1
|
Griffin S, de Oliveira Mallia J, Psakis G, Attard J, Caruana M, Gatt R. Comparative analysis of N/TERT-1 and N/TERT-2G keratinocyte responses to oxidative stress and immune challenges. Cell Signal 2025; 132:111861. [PMID: 40355015 DOI: 10.1016/j.cellsig.2025.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/05/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The responses of N/TERT-1 and N/TERT-2G keratinocyte cell lines to oxidative stress and immune challenges were investigated to assess their suitability for dermatological testing. The cell lines were exposed to various stimuli, including PAMPs, DAMPs, H₂O₂, and menadione, to assess cytokine production, oxidative stress markers, cell viability, apoptosis, and membrane integrity. IL-1α, IL-6, IL-8, TNF-α, and TGF-β levels significantly increased in N/TERT-1 cells following exposure to LPS, while N/TERT-2G cells remained unaffected. Both cell lines showed increased production of IL-1α, IL-1β, TNF-α, IL-6, and IL-8 in response to dsDNA and LMW and HMW Poly I:C, although TGF-β significantly decreased only in N/TERT-1 cells. In response to H₂O₂, a dose-dependent increase in cytokine levels was observed in N/TERT-2G, whereas N/TERT-1 did not exhibit a clear dose-dependent response. Markers of oxidative stress, including SOD and GSH, displayed similar patterns in both cell lines, with N/TERT-2G showing slightly higher sensitivity. Lipid peroxidation and mitochondrial membrane potential fluctuations were more pronounced in N/TERT-2G, suggesting greater oxidative stress sensitivity. The baseline GSH levels were higher in N/TERT-1 cells, which may contribute towards the enhanced resilience to oxidative stress. Despite decreased viability in MTT assays following H₂O₂ exposure, the lack of significant changes in cleaved Caspase-3 levels indicated that apoptosis was not the primary mechanism of cell death. These findings highlight the distinct characteristics of N/TERT-1 and N/TERT-2G cells, with N/TERT-1 showing higher baseline resilience to oxidative stress and N/TERT-2G displaying greater sensitivity, particularly to H₂O₂. The study underscores the importance of selecting the appropriate cell line for specific research applications in skin biology and disease modelling, considering the differences in their responses to oxidative and immune challenges.
Collapse
Affiliation(s)
- Sholeem Griffin
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
| | - Jefferson de Oliveira Mallia
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| | - Georgios Psakis
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| | - Juan Attard
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, Msida MSD2080, Malta
| | - Matthias Caruana
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta
| | - Ruben Gatt
- Metamaterials Unit, Faculty of Science, University of Malta, Msida MSD2080, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
2
|
Sachetto ATA, Archibald SJ, Perkins M, Zhang G, Zhang Y, Ye D, Grover SP, Wu C, Li Z, Mackman N. Pathways regulating the levels of tissue factor-positive extracellular vesicles and activation of coagulation in endotoxemic mice. J Thromb Haemost 2025:S1538-7836(25)00262-4. [PMID: 40286911 DOI: 10.1016/j.jtha.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Sepsis and endotoxemia are associated with activation of coagulation as part of the host response to infection, but this can lead to disseminated intravascular coagulation. Lipopolysaccharide (LPS) is detected by the cell surface receptor toll-like receptor (TLR)4 and the intracellular receptor caspase 11. OBJECTIVES This study aimed to determine the roles of TLR4, caspase 11, and the NOD-, LRR-, and pyrin domain-containing protein (NLRP)3 inflammasome in increases of extracellular vesicle (EV) tissue factor (TF) activity and activation of coagulation in a mouse endotoxemia model. METHODS LPS was injected intraperitoneally into control mice and Tlr4-/-, Casp11-/-, Nlrp3-/-, or Casp1-/- mice or wild-type mice treated with the TLR4 inhibitor TAK-242 or the NLRP3 inhibitor MCC950. Blood samples were collected at 3 and 8 hours for analysis of cells, tumor necrosis factor α, interleukin (IL)-6, IL-1β, soluble intercellular adhesion molecule 1, EV TF activity, and thrombin-antithrombin (TAT) complexes. RESULTS LPS induced IL-1β at 3 and 8 hours, indicating inflammasome activation at these times. Tlr4 deficiency was associated with a significant decrease in tumor necrosis factor α and IL-6 but not soluble intercellular adhesion molecule 1 in endotoxemic mice. LPS induction of EV TF activity and TAT reduced significantly in Tlr4-/- mice at both 3 and 8 hours postinjection. In contrast, EV TF activity and TAT were only reduced in Casp11-/- mice at 8 hours post-LPS injection. CONCLUSION Our results indicate that TLR4 plays a major role whereas caspase 11 and the NLRP3 inflammasome play minor roles in the generation of TF-positive EVs and activation of coagulation in a mouse model of endotoxemia.
Collapse
Affiliation(s)
- Ana T A Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sierra J Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Megan Perkins
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guoying Zhang
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Yan Zhang
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Dien Ye
- SAHA Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Steven P Grover
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Congqing Wu
- SAHA Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zhenyu Li
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Sherman ME, Michalski J, Das S, Yang H, Chandrasekaran L, O'Meara TR, Dowling DJ, Levy O, Barnoy S, Venkatesan M, Ernst RK. BECC-engineered live-attenuated Shigella vaccine candidates display reduced endotoxicity with robust immunogenicity in mice. Vaccine 2025; 50:126779. [PMID: 39946867 DOI: 10.1016/j.vaccine.2025.126779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 02/19/2025]
Abstract
Shigella spp. infection contributes significantly to the global disease burden, primarily affecting young children in developing countries. Currently, there are no FDA-approved vaccines against Shigella, and the prevalence of antibiotic resistance is increasing, making therapeutic options limited. Live-attenuated vaccine strains WRSs2 (S. sonnei) and WRSf2G12 (S. flexneri 2a) are highly immunogenic, making them promising vaccine candidates, but possess an inflammatory lipid A structure on their lipopolysaccharide (LPS; also known as endotoxin). Here, we utilized bacterial enzymatic combinatorial chemistry (BECC) to ectopically express lipid A modifying enzymes in WRSs2 and WRSf2G12, as well as their respective wild-type strains, generating targeted lipid A modifications across the Shigella backgrounds. Dephosphorylation of lipid A, rather than deacylation, reduced LPS-induced TLR4 signaling in vitro and dampened endotoxic effects in vivo. These BECC-modified vaccine strains retained the phenotypic traits of their parental strains, such as invasion of epithelial cells and immunogenicity in mice without adverse endotoxicity. Overall, our observations suggest that BECC-engineered live attenuated vaccines are a promising approach to safe and effective Shigella vaccines.
Collapse
Affiliation(s)
- Matthew E Sherman
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Jane Michalski
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD 21201, USA
| | - Sayan Das
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Hyojik Yang
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA
| | - Lakshmi Chandrasekaran
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Shoshana Barnoy
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Malabi Venkatesan
- Walter Reed Army Institute of Research, Department of Diarrheal Disease Research, Bacterial Disease Branch, Silver Spring, MD 20910, USA
| | - Robert K Ernst
- University of Maryland-Baltimore, Department of Microbial Pathogenesis, Baltimore, MD 21201, USA.
| |
Collapse
|
4
|
Ehlers G, Tödtmann AM, Holsten L, Willers M, Heckmann J, Schöning J, Richter M, Heinemann AS, Pirr S, Heinz A, Dopfer C, Händler K, Becker M, Büchel J, Wöckel A, von Kaisenberg C, Hansen G, Hiller K, Schultze JL, Härtel C, Kastenmüller W, Vaeth M, Ulas T, Viemann D. Oxidative phosphorylation is a key feature of neonatal monocyte immunometabolism promoting myeloid differentiation after birth. Nat Commun 2025; 16:2239. [PMID: 40050264 PMCID: PMC11885822 DOI: 10.1038/s41467-025-57357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Neonates primarily rely on innate immune defense, yet their inflammatory responses are usually restricted compared to adults. This is controversially interpreted as a sign of immaturity or essential programming, increasing or decreasing the risk of sepsis, respectively. Here, combined transcriptomic, metabolic, and immunological studies in monocytes of healthy individuals reveal an inverse ontogenetic shift in metabolic pathway activities with increasing age. Neonatal monocytes are characterized by enhanced oxidative phosphorylation supporting ongoing myeloid differentiation. This phenotype is gradually replaced during early childhood by increasing glycolytic activity fueling the inflammatory responsiveness. Microbial stimulation shifts neonatal monocytes to an adult-like metabolism, whereas ketogenic diet in adults mimicking neonatal ketosis cannot revive a neonate-like metabolism. Our findings disclose hallmarks of innate immunometabolism during healthy postnatal immune adaptation and suggest that premature activation of glycolysis in neonates might increase their risk of sepsis by impairing myeloid differentiation and promoting hyperinflammation.
Collapse
Affiliation(s)
- Greta Ehlers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Annika Marie Tödtmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lisa Holsten
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Julia Heckmann
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Jennifer Schöning
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Maximilian Richter
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Anna Sophie Heinemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Alexander Heinz
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kristian Händler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Matthias Becker
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Modular High Performance Computing and Artificial Intelligence, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Johanna Büchel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, BRICS, Technical University Braunschweig, Braunschweig, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Center for Infection Research, University Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Shaw JR, Caprio N, Truong N, Weldemariam M, Tran A, Pilli N, Pandey S, Jones JW, Kane MA, Pearson RM. Inflammatory disease progression shapes nanoparticle biomolecular corona-mediated immune activation profiles. Nat Commun 2025; 16:924. [PMID: 39843415 PMCID: PMC11754911 DOI: 10.1038/s41467-025-56210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses. NP coronas alter cell associations in a disease-dependent manner, induce differential co-stimulatory and co-inhibitory molecule expression, and influence cytokine release. Integrated multi-omics analysis of proteomics, lipidomics, metabolomics, and cytokine datasets highlight a set of differentially enriched TLR4 ligands that correlate with dynamic NP corona-mediated immune activation. Pharmacological inhibition and genetic knockout studies validate that NP coronas mediate this response through TLR4/MyD88/NF-κB signaling. Our findings illuminate the personalized nature of corona formation under a dynamic inflammatory condition and its impact on NP-mediated immune activation profiles and inflammation, suggesting that disease progression-related alterations in plasma composition can manifest in the corona to cause unintended toxicity and altered therapeutic efficacy.
