
|
Jin S, Eussen SJPM, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Plasma factor D is cross-sectionally associated with low-grade inflammation, endothelial dysfunction and cardiovascular disease: The Maastricht study. Atherosclerosis 2023; 377:60-67. [PMID: 37406499 DOI: 10.1016/j.atherosclerosis.2023.06.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND AIMS The complement system, particularly the alternative complement pathway, may contribute to vascular damage and development of cardiovascular disease (CVD). We investigated the association of factor D, the rate-limiting protease in alternative pathway activation, with adverse cardiovascular outcomes. METHODS In 2947 participants (50.6% men, 59.9 ± 8.2 years, 26.5% type 2 diabetes [T2D], oversampled) we measured markers of low-grade inflammation (LGI, composite score, in SD) and, endothelial dysfunction (ED, composite score, in SD), carotid intima-media thickness (cIMT, μm), ankle-brachial index (ABI), CVD (yes/no) and plasma concentrations of factor D (in SD). Associations were estimated using multiple linear and logistic regression, adjusting for demographic, lifestyle, and dietary factors. RESULTS Factor D (per SD) significantly associated with LGI (0.171 SD [0.137; 0.205]), ED (0.158 SD [0.123; 0.194]) and CVD (OR 1.15 [1.04; 1.27]) but not significantly with cIMT (-6.62 μm [-13.51; 0.27]) or ABI (-0.003 [-0.007; 0.001]). Interaction analyses show that factor D more strongly associated with ED in non-diabetes (0.237 SD [0.189; 0.285] than in T2D (0.095 SD [0.034; 0.157]), pinteraction <0.05. These results were largely corroborated by additional analyses with C3 and C3a. In contrast, factor D inversely associated with cIMT in non-diabetes (-13.37 μm [-21.84; -4.90]), but not in T2D (4.49 [-7.91; 16.89]), pinteraction <0.05. CONCLUSIONS Plasma factor D is independently associated with LGI, ED, and prevalent CVD but not with ABI or cIMT. Hence, greater plasma factor D concentration in CVD may potentially induce complement activation which, in turn, might contribute to further disease progression via a process that may involve inflammation and endothelial dysfunction but was not directly related to atherosclerosis or arterial injury. The observation that, in participants without diabetes, factor D associated with worse ED but smaller cIMT warrants further investigation.
Collapse
Affiliation(s)
- Shunxin Jin
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, the Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, the Netherlands; CAPHRI School for Public Health and Primary Care, Maastricht University and Maastricht University Medical Centre, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, the Netherlands
| | | |
Collapse
|
3
|
Laky K, Kinard JL, Li JM, Moore IN, Lack J, Fischer ER, Kabat J, Latanich R, Zachos NC, Limkar AR, Weissler KA, Thompson RW, Wynn TA, Dietz HC, Guerrerio AL, Frischmeyer-Guerrerio PA. Epithelial-intrinsic defects in TGFβR signaling drive local allergic inflammation manifesting as eosinophilic esophagitis. Sci Immunol 2023; 8:eabp9940. [PMID: 36608150 PMCID: PMC10106118 DOI: 10.1126/sciimmunol.abp9940] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-β receptor (TGFβR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFβ in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFβR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFβR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFβ plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Kinard
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny Min Li
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Elizabeth R Fischer
- Electron Microscopy Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine A Weissler
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert W Thompson
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony L Guerrerio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Boehme SA, Sullivan SK, Crowe PD, Santos M, Conlon PJ, Sriramarao P, Bacon KB. Activation of Mitogen-Activated Protein Kinase Regulates Eotaxin-Induced Eosinophil Migration. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Eotaxin is a potent eosinophil chemoattractant that plays an important role in regulating eosinophil tissue levels both in healthy individuals and in diseases associated with significant eosinophil infiltrates, such as the allergic inflammation observed in asthma. Here, we demonstrate that treatment of eosinophils with eotaxin induces the phosphorylation of the mitogen-activated protein kinases (MAPKs) p42 and p44, leading to kinase activation. Blockade of MAPK activation by the MAPK kinase inhibitor PD98059 leads to a dramatic decrease in eotaxin-induced eosinophil rolling in vivo and chemotaxis in vitro. This blockade in the leukocyte migration process is consistent with the observed inhibition of actin polymerization and rearrangement within the eosinophil following treatment with MAPK inhibitor. It is suggested, therefore, that the intrinsic mechanism of eotaxin-induced eosinophil rolling and migration involves activation of the p42/p44 MAPK, possibly through regulation of the cytoskeletal rearrangements necessary for chemotaxis.
Collapse
Affiliation(s)
| | | | - Paul D. Crowe
- *Neurocrine Biosciences, Inc., San Diego, CA 92121; and
| | - Mark Santos
- †Laboratory of Immunology and Vascular Biology, La Jolla Institute for Experimental Medicine, La Jolla, CA 92037
| | | | - P. Sriramarao
- †Laboratory of Immunology and Vascular Biology, La Jolla Institute for Experimental Medicine, La Jolla, CA 92037
| | | |
Collapse
|