Collapse
Affiliation(s)
- Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Mehari Weldemariam
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Swarnima Pandey
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Bian X, Chen Y, Zhang W, Liu X, Lei M, Yuan H, Li M, Liu Q, Kong Q. Salmonella Typhimurium derived OMV nanoparticle displaying mixed heterologous O-antigens confers immunogenicity and protection against STEC infections in mice. Microb Cell Fact 2025; 24:8. [PMID: 39773741 PMCID: PMC11705740 DOI: 10.1186/s12934-024-02640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections. In this study, we constructed an engineered S. Typhimurium to rapidly produce the outer membrane vesicle (OMV) with low endotoxic activity to deliver the O-antigen of E. coli. S. Typhimurium OMV (STmOMV), which displays mixed heterologous O-antigens, was systematically investigated in mice for immunogenicity and the ability to prevent wild-type STEC infection. Animal experiments demonstrated that STmOMV displaying both E. coli O111 and O157 O-antigens by intraperitoneal injection not only induced robust humoral immunity but also provided effective protection against wild-type E. coli O111 and O157 infection in mice, as well as long-lasting immunity. Meanwhile, the O-antigen polysaccharides of E. coli O26 and O45, and O145 and O103 were also mixedly exhibited on STmOMV as O-antigens of the O111 and O157 did. Three mixed STmOMVs were inoculated intraperitoneally to mice, and confer effective protection against six E. coli infections. The STmOMV developed in this study to display mixed heterologous O-antigens provides an innovative and improved strategy for the prevention of multiple STEC infections.
Collapse
Affiliation(s)
- Xiaoping Bian
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
- Yibin Academy of Southwest University, Sichuan, China
| | - Yaolin Chen
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Wenjin Zhang
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Xinyu Liu
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Meihong Lei
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Haoxiang Yuan
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Mengru Li
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China
| | - Qing Liu
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
- Yibin Academy of Southwest University, Sichuan, China.
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
- Yibin Academy of Southwest University, Sichuan, China.
| |
Collapse
|
7
|
Flores-Gomez D, Hobo W, van Ens D, Kessler EL, Novakovic B, Schaap NPM, Rijnen WHC, Joosten LAB, Netea MG, Riksen NP, Bekkering S. Interleukin-1β induces trained innate immunity in human hematopoietic progenitor cells in vitro. Stem Cell Reports 2024; 19:1651-1664. [PMID: 39515317 PMCID: PMC11751800 DOI: 10.1016/j.stemcr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024] Open
Abstract
Innate immune cells can develop a long-lasting hyperresponsive phenotype, termed trained immunity, mediated by epigenetic and metabolic reprogramming. In mice, exposure to Bacille Calmette-Guérin (BCG), β-glucan, or Western diet induces trained immunity by reprogramming hematopoietic progenitor cells (HPCs), through interleukin-1β (IL-1β) signaling in the bone marrow (BM). We investigated whether IL-1β induces trained immunity in primary human BM-derived HPCs in vitro. We exposed human BM-derived HPCs to IL-1β for 4 h. HPCs were expanded and differentiated into monocytes followed by functional and transcriptomic characterization. IL-1β-exposed HPCs showed higher granulocyte-macrophage colony-forming units. The monocyte offspring produced more tumor necrosis factor (TNF) and IL-1β after restimulation with lipopolysaccharide (LPS) and Pam3Cys and is metabolically more active. Transcriptomic analysis showed upregulation of key atherogenic and inflammatory pathways. In conclusion, brief exposure of human BM-derived HPCs to IL-1β in vitro induces a trained immunity phenotype.
Collapse
Affiliation(s)
- Daniela Flores-Gomez
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Diede van Ens
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Elise L Kessler
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands; Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center, Utrecht, 3584 CX Utrecht, the Netherlands
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Wim H C Rijnen
- Department of Orthopedics, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca 400347, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands.
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Gelderland, the Netherlands
| |
Collapse
|
8
|
Broeders W, van Tuijl J, Duindam HB, Peters van Ton AM, Noz MP, Pickkers P, Abdo WF, Netea MG, Bekkering S, Riksen NP. Long-term monocyte activation after coronary artery bypass grafting: An exploratory prospective observational study. Immunol Lett 2024; 270:106941. [PMID: 39489184 DOI: 10.1016/j.imlet.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Major surgery such as coronary artery bypass grafting (CABG) is associated with an increased post-operative risk of atherosclerotic cardiovascular events. Cells of the innate immune system can adopt a long-lasting pro-inflammatory and atherogenic phenotype after brief exposure to exogenous or endogenous inflammatory stimuli, a process called "trained immunity". We hypothesized that the surgery-induced inflammation leads to sustained alterations in monocyte function, which promote the subsequent occurrence of cardiovascular events. Blood from 13 patients undergoing elective CABG was obtained before, 3-7 days (median 4) after, and 6-8 weeks (median 6) weeks after surgery. At 3-7 days postoperatively, circulating C-reactive protein (CRP) concentration, leukocyte counts and ex vivo Peripheral Blood Mononuclear Cell (PBMC) IL-6, TNFα and IL-1Ra production after stimulation (with various inflammatory stimuli) were significantly increased. Simultaneously, there was a reduction in monocyte HLA-DR expression. 6-8 weeks after CABG there was an ongoing systemic pro-inflammatory state with higher CRP concentrations, increased stimulated ex vivo PBMC IL-6 production, changes in monocytes subsets, and a higher expression of CCR2 on monocytes compared to baseline. In conclusion, CABG induces a persistent systemic inflammatory reaction with a sustained activated monocyte phenotype. This might contribute to the increased atherosclerotic cardiovascular event risk observed in cardiac surgery patients.
Collapse
Affiliation(s)
- Wieteke Broeders
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Julia van Tuijl
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Harmke B Duindam
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Marlies P Noz
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
van Tuijl J, van Heck JI, Bahrar H, Broeders W, Wijma J, ten Have YM, Giera M, Zweers-van Essen H, Rodwell L, Joosten LA, Netea MG, Afman LA, Bekkering S, Riksen NP. Single high-fat challenge and trained innate immunity: A randomized controlled cross-over trial. iScience 2024; 27:111103. [PMID: 39493874 PMCID: PMC11530819 DOI: 10.1016/j.isci.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/11/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Brief exposure of monocytes to atherogenic molecules, such as oxidized lipoproteins, triggers a persistent pro-inflammatory phenotype, named trained immunity. In mice, transient high-fat diet leads to trained immunity, which aggravates atherogenesis. We hypothesized that a single high-fat challenge in humans induces trained immunity. In a randomized controlled cross-over study, 14 healthy individuals received a high-fat or reference shake, and blood was drawn before and after 1, 2, 4, 6, 24, and 72 h. Incubation of donor monocytes with the post-high-fat-shake serum induced trained immunity, regulated via Toll-like receptor 4. This was not mediated via triglyceride-rich lipoproteins, C12, 14, and 16, or metabolic endotoxemia. In vivo, however, the high-fat challenge did not affect monocyte phenotype and function. We conclude that a high-fat challenge leads to alterations in the serum composition that have the potential to induce trained immunity in vitro. However, this does not translate into a (persistent) hyperinflammatory monocyte phenotype in vivo.
Collapse
Affiliation(s)
- Julia van Tuijl
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| | - Julia I.P. van Heck
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| | - Harsh Bahrar
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| | - Wieteke Broeders
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| | - Johan Wijma
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| | - Yvonne M. ten Have
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Heidi Zweers-van Essen
- Department of Gastroenterology and Hepatology-Dietetics, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Laura Rodwell
- Section Biostatics, Department of Health Evidence, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Lydia A. Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University and Research, Wageningen 6700 HB, the Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Center Nijmegen, Nijmegen 6525 GA, the Netherlands
| |
Collapse
|
10
|
Chemello C, Facci L, Marcolin E, Ramaschi GE, Barbierato M, Giusti P, Bolego C, Zusso M. Fentanyl enhances immune cell response through TLR4/MD-2 complex. Front Pharmacol 2024; 15:1468644. [PMID: 39444612 PMCID: PMC11496304 DOI: 10.3389/fphar.2024.1468644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Opioids have been shown to induce neuroinflammation and immune cell activation, that might contribute to some of the opioid side effects, such as opioid-induced tolerance and paradoxical hyperalgesia. In this context, TLR4/MD-2 complex has been proposed as an off-target site for opioid action. This study was aimed at investigating the effect of fentanyl on lipopolysaccharide (LPS)-induced TLR4/MD-2 activation in rat primary microglia and human monocyte-derived macrophages (MDM). Materials and Methods The effect of fentanyl was first explored by measuring the expression and release of different proinflammatory mediators in primary rat microglia and human MDM by real-time PCR and ELISA. Then, the involvement of TLR4/MD-2 signaling was investigated studying NF-κB activation in HEK293 cells stably transfected with human TLR4, MD-2, and CD14 genes (HEK-Blue hTLR4 cells) and in human MDM. Results Fentanyl increased mRNA levels, as well as the LPS-induced secretion of proinflammatory mediators in primary microglia and MDM. Two inhibitors of TLR4/MD-2 signaling, namely the oxazoline derivative of N-palmitoylethanolamine (PEA-OXA) and CLI-095, blocked the production and release of proinflammatory cytokines by microglia stimulated with LPS and fentanyl, suggesting that TLR4/MD-2 could be the target of the proinflammatory activity of fentanyl. Finally, we showed that fentanyl in combination with LPS activated NF-κB signaling in human MDM and in HEK-Blue hTLR4 cells and this effect was blocked by inhibitors of TLR4/MD-2 complex. Discussion These results provide new insight into the mechanism of the proinflammatory activity of fentanyl, which involves the activation of TLR4/MD-2 signaling. Our findings might facilitate the development of novel inhibitors of TLR4/MD-2 signaling to combine with opioid-based analgesics for effective and safe pain management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Brandt M, Kosmeijer C, Achterberg E, de Theije C, Nijboer C. Timed fetal inflammation and postnatal hypoxia cause cortical white matter injury, interneuron imbalances, and behavioral deficits in a double-hit rat model of encephalopathy of prematurity. Brain Behav Immun Health 2024; 40:100817. [PMID: 39188404 PMCID: PMC11345510 DOI: 10.1016/j.bbih.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Extreme preterm birth-associated adversities are a major risk factor for aberrant brain development, known as encephalopathy of prematurity (EoP), which can lead to long-term neurodevelopmental impairments. Although progress in clinical care for preterm infants has markedly improved perinatal outcomes, there are currently no curative treatment options available to combat EoP. EoP has a multifactorial etiology, including but not limited to pre- or postnatal immune activation and oxygen fluctuations. Elucidating the underlying mechanisms of EoP and determining the efficacy of potential therapies relies on valid, clinically translatable experimental models that reflect the neurodevelopmental and pathophysiological hallmarks of EoP. Here, we expand on our double-hit rat model that can be used to study EoP disease mechanisms and therapeutic options in a preclinical setting. Pregnant Wistar dams were intraperitoneally injected with 10 μg/kg LPS on embryonic day (E)20 and offspring was subjected to hypoxia (140 min, 8% O2) at postnatal day 4. Rats exposed to fetal inflammation and postnatal hypoxia (FIPH) showed neurodevelopmental impairments, such as reduced nest-seeking ability, ultrasonic vocalizations, social engagement, and working memory, and increased anxiety and sensitivity. Impairments in myelination, oligodendrocyte maturation and interneuron development were examined as hallmarks for EoP, in different layers and coordinates of the cortex using histological and molecular techniques. Myelin density and complexity was decreased in the cortex, which partially coincided with a decrease in mature oligodendrocytes. Furthermore, interneuron populations (GAD67+ and PVALB+) were affected. To determine if the timing of inducing fetal inflammation affected the severity of EoP hallmarks in the cortex, multiple timepoints of fetal inflammation were compared. Inflammation at E20 combined with postnatal hypoxia gave the most severe EoP phenotype in the cortex. In conclusion, we present a double-hit rat model which displays various behavioral, anatomical and molecular hallmarks of EoP, including diffuse white matter injury. This double-hit model can be used to investigate pathophysiological mechanisms and potential therapies for EoP.
Collapse
Affiliation(s)
- M.J.V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.M. Kosmeijer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - E.J.M. Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - C.G.M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| |
Collapse
|
12
|
Shen X, He L, Cai W. Role of Lipopolysaccharides in the Inflammation and Pyroptosis of Alveolar Epithelial Cells in Acute Lung Injury and Acute Respiratory Distress Syndrome. J Inflamm Res 2024; 17:5855-5869. [PMID: 39228678 PMCID: PMC11370780 DOI: 10.2147/jir.s479051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a spectrum of common critical respiratory conditions characterized by damage and death of alveolar epithelial cells (AECs). Pyroptosis is a form of programmed cell death with inflammatory characteristics, and activation of pyroptosis markers has been observed in AECs of patients with ALI/ARDS. Lipopolysaccharides (LPS) possess strong pro-inflammatory effects and are a crucial pathological factor leading to ALI in patients and animals. In LPS-induced ALI models, AECs undergo pyroptosis. However, physiologically and pathologically relevant concentrations of LPS lead to minor effects on AEC cell viability and minimal induction of cytokine release in vitro and do not induce classical pyroptosis. Nevertheless, LPS can enter the cytoplasm directly and induce non-classical pyroptosis in AECs when assisted by extracellular vesicles from bacteria, HMGB1, and pathogens. In this review, we have explored the effects of LPS on AECs concerning inflammation, cell viability, and pyroptosis, analyzing key factors that influence LPS actions. Notably, we highlight the intricate response of AECs to LPS within the framework of ALI and ARDS, emphasizing the variable induction of pyroptosis. Despite the minimal effects of LPS on AEC viability and cytokine release in vitro, LPS can induce non-classical pyroptosis under specific conditions, presenting potential pathways for therapeutic intervention. Collectively, understanding these mechanisms is crucial for the development of targeted treatments that mitigate the inflammatory responses in ALI/ARDS, thereby enhancing patient outcomes in these severe respiratory conditions.
Collapse
Affiliation(s)
- Xiao Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Linglin He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wanru Cai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
13
|
Maybin M, Ranade AM, Schombel U, Gisch N, Mamat U, Meredith TC. IS 1-mediated chromosomal amplification of the arn operon leads to polymyxin B resistance in Escherichia coli B strains. mBio 2024; 15:e0063424. [PMID: 38904391 PMCID: PMC11253626 DOI: 10.1128/mbio.00634-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Polymyxins [colistin and polymyxin B (PMB)] comprise an important class of natural product lipopeptide antibiotics used to treat multidrug-resistant Gram-negative bacterial infections. These positively charged lipopeptides interact with lipopolysaccharide (LPS) located in the outer membrane and disrupt the permeability barrier, leading to increased uptake and bacterial cell death. Many bacteria counter polymyxins by upregulating genes involved in the biosynthesis and transfer of amine-containing moieties to increase positively charged residues on LPS. Although 4-deoxy-l-aminoarabinose (Ara4N) and phosphoethanolamine (PEtN) are highly conserved LPS modifications in Escherichia coli, different lineages exhibit variable PMB susceptibilities and frequencies of resistance for reasons that are poorly understood. Herein, we describe a mechanism prevalent in E. coli B strains that depends on specific insertion sequence 1 (IS1) elements that flank genes involved in the biosynthesis and transfer of Ara4N to LPS. Spontaneous and transient chromosomal amplifications mediated by IS1 raise the frequency of PMB resistance by 10- to 100-fold in comparison to strains where a single IS1 element located 90 kb away from the end of the arn operon has been deleted. Amplification involving IS1 becomes the dominant resistance mechanism in the absence of PEtN modification. Isolates with amplified arn operons gradually lose their PMB-resistant phenotype with passaging, consistent with classical PMB heteroresistance behavior. Analysis of the whole genome transcriptome profile showed altered expression of genes residing both within and outside of the duplicated chromosomal segment, suggesting complex phenotypes including PMB resistance can result from tandem amplification events.IMPORTANCEPhenotypic variation in susceptibility and the emergence of resistant subpopulations are major challenges to the clinical use of polymyxins. While a large database of genes and alleles that can confer polymyxin resistance has been compiled, this report demonstrates that the chromosomal insertion sequence (IS) content and distribution warrant consideration as well. Amplification of large chromosomal segments containing the arn operon by IS1 increases the Ara4N content of the lipopolysaccharide layer in Escherichia coli B lineages using a mechanism that is orthogonal to transcriptional upregulation through two-component regulatory systems. Altogether, our work highlights the importance of IS elements in modulating gene expression and generating diverse subpopulations that can contribute to phenotypic polymyxin B heteroresistance.
Collapse
Affiliation(s)
- Michael Maybin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aditi M. Ranade
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Uwe Mamat
- Division of Cellular Microbiology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Leibniz Research Alliance INFECTIONS, Borstel, Germany
| | - Timothy C. Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Bhushan G, Castano V, Wong Fok Lung T, Chandler C, McConville TH, Ernst RK, Prince AS, Ahn D. Lipid A modification of colistin-resistant Klebsiella pneumoniae does not alter innate immune response in a mouse model of pneumonia. Infect Immun 2024; 92:e0001624. [PMID: 38771050 PMCID: PMC11237409 DOI: 10.1128/iai.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.
Collapse
Affiliation(s)
- Gitanjali Bhushan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Victor Castano
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Courtney Chandler
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Thomas H. McConville
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Alice S. Prince
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Danielle Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
15
|
Röring RJ, Li W, Liu R, Bruno M, Zhang B, Debisarun PA, Gaal O, Badii M, Klück V, Moorlag SJ, van de Veerdonk F, Li Y, Joosten LA, Netea MG. Epigenetic, transcriptional, and functional characterization of myeloid cells in familial Mediterranean fever. iScience 2024; 27:109356. [PMID: 38510149 PMCID: PMC10951896 DOI: 10.1016/j.isci.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1β dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1β and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.
Collapse
Affiliation(s)
- Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Wenchao Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Ruiqi Liu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Priya A. Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Orsolya Gaal
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Medeea Badii
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Viola Klück
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Simone J.C.F.M. Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Liu R, Klück V, Kischkel B, Tercan H, Netea MG, Crişan TO, Joosten LAB. Soluble urate-induced effects on cytokine production in vitro - Assessment of methodologies and cell types. Cytokine 2024; 175:156502. [PMID: 38237388 DOI: 10.1016/j.cyto.2024.156502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1β, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helin Tercan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Hofstaedter CE, Chandler CE, Met CM, Gillespie JJ, Harro JM, Goodlett DR, Rasko DA, Ernst RK. Divergent Pseudomonas aeruginosa LpxO enzymes perform site-specific lipid A 2-hydroxylation. mBio 2024; 15:e0282323. [PMID: 38131669 PMCID: PMC10865791 DOI: 10.1128/mbio.02823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Pseudomonas aeruginosa can survive in a myriad of environments, partially due to modifications of its lipid A, the membrane anchor of lipopolysaccharide. We previously demonstrated that divergent late acyltransferase paralogs, HtrB1 and HtrB2, add acyloxyacyl laurate to lipid A 2- and 2'-acyl chains, respectively. The genome of P. aeruginosa also has genes which encode two dioxygenase enzymes, LpxO1 and LpxO2, that individually hydroxylate a specific secondary laurate. LpxO1 acts on the 2'-acyloxyacyl laurate (added by HtrB2), whereas LpxO2 acts on the 2-acyloxyacyl laurate (added by HtrB1) in a site-specific manner. Furthermore, while both enzyme pairs are evolutionarily linked, phylogenomic analysis suggests the LpxO1/HtrB2 enzyme pair as being of ancestral origin, present throughout the Pseudomonas lineage, whereas the LpxO2/HtrB1 enzyme pair likely arose via horizontal gene transfer and has been retained in P. aeruginosa over time. Using a murine pulmonary infection model, we showed that both LpxO1 and LpxO2 enzymes are functional in vivo, as direct analysis of in vivo lipid A structure from bronchoalveolar lavage fluid revealed 2-hydroxylated lipid A. Gene expression analysis reveals increased lpxO2 but unchanged lpxO1 expression in vivo, suggesting differential regulation of these enzymes during infection. We also demonstrate that loss-of-function mutations arise in lpxO1 and lpxO2 during chronic lung infection in people with cystic fibrosis (CF), indicating a potential role for pathogenesis and airway adaptation. Collectively, our study characterizes lipid A 2-hydroxylation during P. aeruginosa airway infection that is regulated by two distinct lipid A dioxygenase enzymes.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes severe infection in hospitalized and chronically ill individuals. During infection, P. aeruginosa undergoes adaptive changes to evade host defenses and therapeutic interventions, increasing mortality and morbidity. Lipid A structural alteration is one such change that P. aeruginosa isolates undergo during chronic lung infection in CF. Investigating genetic drivers of this lipid A structural variation is crucial in understanding P. aeruginosa adaptation during infection. Here, we describe two lipid A dioxygenases with acyl-chain site specificity, each with different evolutionary origins. Further, we show that loss of function in these enzymes occurs in CF clinical isolates, suggesting a potential pathoadaptive phenotype. Studying these bacterial adaptations provides insight into selection pressures of the CF airway on P. aeruginosa phenotypes that persist during chronic infection. Understanding these adaptive changes may ultimately provide clinicians better control over bacterial populations during chronic infection.
Collapse
Affiliation(s)
- Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Charles M. Met
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Janette M. Harro
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - David R. Goodlett
- Departments of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Flores Gomez D, Bekkering S, Ter Horst R, Cossins B, van den Munckhof ICL, Rutten JHW, Joosten LAB, Netea MG, Riksen NP. The effect of leptin on trained innate immunity and on systemic inflammation in subjects with obesity. J Leukoc Biol 2024; 115:374-384. [PMID: 37776323 DOI: 10.1093/jleuko/qiad118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/26/2023] [Accepted: 09/10/2023] [Indexed: 10/02/2023] Open
Abstract
Leptin is associated with cardiometabolic complications of obesity, such as metabolic syndrome and atherosclerosis. In obese men, the presence of metabolic syndrome is associated with higher circulating leptin and interleukin (IL)-6 concentrations and increased monocyte cytokine production capacity. Here, we investigated the effects of leptin on monocyte function and systemic inflammatory markers in obese individuals. We specifically explored whether leptin can induce long-term changes in innate immune function by inducing innate immune memory (also called trained immunity). We exposed human primary monocytes for 24 h to relevant leptin concentrations in vitro and measured cytokine production. In addition, after removing leptin, we incubated monocytes for 5 d in culture medium, and we restimulated them on day 6 to assess cytokine production capacity, phagocytosis, and foam cell formation. Direct stimulation with leptin did not induce cytokine production, but exposure to 50 ng/mL leptin augmented lipopolysaccharide- and R848-induced tumor necrosis factor α (TNF-α) production after 1 wk. In a separate in vivo study in a cohort of 302 obese subjects (body mass index [BMI] >27 kg/m2, 55 to 81 yr), we measured circulating leptin, inflammatory markers, and cytokine production upon ex vivo stimulation of isolated peripheral blood mononuclear cells. Circulating leptin concentrations positively correlated with circulating IL-1β and IL-6, which was more pronounced in men than in women. Four single nucleotide polymorphisms in the leptin gene influenced circulating IL-6 concentrations in men, suggesting a direct effect of leptin on IL-6. In conclusion, in vitro, leptin does not directly stimulate monocytes to produce cytokines, yet induces long-term monocyte hyperresponsiveness, i.e. trained immunity. In obese subjects, leptin is associated with circulating IL-6 in a sex-dependent manner. The underlying mechanisms of the sex-specific effect of leptin on innate immune cells remain to be further investigated.
Collapse
Affiliation(s)
- Daniela Flores Gomez
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Rob Ter Horst
- Center for Molecular Medicine, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Benjamin Cossins
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Inge C L van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Strada Victor Babeș 8, Cluj-Napoca 400347, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
19
|
Tercan H, Cossins BC, van Deuren RC, Rutten JHW, Joosten LAB, Netea MG, Hoischen A, Bekkering S, Riksen NP. Association Between Clonal Hematopoiesis Driver Mutations, Immune Cell Function, and the Vasculometabolic Complications of Obesity. J Am Heart Assoc 2024; 13:e031665. [PMID: 38214284 PMCID: PMC10926828 DOI: 10.1161/jaha.123.031665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Obesity is accompanied by dysregulated inflammation, which can contribute to vasculometabolic complications including metabolic syndrome and atherosclerosis. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular diseases. We aimed to determine how CHIP is related to immune cell function, systemic inflammation, and vasculometabolic complications in obese individuals. METHODS AND RESULTS Two hundred ninety-seven individuals with overweight and obesity, between the ages of 54 and 81 years, were recruited in a cross-sectional study. Clonal hematopoiesis driver mutations (CHDMs) were identified with an ultrasensitive targeted assay. Assessment of carotid artery atherosclerosis was performed with ultrasound. Detailed immunological parameters, including cytokine production capacity of peripheral blood mononuclear cells, and targeted plasma proteomics analysis, were studied. Adipose tissue inflammation was determined in subcutaneous fat biopsies. Individuals with CHIP had higher concentrations of circulating IL (interleukin)-6. Total number of leukocytes and neutrophils were higher in individuals with CHIP. In contrast, ex vivo cytokine production capacity of peripheral blood mononuclear cells was significantly lower in individuals with CHIP. Sex-stratified analysis showed that men with CHDMs had significantly higher leukocyte and neutrophil counts, and ex vivo cytokine production capacity was lower in women with CHDMs. Surprisingly, the presence of atherosclerotic plaques was significantly lower in individuals with CHDMs. There was no relation between CHIP and metabolic syndrome. CONCLUSIONS In individuals with overweight or obesity, CHDMs are not associated with vasculometabolic complications, but rather with a lower presence of carotid plaques. CHDMs associate with increased circulating inflammatory markers and leukocyte numbers, but a lower peripheral blood mononuclear cell cytokine production capacity.
Collapse
Affiliation(s)
- Helin Tercan
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Benjamin C. Cossins
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Rosanne C. van Deuren
- Radboud University Medical CenterDepartment of Human GeneticsNijmegenthe Netherlands
| | - Joost H. W. Rutten
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Leo A. B. Joosten
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
- Department of Medical GeneticsIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Mihai G. Netea
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES)University of BonnGermany
| | - Alexander Hoischen
- Radboud University Medical CenterDepartment of Human GeneticsNijmegenthe Netherlands
| | - Siroon Bekkering
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Niels P. Riksen
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| |
Collapse
|
20
|
Fok ET, Moorlag SJCFM, Negishi Y, Groh LA, Dos Santos JC, Gräwe C, Monge VV, Craenmehr DDD, van Roosmalen M, da Cunha Jolvino DP, Migliorini LB, Neto AS, Severino P, Vermeulen M, Joosten LAB, Netea MG, Fanucchi S, Mhlanga MM. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. Nat Genet 2024; 56:85-99. [PMID: 38092881 DOI: 10.1038/s41588-023-01598-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
Inflammation is characterized by a biphasic cycle consisting initially of a proinflammatory phase that is subsequently resolved by anti-inflammatory processes. Interleukin-1β (IL-1β) is a master regulator of proinflammation and is encoded within the same topologically associating domain (TAD) as IL-37, which is an anti-inflammatory cytokine that opposes the function of IL-1β. Within this TAD, we identified a long noncoding RNA called AMANZI, which negatively regulates IL-1β expression and trained immunity through the induction of IL37 transcription. We found that the activation of IL37 occurs through the formation of a dynamic long-range chromatin contact that leads to the temporal delay of anti-inflammatory responses. The common variant rs16944 present in AMANZI augments this regulatory circuit, predisposing individuals to enhanced proinflammation or immunosuppression. Our work illuminates a chromatin-mediated biphasic circuit coordinating expression of IL-1β and IL-37, thereby regulating two functionally opposed states of inflammation from within a single TAD.
Collapse
Affiliation(s)
- Ezio T Fok
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Lemba Therapeutics, Nijmegen, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | | | | | | | - David Pablo da Cunha Jolvino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ary Serpa Neto
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Bian X, Liu Q, Chen Y, Zhang W, Li M, Zhang X, Yang L, Liao Y, Kong Q. Immunogenicity and cross-protective efficacy induced by delayed attenuated Salmonella with regulated length of lipopolysaccharide in mice. Gut Microbes 2024; 16:2424983. [PMID: 39529227 PMCID: PMC11559367 DOI: 10.1080/19490976.2024.2424983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Non-typhoidal Salmonella enterica (NTS) is a major global foodborne pathogen that poses a major public health concern worldwide, and no vaccines are available for protecting against infection of multiple Salmonella serotypes, therefore, the development of Salmonella vaccines to provide broad protection is valuable. In this work, we aimed to regulate lipopolysaccharide (LPS) synthesis of live Salmonella in vivo for exposing conserved protein antigens on the outer membrane while maintaining smooth LPS patterns in vitro to keep their original ability to invade host cells for inducing cross-protection against infection of multiple Salmonella serotypes. We generated a series of mutants defective in genes to affect the length of LPS. These mutants exhibit in vivo regulated-delayed attenuation and altered length of LPS, and all these mutants were derived from SW067 (ΔpagL7 ΔpagP81::Plpp lpxE ΔlpxR9 Δfur9) containing ∆pagP81::Plpp lpxE mutation to reduce their endotoxic activity. Animal experiments demonstrated that all regulated delayed attenuated mutants exhibited reduced ability to colonize the organs of the mice, and SW114 (waaI), SW116 (waaJ), SW118 (waaL), and SW120 (wbaP) induced a significant production of IgG and IgA against OMPs isolated from S. Typhimurium, S. Enteritidis, and S. Choleraesuis. SW114 (waaI), SW116 (waaJ), and SW118 (waaL) were capable of conferring significant protection against infection of wild-type S. Enteritidis and S. Choleraesuis, with SW118 (waaL) triggering significant CD4+ T-cell responses as well as the B220low IgG+ BM cell. In conclusion, regulated delayed attenuated Salmonella vaccines with the whole core oligosaccharides of LPS showed a goo.d ability to expose conserved outer antigens and to trigger strong cross-immune responses against both homologous and heterologous Salmonella infections. These results give new insight into the development of the Salmonella vaccine against multiple serotypes of Salmonella.
Collapse
Affiliation(s)
- Xiaoping Bian
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
- Yibin Academy of Southwest University, Yibin, Sichuan, China
| | - Qing Liu
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
- Yibin Academy of Southwest University, Yibin, Sichuan, China
| | - Yaolin Chen
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Wenjin Zhang
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Mengru Li
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiaofen Zhang
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing, China
| | - Yonghong Liao
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
| | - Qingke Kong
- College of Veterinary Medicine, Southwest University, Beibei, Chongqing, China
- Yibin Academy of Southwest University, Yibin, Sichuan, China
| |
Collapse
|
22
|
Bonhomme D, Cavaillon JM, Werts C. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. J Biol Chem 2024; 300:105506. [PMID: 38029965 PMCID: PMC10777017 DOI: 10.1016/j.jbc.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | | | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France.
| |
Collapse
|
23
|
Timkovich AE, Holling GA, Afzali MF, Kisiday J, Santangelo KS. TLR4 antagonism provides short-term but not long-term clinical benefit in a full-depth cartilage defect mouse model. Connect Tissue Res 2024; 65:26-40. [PMID: 37898909 PMCID: PMC11271750 DOI: 10.1080/03008207.2023.2269257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/23/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE/AIM Cartilage injury and subsequent osteoarthritis (OA) are debilitating conditions affecting millions worldwide. As there are no cures for these ailments, novel therapies are needed to suppress disease pathogenesis. Given that joint injuries are known to produce damage-associated molecular patterns (DAMPs), our central premise is that the Toll-like receptor 4 (TLR4) pathway is a principal driver in the early response to cartilage damage and subsequent pathology. We postulate that TLR4 activation is initiated/perpetuated by DAMPs released following joint damage. Thus, antagonism of the TLR4 pathway immediately after injury may suppress the development of joint surface defects. MATERIALS AND METHODS Two groups were utilized: (1) 8-week-old, male C57BL6 mice treated systemically with a known TLR4 antagonist and (2) mice injected with vehicle control. A full-depth cartilage lesion on the midline of the patellofemoral groove was created in the right knee of each mouse. The left knee was used as a sham surgery control. Gait changes were evaluated over 4 weeks using a quantitative gait analysis system. At harvest, knee joints were processed for pathologic assessment, Nanostring® transcript expression, and immunohistochemistry (IHC). RESULTS Short-term treatment with a TLR4 antagonist at 14-days significantly improved relevant gait parameters; improved cartilage metrics and modified Mankin scores were also seen. Additionally, mRNA expression and IHC showed reduced expression of inflammatory mediators in animals treated with the TLR4 antagonist. CONCLUSIONS Collectively, this work demonstrates that systemic treatment with a TLR4 antagonist is protective to further cartilage damage 14-days post-injury in a murine model of induced disease.
Collapse
Affiliation(s)
- Ariel E. Timkovich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - G. Aaron Holling
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maryam F. Afzali
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John Kisiday
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
24
|
Al-Busaidi A, Alabri O, Alomairi J, ElSharaawy A, Al Lawati A, Al Lawati H, Das S. Gut Microbiota and Insulin Resistance: Understanding the Mechanism of Better Treatment of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2024; 21:e170124225723. [PMID: 38243954 DOI: 10.2174/0115733998281910231231051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Gut microbiota refers to the population of trillions of microorganisms present in the human intestine. The gut microbiota in the gastrointestinal system is important for an individual's good health and well-being. The possibility of an intrauterine colonization of the placenta further suggests that the fetal environment before birth may also affect early microbiome development. Various factors influence the gut microbiota. Dysbiosis of microbiota may be associated with various diseases. Insulin regulates blood glucose levels, and disruption of the insulin signaling pathway results in insulin resistance. Insulin resistance or hyperinsulinemia is a pathological state in which the insulin-responsive cells have a diminished response to the hormone compared to normal physiological responses, resulting in reduced glucose uptake by the tissue cells. Insulin resistance is an important cause of type 2 diabetes mellitus. While there are various factors responsible for the etiology of insulin resistance, dysbiosis of gut microbiota may be an important contributing cause for metabolic disturbances. We discuss the mechanisms in skeletal muscles, adipose tissue, liver, and intestine by which insulin resistance can occur due to gut microbiota's metabolites. A better understanding of gut microbiota may help in the effective treatment of type 2 diabetes mellitus and metabolic syndrome.
Collapse
Affiliation(s)
- Alsalt Al-Busaidi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Omer Alabri
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Jaifar Alomairi
- Department of Medicine, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | | | | | - Hanan Al Lawati
- Pharmacy Program, Department of Pharmaceutics, Oman College of Health Sciences, Muscat 113, Oman
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
25
|
Alugupalli KR. TLR4 Ligands in Typhoid Vi Polysaccharide Subunit Vaccines Contribute to Immunogenicity. Immunohorizons 2024; 8:29-34. [PMID: 38180344 PMCID: PMC10832388 DOI: 10.4049/immunohorizons.2300085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Activation of B cells and T cells requires the engagement of costimulatory signaling pathways in addition to Ag receptor signaling for efficient immune responses. None of the typhoid Vi polysaccharide (ViPS) subunit vaccines contains adjuvants that could activate costimulatory signaling pathways, yet these vaccines are very immunogenic. I hypothesized that residual TLR ligands present in the ViPS preparation used for making typhoid subunit vaccines account for the robust immune response generated by these vaccines. I show the presence of endotoxin, a potent agonist of TLR4, in ViPS preparations and ViPS vaccines. Furthermore, I found that ViPS obtained from various sources induces the production of proinflammatory cytokines such as IL-6 from mouse peritoneal exudate cells. Unconjugated and tetanus toxoid-conjugated ViPS vaccines activate human and mouse TLR4. Mice deficient in TLR4 or the signaling adaptors MyD88 and Trif (Toll/IL-1R domain-containing adapter inducing IFN-β) are severely impaired in generating anti-ViPS responses to these vaccines. Elimination of the TLR4 agonist in ViPS preparation resulted in the loss of immunogenicity, and addition of lipid A, a known TLR4 agonist, restored the immunogenicity. These data highlight the importance of associated TLR ligands in the immunogenicity of ViPS subunit vaccines.
Collapse
Affiliation(s)
- Kishore R. Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
26
|
Ferreira AV, Alarcon-Barrera JC, Domínguez-Andrés J, Bulut Ö, Kilic G, Debisarun PA, Röring RJ, Özhan HN, Terschlüsen E, Ziogas A, Kostidis S, Mohammed Y, Matzaraki V, Renieris G, Giamarellos-Bourboulis EJ, Netea MG, Giera M. Fatty acid desaturation and lipoxygenase pathways support trained immunity. Nat Commun 2023; 14:7385. [PMID: 37968313 PMCID: PMC10651900 DOI: 10.1038/s41467-023-43315-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes. Furthermore, products of 12-lipoxygenase activity increase in monocytes of healthy individuals after BCG vaccination. Grasping the underscoring lipid metabolic pathways contributes to our understanding of trained immunity and may help to identify therapeutic tools and targets for the modulation of innate immune responses.
Collapse
Affiliation(s)
- Anaísa V Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands.
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal.
| | | | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Özlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Priya A Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Hatice N Özhan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Eva Terschlüsen
- Department of Medical Microbiology, Radboud University Medical Centre, 6500HB, Nijmegen, The Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, the Netherlands
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - George Renieris
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, the Netherlands.
| |
Collapse
|
27
|
Di Lorenzo F, Paparo L, Pisapia L, Oglio F, Pither MD, Cirella R, Nocerino R, Carucci L, Silipo A, de Filippis F, Ercolini D, Molinaro A, Berni Canani R. The chemistry of gut microbiome-derived lipopolysaccharides impacts on the occurrence of food allergy in the pediatric age. Front Mol Biosci 2023; 10:1266293. [PMID: 37900913 PMCID: PMC10606559 DOI: 10.3389/fmolb.2023.1266293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Food allergy (FA) in children is a major health concern. A better definition of the pathogenesis of the disease could facilitate effective preventive and therapeutic measures. Gut microbiome alterations could modulate the occurrence of FA, although the mechanisms involved in this phenomenon are poorly characterized. Gut bacteria release signaling byproducts from their cell wall, such as lipopolysaccharides (LPSs), which can act locally and systemically, modulating the immune system function. Methods: In the current study gut microbiome-derived LPS isolated from fecal samples of FA and healthy children was chemically characterized providing insights into the carbohydrate and lipid composition as well as into the LPS macromolecular nature. In addition, by means of a chemical/MALDI-TOF MS and MS/MS approach we elucidated the gut microbiome-derived lipid A mass spectral profile directly on fecal samples. Finally, we evaluated the pro-allergic and pro-tolerogenic potential of these fecal LPS and lipid A by harnessing peripheral blood mononuclear cells from healthy donors. Results: By analyzing fecal samples, we have identified different gut microbiome-derived LPS chemical features comparing FA children and healthy controls. We also have provided evidence on a different immunoregulatory action elicited by LPS on peripheral blood mononuclear cells collected from healthy donors suggesting that LPS from healthy individuals could be able to protect against the occurrence of FA, while LPS from children affected by FA could promote the allergic response. Discussion: Altogether these data highlight the relevance of gut microbiome-derived LPSs as potential biomarkers for FA and as a target of intervention to limit the disease burden.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | | | - Roberta Cirella
- Department of Chemical Sciences, University Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Francesca de Filippis
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Danilo Ercolini
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Chemistry, School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Roberto Berni Canani
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| |
Collapse
|
28
|
Schrijver DP, Röring RJ, Deckers J, de Dreu A, Toner YC, Prevot G, Priem B, Munitz J, Nugraha EG, van Elsas Y, Azzun A, Anbergen T, Groh LA, Becker AMD, Pérez-Medina C, Oosterwijk RS, Novakovic B, Moorlag SJCFM, Jansen A, Pickkers P, Kox M, Beldman TJ, Kluza E, van Leent MMT, Teunissen AJP, van der Meel R, Fayad ZA, Joosten LAB, Fisher EA, Merkx M, Netea MG, Mulder WJM. Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells. Nat Biomed Eng 2023; 7:1097-1112. [PMID: 37291433 PMCID: PMC10504080 DOI: 10.1038/s41551-023-01050-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.
Collapse
Affiliation(s)
- David P Schrijver
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen Deckers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anne de Dreu
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yohana C Toner
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geoffrey Prevot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram Priem
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Angiogenesis Laboratory, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jazz Munitz
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eveline G Nugraha
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Yuri van Elsas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Azzun
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laszlo A Groh
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anouk M D Becker
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Tumor Immunology, RIMLS, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carlos Pérez-Medina
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Roderick S Oosterwijk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Boris Novakovic
- Epigenetics Group, Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aron Jansen
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matthijs Kox
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thijs J Beldman
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ewelina Kluza
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roy van der Meel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Maarten Merkx
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - Willem J M Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Liberti A, Pollastro C, Pinto G, Illiano A, Marino R, Amoresano A, Spagnuolo A, Sordino P. Transcriptional and proteomic analysis of the innate immune response to microbial stimuli in a model invertebrate chordate. Front Immunol 2023; 14:1217077. [PMID: 37600818 PMCID: PMC10433773 DOI: 10.3389/fimmu.2023.1217077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carla Pollastro
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
30
|
Brock KE, Cooper RL. The Effects of Doxapram Blocking the Response of Gram-Negative Bacterial Toxin (LPS) at Glutamatergic Synapses. BIOLOGY 2023; 12:1046. [PMID: 37626932 PMCID: PMC10451348 DOI: 10.3390/biology12081046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Lipopolysaccharides (LPS) associated with Gram-negative bacteria are one factor responsible for triggering the mammalian immune response. Blocking the action of LPS is key to reducing its downstream effects. However, the direct action of LPS on cells is not yet fully addressed. LPS can have rapid, direct effects on cells in the absence of a systemic immune response. Recent studies have shown that doxapram, a blocker of a subset of K2P channels, also blocks the acute actions of LPS. Doxapram was evaluated to determine if such action also occurs at glutamatergic synapses in which it is known that LPS can increase synaptic transmission. Doxapram at 5 mM first enhanced synaptic transmission, then reduced synaptic response, while 10 mM rapidly blocked transmission. Doxapram at 5 mM blocked the excitatory response induced by LPS. Enhancing synaptic transmission with LPS and then applying LPS combined with doxapram also resulted in retarding the response of LPS. It is possible doxapram and LPS are mediated via a similar receptor or cellular responses. The potential of designing pharmacological compounds with a similar structure to doxapram and determining the binding of such compounds can aid in addressing the acute, direct actions by LPS on cells.
Collapse
Affiliation(s)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA;
| |
Collapse
|
31
|
Verma S, Reddy P, Sowdhamini R. Integrated approaches for the recognition of small molecule inhibitors for Toll-like receptor 4. Comput Struct Biotechnol J 2023; 21:3680-3689. [PMID: 37576745 PMCID: PMC10412839 DOI: 10.1016/j.csbj.2023.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors present on the surface of cells playing a crucial role in innate immunity. One of the TLRs, TLR4, recognizes LPS (Lipopolysaccharide) as its ligand leading to the release of anti-inflammatory mediators as well as pro-inflammatory cytokines through signal transduction and domain recruitment. TLR4 homodimerizes at its intracellular TIR (Toll/interleukin-1 receptor) domain that helps in the recruitment of the TRAM/TICAM2 (TIR domain-containing adaptor molecule 2) molecule. TRAM also contains TIR domain which in turn, dimerizes and functions as an adapter protein to further recruit TRIF/TICAM1 (TIR domain-containing adaptor molecule 1) protein for mediating downstream signaling. Apart from LPS, TLR4 also recognizes endogenous ligands like fibrinogen, HMGB1, and hyaluronan in autoimmune conditions and sepsis. We employed computational approaches to target TRAM and recognize small molecule inhibitors from small molecules of natural origin, as contained in the Super Natural II database. Finally, cell reporter assays and NMR studies enabled the identification of promising lead compounds. Hence, this study aims to attenuate the signaling of the TLR4-TRAM-TRIF cascade in these auto-inflammatory conditions.
Collapse
Affiliation(s)
- Shailya Verma
- National Centre for Biological Sciences (TIFR), GKVK campus, Bangalore 560065, India
| | - Purushotham Reddy
- National Centre for Biological Sciences (TIFR), GKVK campus, Bangalore 560065, India
- NMR-Analytical research and development, Aurobindo Pharma, Research center-II, Hyderabad, Telangana 502307, India
| | - R. Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK campus, Bangalore 560065, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, 560100, India
| |
Collapse
|
32
|
Mol JQ, van Tuijl J, Bekkering S, van der Heijden CD, Damen SA, Cossins BC, van Emst L, Nielen TM, Rodwell L, Li Y, Pop GA, Netea MG, van Royen N, Riksen NP, El Messaoudi S. Peripheral blood mononuclear cell hyperresponsiveness in patients with premature myocardial infarction without traditional risk factors. iScience 2023; 26:107183. [PMID: 37456854 PMCID: PMC10338301 DOI: 10.1016/j.isci.2023.107183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
An increasing number of patients develop an atherothrombotic myocardial infarction (MI) in the absence of standard modifiable risk factors (SMuRFs). Monocytes and macrophages regulate the development of atherosclerosis, and monocytes can adopt a long-term hyperinflammatory phenotype by epigenetic reprogramming, which can contribute to atherogenesis (called "trained immunity"). We assessed circulating monocyte phenotype and function and specific histone marks associated with trained immunity in SMuRFless patients with MI and matched healthy controls. Even in the absence of systemic inflammation, monocytes from SMuRFless patients with MI had an increased overall cytokine production capacity, with the strongest difference for LPS-induced interleukin-10 production, which was associated with an enrichment of the permissive histone marker H3K4me3 at the promoter region. Considering the lack of intervenable risk factors in these patients, trained immunity could be a promising target for future therapy.
Collapse
Affiliation(s)
- Jan-Quinten Mol
- Department of Cardiology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Julia van Tuijl
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Sander A.J. Damen
- Department of Cardiology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Benjamin C. Cossins
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tim M. Nielen
- Department of Cardiology, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, the Netherlands
| | - Laura Rodwell
- Section Biostatistics, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Gheorghe A.M. Pop
- Department of Cardiology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Saloua El Messaoudi
- Department of Cardiology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
33
|
de Homdedeu M, Sanchez-Moral L, Violán C, Ràfols N, Ouchi D, Martín B, Peinado MA, Rodríguez-Cortés A, Arch-Sisquella M, Perez-Zsolt D, Muñoz-Basagoiti J, Izquierdo-Useros N, Salvador B, Matllo J, López-Serrano S, Segalés J, Vilaplana C, Torán-Monserrat P, Morros R, Monfà R, Sarrias MR, Cardona PJ. Mycobacterium manresensis induces trained immunity in vitro. iScience 2023; 26:106873. [PMID: 37250788 PMCID: PMC10182650 DOI: 10.1016/j.isci.2023.106873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.
Collapse
Affiliation(s)
- Miquel de Homdedeu
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Lidia Sanchez-Moral
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Concepció Violán
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Neus Ràfols
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Dan Ouchi
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), 08916 Badalona, Spain
| | - Alhelí Rodríguez-Cortés
- Department of Pharmacology, Toxicology, and Therapeutics, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Marta Arch-Sisquella
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | | | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain
- Centre for Biomedical Research on Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Betlem Salvador
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Joan Matllo
- Department of Prevention and Risks, Germans Trias i Pujol University Hospital, Northern Metropolitan Territorial Management, Catalan Health Institute, 08916 Badalona, Spain
| | - Sergi López-Serrano
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Institute of Agrifood Research and Technology, Animal Health Program, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Joint IRTA-UAB Research Unit in Animal Health, Animal Health Research Center (CReSA), Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- Direcció Clínica Territorial de Malalties Infeccioses i Salut Internacional de Gerència Territorial Metropolitana Nord, Barcelona, Spain
| | - Pere Torán-Monserrat
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
- North Metropolitan Research Support Unit, Jordi Gol University Research Institute in Primary Care (IDIAP Jordi Gol), Mataró, Spain
- Northern Metropolitan Primary Care Management, Catalan Institute of Health, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Rosa Morros
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Ramon Monfà
- Jordi Gol University Research Institute in Primary Care, 08007 Barcelona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centre for Biomedical Research on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Pere-Joan Cardona
- Experimental Tuberculosis Unit, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Genetics and Microbiology, Autonomous University of Barcelona (UAB), 08193 Bellaterra, Spain
- Centre for Biomedical Research on Respiratory Diseases (CIBERES), Madrid, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| |
Collapse
|
34
|
Marrujo SA, Hubble VB, Yang J, Wang M, Nemeth AM, Barlock SL, Juarez D, Smith RD, Melander RJ, Ernst RK, Chang M, Melander C. Dimeric 2-aminoimidazoles are highly active adjuvants for gram-positive selective antibiotics against Acinetobacter baumannii. Eur J Med Chem 2023; 253:115329. [PMID: 37023677 PMCID: PMC10158791 DOI: 10.1016/j.ejmech.2023.115329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The Centers for Disease Control and Prevention (CDC) reports that hospital acquired infections have increased by 65% since 2019. One of the main contributors is the gram-negative bacterium Acinetobacter baumannii. Previously, we reported aryl 2-aminoimidazole (2-AI) adjuvants that potentiate macrolide antibiotics against A. baumannii. Macrolide antibiotics are typically used to treat infections caused by gram-positive bacteria, but are ineffective against most gram-negative bacteria. We describe a new class of dimeric 2-AIs that are highly active macrolide adjuvants, with lead compounds lowering minimum inhibitory concentrations (MICs) to or below the gram-positive breakpoint level against A. baumannii. The parent dimer lowers the clarithromycin (CLR) MIC against A. baumannii 5075 from 32 μg/mL to 1 μg/mL at 7.5 μM (3.4 μg/mL), and a subsequent structure activity relationship (SAR) study identified several compounds with increased activity. The lead compound lowers the CLR MIC to 2 μg/mL at 1.5 μM (0.72 μg/mL), far exceeding the activity of both the parent dimer and the previous lead aryl 2-AI. Furthermore, these dimeric 2-AIs exhibit considerably reduced mammalian cell toxicity compared to aryl-2AI adjuvants, with IC50s of the two lead compounds against HepG2 cells of >200 μg/mL, giving therapeutic indices of >250.
Collapse
Affiliation(s)
- Santiana A Marrujo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Veronica B Hubble
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jingdong Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Man Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samantha L Barlock
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Dane Juarez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, USA
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, USA
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
35
|
Brock KE, Elliott ER, Abul-Khoudoud MO, Cooper RL. The effects of Gram-positive and Gram-negative bacterial toxins (LTA & LPS) on cardiac function in Drosophila melanogaster larvae. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104518. [PMID: 37119936 DOI: 10.1016/j.jinsphys.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.
Collapse
Affiliation(s)
- Kaitlyn E Brock
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | - Elizabeth R Elliott
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
36
|
Loh MK, Stickling C, Schrank S, Hanshaw M, Ritger AC, Dilosa N, Finlay J, Ferrara NC, Rosenkranz JA. Liposaccharide-induced sustained mild inflammation fragments social behavior and alters basolateral amygdala activity. Psychopharmacology (Berl) 2023; 240:647-671. [PMID: 36645464 DOI: 10.1007/s00213-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
RATIONALE Conditions with sustained low-grade inflammation have high comorbidity with depression and anxiety and are associated with social withdrawal. The basolateral amygdala (BLA) is critical for affective and social behaviors and is sensitive to inflammatory challenges. Large systemic doses of lipopolysaccharide (LPS) initiate peripheral inflammation, increase BLA neuronal activity, and disrupt social and affective measures in rodents. However, LPS doses commonly used in behavioral studies are high enough to evoke sickness syndrome, which can confound interpretation of amygdala-associated behaviors. OBJECTIVES AND METHODS The objectives of this study were to find a LPS dose that triggers mild peripheral inflammation but not observable sickness syndrome in adult male rats, to test the effects of sustained mild inflammation on BLA and social behaviors. To accomplish this, we administered single doses of LPS (0-100 μg/kg, intraperitoneally) and measured open field behavior, or repeated LPS (5 μg/kg, 3 consecutive days), and measured BLA neuronal firing, social interaction, and elevated plus maze behavior. RESULTS Repeated low-dose LPS decreased BLA neuron firing rate but increased the total number of active BLA neurons. Repeated low-dose LPS also caused early disengagement during social bouts and less anogenital investigation and an overall pattern of heightened social caution associated with reduced gain of social familiarity over the course of a social session. CONCLUSIONS These results provide evidence for parallel shifts in social interaction and amygdala activity caused by prolonged mild inflammation. This effect of inflammation may contribute to social symptoms associated with comorbid depression and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Maxine K Loh
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sean Schrank
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Madison Hanshaw
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Alexandra C Ritger
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Discipline of Neuroscience, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, North Chicago, USA
| | - Naijila Dilosa
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joshua Finlay
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Nicole C Ferrara
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, IL, 60064, North Chicago, USA. .,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
37
|
Teufel LU, van der Made CI, Klück V, Simons A, Hoischen A, Vernimmen V, Joosten LAB, Arts RJW. Effect of exogenous IL-37 on immune cells from a patient carrying a potential IL37 loss-of-function variant: A case study. Cytokine 2023; 162:156102. [PMID: 36476991 DOI: 10.1016/j.cyto.2022.156102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Chronic inflammatory or autoimmune diseases are commonly treated with immunosuppressive medication such as NSAIDs, corticosteroids, or antibodies against specific cytokines (TNF, IL-1 IL-17, IL-23, etc.) or signalling cascades (e.g. JAK-STAT inhibitors). Using sequencing data to locate genetic mutations in relevant genes allows the identification of alternative targets in a patient-tailored therapy setting. Interleukin (IL)-37 is an anti-inflammatory cytokine with broad effects on innate and adaptive immune cell function. Dysfunctional IL-37 expression or signalling is linked to various autoinflammatory disorders. The administration of recombinant IL-37 to hyperinflammatory patients that are non-responsive to standard treatment bears the potential to alleviate symptoms. METHODS In this case study, the (hyper)responsiveness of immune cell subsets was investigated in a single patient with a seronegative autoimmune disorder who carries a heterozygous stop-gain variant in IL37 (IL37 Chr2(GRCh37):g.113670640G > A NM_014439.3:c.51G > A p.(Trp17*)). As the patient has been non-responsive to blockage of TNF or IL-1 by Etanercept or Anakinra, respectively, additional in-vitro experiments were set out to elucidate whether treatment with recombinant IL-37 could normalise observed immune cell functions. FINDINGS Characterisation of immune cell function showed no elevated overall production of acute-phase pro-inflammatory cytokines by patient PBMCs and neutrophils at baseline or upon stimulation. T-cell responses were elevated, as was the metabolic activity and IL-1Ra production of PBMCs at baseline. The identified stop-gain variant in IL37 does not result in the absence of the protein in circulation. In line with this, treatment with recombinant IL-37 did overall not dampen immune responses with the exception of the complete suppression of IL-17. CONCLUSION The heterozygous stop-gain variant in IL37 (IL37 NM_014439.3:c.51G > A p.(Trp17*)) is not of functional relevance as we observed no clear pro-inflammatory phenotype in immune cells of a patient carrying this variant.
Collapse
Affiliation(s)
- Lisa U Teufel
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Caspar I van der Made
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Viola Klück
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annet Simons
- Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vivian Vernimmen
- Department of Genetics, Maastricht UMC+, Maastricht, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Strada Victor Babes 8, 400000 Cluj-Napoca, Romania
| | - Rob J W Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
38
|
Wu K, Nie L, Nusantara AC, Woudstra W, Vedelaar T, Sigaeva A, Schirhagl R. Diamond Relaxometry as a Tool to Investigate the Free Radical Dialogue between Macrophages and Bacteria. ACS NANO 2023; 17:1100-1111. [PMID: 36630151 PMCID: PMC9878971 DOI: 10.1021/acsnano.2c08190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Although free radicals, which are generated by macrophages play a key role in antimicrobial activities, macrophages sometimes fail to kill Staphylococcus aureus (S. aureus) as bacteria have evolved mechanisms to withstand oxidative stress. In the past decades, several ROS-related staphylococcal proteins and enzymes were characterized to explain the microorganism's antioxidative defense system. Yet, time-resolved and site-specific free radical/ROS detection in bacterial infection were full of challenges. In this work, we utilize diamond-based quantum sensing for studying alterations of the free radical response near S. aureus in macrophages. To achieve this goal we used S. aureus-fluorescent nanodiamond conjugates and measured the spin-lattice relaxation (T1) of NV defects embedded in nanodiamonds. We observed an increase of intracellular free radical generation when macrophages were challenged with S. aureus. However, under a high intracellular oxidative stress environment elicited by lipopolysaccharides, a lower radical load was recorded on the bacteria surfaces. Moreover, by performing T1 measurements on the same particles at different times postinfection, we found that radicals were dominantly scavenged by S. aureus from 80 min postinfection under a high intracellular oxidative stress environment.
Collapse
Affiliation(s)
- Kaiqi Wu
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Linyan Nie
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anggrek C. Nusantara
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Willem Woudstra
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thea Vedelaar
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alina Sigaeva
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
39
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
40
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Toll-like receptor 4 and lipopolysaccharide from commensal microbes regulate Tembusu virus infection. J Biol Chem 2022; 298:102699. [PMID: 36379254 PMCID: PMC9761373 DOI: 10.1016/j.jbc.2022.102699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.
Collapse
|
42
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
43
|
Bocharova OV, Fisher A, Pandit NP, Molesworth K, Mychko O, Scott AJ, Makarava N, Ritzel R, Baskakov IV. Aβ plaques do not protect against HSV-1 infection in a mouse model of familial Alzheimer's disease, and HSV-1 does not induce Aβ pathology in a model of late onset Alzheimer's disease. Brain Pathol 2022; 33:e13116. [PMID: 36064300 PMCID: PMC9836376 DOI: 10.1111/bpa.13116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023] Open
Abstract
The possibility that the etiology of late onset Alzheimer's disease is linked to viral infections of the CNS has been actively debated in recent years. According to the antiviral protection hypothesis, viral pathogens trigger aggregation of Aβ peptides that are produced as a defense mechanism in response to infection to entrap and neutralize pathogens. To test the causative relationship between viral infection and Aβ aggregation, the current study examined whether Aβ plaques protect the mouse brain against Herpes Simplex Virus 1 (HSV-1) infection introduced via a physiological route and whether HSV-1 infection triggers formation of Aβ plaques in a mouse model of late-onset AD that does not develop Aβ pathology spontaneously. In aged 5XFAD mice infected via eye scarification, high density of Aβ aggregates did not improve survival time or rate when compared with wild type controls. In 5XFADs, viral replication sites were found in brain areas with a high density of extracellular Aβ deposits, however, no association between HSV-1 and Aβ aggregates could be found. To test whether HSV-1 triggers Aβ aggregation in a mouse model that lacks spontaneous Aβ pathology, 13-month-old hAβ/APOE4/Trem2*R47H mice were infected with HSV-1 via eye scarification with the McKrae HSV-1 strain, intracranial inoculation with McKrae, intracranial inoculation after priming with LPS for 6 weeks, or intracranial inoculation with high doses of McKrae or 17syn + strains that represent different degrees of neurovirulence. No signs of Aβ aggregation were found in any of the experimental groups. Instead, extensive infiltration of peripheral leukocytes was observed during the acute stage of HSV-1 infection, and phagocytic activity of myeloid cells was identified as the primary defense mechanism against HSV-1. The current results argue against a direct causative relationship between HSV-1 infection and Aβ pathology.
Collapse
Affiliation(s)
- Olga V. Bocharova
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Aidan Fisher
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Narayan P. Pandit
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kara Molesworth
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Olga Mychko
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Alison J. Scott
- Department of Microbial PathogenesisUniversity of Maryland School of DentistryBaltimoreMarylandUSA
| | - Natallia Makarava
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Rodney Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR)University of Maryland School of MedicineBaltimoreMarylandUSA
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA,Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
44
|
Harberts EM, Grubaugh D, Akuma DC, Shin S, Ernst RK, Brodsky IE. Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11. Infect Immun 2022; 90:e0020122. [PMID: 35862717 PMCID: PMC9387250 DOI: 10.1128/iai.00201-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 01/16/2023] Open
Abstract
Immune sensing of the Gram-negative bacterial membrane glycolipid lipopolysaccharide (LPS) is both a critical component of host defense against bacterial infection and a contributor to the hyperinflammatory response, potentially leading to sepsis and death. Innate immune activation by LPS is due to the lipid A moiety, an acylated di-glucosamine molecule that can activate inflammatory responses via the extracellular sensor Toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) or the cytosolic sensor caspase-11 (Casp11). The number and length of acyl chains present on bacterial lipid A structures vary across bacterial species and strains, which affects the magnitude of TLR4 and Casp11 activation. TLR4 and Casp11 are thought to respond similarly to various lipid A structures, as tetra-acylated lipid A structures do not activate either sensor, whereas hexa-acylated structures activate both sensors. However, the precise features of lipid A that determine the differential activation of each receptor remain poorly defined, as direct analysis of extracellular and cytosolic responses to the same sources and preparations of LPS/lipid A structures have been limited. To address this question, we used rationally engineered lipid A isolated from a series of bacterial acyl-transferase mutants that produce novel, structurally defined molecules. Intriguingly, we found that the location of specific secondary acyl chains on lipid A resulted in differential recognition by TLR4 or Casp11, providing new insight into the structural features of lipid A required to activate either TLR4 or Casp11. Our findings indicate that TLR4 and Casp11 sense nonoverlapping areas of lipid A chemical space, thereby constraining the ability of Gram-negative pathogens to evade innate immunity.
Collapse
Affiliation(s)
- Erin M. Harberts
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Daniel Grubaugh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel C. Akuma
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Bacteroides thetaiotaomicron rough-type lipopolysaccharide: The chemical structure and the immunological activity. Carbohydr Polym 2022; 297:120040. [DOI: 10.1016/j.carbpol.2022.120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
46
|
Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, Mu A, Hofstaedter CE, Varisco D, McConville TH, Drikic M, Fowler B, Urso A, Shi W, Fucich D, Annavajhala MK, Khan IN, Oussenko I, Francoeur N, Smith ML, Stockwell BR, Lewis IA, Hachani A, Upadhyay Baskota S, Uhlemann AC, Ahn D, Ernst RK, Howden BP, Sebra R, Prince A. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 2022; 34:761-774.e9. [PMID: 35413274 PMCID: PMC9081115 DOI: 10.1016/j.cmet.2022.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.
Collapse
Affiliation(s)
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andre Mu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - David Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | | | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Brandon Fowler
- Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Andreacarola Urso
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wei Shi
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Dario Fucich
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Ibrahim N Khan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Irina Oussenko
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | | | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Danielle Ahn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA; Sema4: A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
47
|
Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health 2022; 22:121. [PMID: 35413908 PMCID: PMC9004173 DOI: 10.1186/s12903-022-02161-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells (hDPSCs).
Material and methods Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry. Results The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreatment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05). Conclusion Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expression of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no effect on TLR2 or TLR4 expression in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02161-x.
Collapse
Affiliation(s)
- Chunhua Lan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), Shenzhen, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China. .,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
48
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
49
|
Kim JH, Kim DH, Jo S, Cho MJ, Cho YR, Lee YJ, Byun S. Immunomodulatory functional foods and their molecular mechanisms. Exp Mol Med 2022; 54:1-11. [PMID: 35079119 PMCID: PMC8787967 DOI: 10.1038/s12276-022-00724-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system comprises a complex group of processes that provide defense against diverse pathogens. These defenses can be divided into innate and adaptive immunity, in which specific immune components converge to limit infections. In addition to genetic factors, aging, lifestyle, and environmental factors can influence immune function, potentially affecting the susceptibility of the host to disease-causing agents. Chemical compounds in certain foods have been shown to regulate signal transduction and cell phenotypes, ultimately impacting pathophysiology. Research has shown that the consumption of specific functional foods can stimulate the activity of immune cells, providing protection against cancer, viruses, and bacteria. Here, we review a number of functional foods reported to strengthen immunity, including ginseng, mushrooms, chlorella, and probiotics (Lactobacillus plantarum). We also discuss the molecular mechanisms involved in regulating the activity of various types of immune cells. Identifying immune-enhancing functional foods and understanding their mechanisms of action will support new approaches to maintain proper health and combat immunological diseases. Evidence is building to support the idea that specific ‘functional foods’ can stimulate the activity of cells and signaling systems of the immune system to provide protection against cancer, viruses and bacteria. Sanguine Byun and colleagues at Yonsei University in Seoul, South Korea, review research into a range of functional foods, foods thought to have health benefits beyond their nutritional value. These include ginseng, mushrooms, the green algae called Chlorella and the probiotic bacteria Lactobacillus plantarum. They also consider individual components of foods such as poly-gamma-glutamate, a natural polymer made by bacteria. A wide body of research is revealing diverse molecular mechanisms through which biochemicals in functional foods can modulate different aspects of the immune system. These include effects on both non-specific innate immunity and adaptive immunity, which targets specific invading pathogens and diseased cells.
Collapse
|
50
|
Groh LA, Verel DE, van der Heijden CDCC, Matzaraki V, Moorlag SJCFM, de Bree LC, Koeken VACM, Mourits VP, Keating ST, van Puffelen JH, Joosten LAB, Netea MG, Riksen NP. Immune modulatory effects of progesterone on oxLDL-induced trained immunity in monocytes. J Leukoc Biol 2022; 112:279-288. [PMID: 35040511 PMCID: PMC9544104 DOI: 10.1002/jlb.3ab1220-846r] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (CVD) are among the leading causes of death in the world. Monocyte‐derived macrophages are key players in the pathophysiology of atherosclerosis. Innate immune memory following exposure of monocytes to atherogenic compounds, such as oxidized low‐density lipoproteins (oxLDL), termed trained immunity, can contribute to atherogenesis. The current study aimed to elucidate intracellular mechanisms of oxLDL‐induced trained immunity. Using untargeted intracellular metabolomics in isolated human primary monocytes, we show that oxLDL‐induced trained immunity results in alterations in the balance of intracellular steroid hormones in monocytes. This was reflected by a decrease in extracellular progesterone concentrations following LPS stimulation. To understand the potential effects of steroid hormones on trained immunity, monocytes were costimulated with oxLDL and the steroid hormones progesterone, hydrocortisone, dexamethasone, β‐estradiol, and dihydrotestosterone. Progesterone showed a unique ability to attenuate the enhanced TNFα and IL‐6 production following oxLDL‐induced trained immunity. Single nucleotide polymorphisms in the nuclear glucocorticoid, progesterone, and mineralocorticoid receptor were shown to correlate with ex vivo oxLDL‐induced trained immunity in 243 healthy volunteers. Pharmacologic inhibition experiments revealed that progesterone exerts the suppression of TNFα in trained immunity via the nuclear glucocorticoid and mineralocorticoid receptors. Our data show that progesterone has a unique ability to suppress oxLDL‐induced trained immunity. We hypothesize that this effect might contribute to the lower incidence of CVD in premenopausal women.
Collapse
Affiliation(s)
- Laszlo A Groh
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dagmar E Verel
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charlotte D C C van der Heijden
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Charlotte de Bree
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Vera P Mourits
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samuel T Keating
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jelmer H van Puffelen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|