1
|
Miller CL. The Epigenetics of Psychosis: A Structured Review with Representative Loci. Biomedicines 2022; 10:561. [PMID: 35327363 PMCID: PMC8945330 DOI: 10.3390/biomedicines10030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The evidence for an environmental component in chronic psychotic disorders is strong and research on the epigenetic manifestations of these environmental impacts has commenced in earnest. In reviewing this research, the focus is on three genes as models for differential methylation, MCHR1, AKT1 and TDO2, each of which have been investigated for genetic association with psychotic disorders. Environmental factors associated with psychotic disorders, and which interact with these model genes, are explored in depth. The location of transcription factor motifs relative to key methylation sites is evaluated for predicted gene expression results, and for other sites, evidence is presented for methylation directing alternative splicing. Experimental results from key studies show differential methylation: for MCHR1, in psychosis cases versus controls; for AKT1, as a pre-existing methylation pattern influencing brain activation following acute administration of a psychosis-eliciting environmental stimulus; and for TDO2, in a pattern associated with a developmental factor of risk for psychosis, in all cases the predicted expression impact being highly dependent on location. Methylation induced by smoking, a confounding variable, exhibits an intriguing pattern for all three genes. Finally, how differential methylation meshes with Darwinian principles is examined, in particular as it relates to the "flexible stem" theory of evolution.
Collapse
|
2
|
Piya S, Liu J, Burch-Smith T, Baum TJ, Hewezi T. A role for Arabidopsis growth-regulating factors 1 and 3 in growth-stress antagonism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1402-1417. [PMID: 31701146 PMCID: PMC7031083 DOI: 10.1093/jxb/erz502] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Growth-regulating factors (GRFs) belong to a small family of transcription factors that are highly conserved in plants. GRFs regulate many developmental processes and plant responses to biotic and abiotic stimuli. Despite the importance of GRFs, a detailed mechanistic understanding of their regulatory functions is still lacking. In this study, we used ChIP sequencing (ChIP-seq) to identify genome-wide binding sites of Arabidopsis GRF1 and GRF3, and correspondingly their direct downstream target genes. RNA-sequencing (RNA-seq) analysis revealed that GRF1 and GRF3 regulate the expression of a significant number of the identified direct targets. The target genes unveiled broad regulatory functions of GRF1 and GRF3 in plant growth and development, phytohormone biosynthesis and signaling, and the cell cycle. Our analyses also revealed that clock core genes and genes with stress- and defense-related functions are most predominant among the GRF1- and GRF3-bound targets, providing insights into a possible role for these transcription factors in mediating growth-defense antagonism and integrating environmental stimuli into developmental programs. Additionally, GRF1 and GRF3 target molecular nodes of growth-defense antagonism and modulate the levels of defense- and development-related hormones in opposite directions. Taken together, our results point to GRF1 and GRF3 as potential key determinants of plant fitness under stress conditions.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Jinyi Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Present address: College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Correspondence:
| |
Collapse
|
3
|
Pawlak EN, Dirk BS, Jacob RA, Johnson AL, Dikeakos JD. The HIV-1 accessory proteins Nef and Vpu downregulate total and cell surface CD28 in CD4 + T cells. Retrovirology 2018; 15:6. [PMID: 29329537 PMCID: PMC5767034 DOI: 10.1186/s12977-018-0388-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background The HIV-1 accessory proteins Nef and Vpu alter cell surface levels of multiple host proteins to modify the immune response and increase viral persistence. Nef and Vpu can downregulate cell surface levels of the co-stimulatory molecule CD28, however the mechanism of this function has not been completely elucidated. Results Here, we provide evidence that Nef and Vpu decrease cell surface and total cellular levels of CD28. Moreover, using inhibitors we implicate the cellular degradation machinery in the downregulation of CD28. We shed light on the mechanisms of CD28 downregulation by implicating the Nef LL165 and DD175 motifs in decreasing cell surface CD28 and Nef DD175 in decreasing total cellular CD28. Moreover, the Vpu LV64 and S52/56 motifs were required for cell surface CD28 downregulation, while, unlike for CD4 downregulation, Vpu W22 was dispensable. The Vpu S52/56 motif was also critical for Vpu-mediated decreases in total CD28 protein level. Finally, the ability of Vpu to downregulate CD28 is conserved between multiple group M Vpu proteins and infection with viruses encoding or lacking Nef and Vpu have differential effects on activation upon stimulation. Conclusions We report that Nef and Vpu downregulate cell surface and total cellular CD28 levels. We identified inhibitors and mutations within Nef and Vpu that disrupt downregulation, shedding light on the mechanisms utilized to downregulate CD28. The conservation and redundancy between the abilities of two HIV-1 proteins to downregulate CD28 highlight the importance of this function, which may contribute to the development of latently infected cells. Electronic supplementary material The online version of this article (10.1186/s12977-018-0388-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada.
| |
Collapse
|
4
|
Brambila-Tapia AJL, Dávalos-Rodríguez IP, Gámez-Nava JI, González-López L, Medina-Díaz J, Bernard-Medina AG, Salazar-Páramo M. CD28 proximal promoter polymorphisms in systemic lupus erythematosus susceptibility. Rheumatol Int 2011; 32:2165-8. [PMID: 21544637 DOI: 10.1007/s00296-011-1942-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 04/13/2011] [Indexed: 01/26/2023]
Abstract
CD28 expression and serum levels are significantly increased in patients with SLE than in healthy controls (HC). Until now, there are no studies of proximal promoter polymorphisms of CD28 gene in SLE. Therefore, our objective was to investigate the polymorphisms present in the proximal promoter of CD28 in a group of SLE and HC and to associate the polymorphisms present with the CD28 serum levels of 40 patients and 40 controls. One hundred and seven patients as well as 108 controls matched by age range and genders were included. The 11 ACR criteria were analyzed on the clinical files, and the proximal promoter region of CD28 gene was analyzed by direct sequencing of a 489-basepair fragment. C28 serum levels (sCD28) were measured by ELISA technique in 40 patients and 40 controls. Only two of the eight reported polymorphisms were found, and they correspond to rs35593994 (-372 A/G) and rs56156157 (-145 -/C). The first had a prevalence of 41 and 36% in patients and controls respectively and the second of 1.4% in both groups. None of these polymorphisms were associated with SLE, and the polymorphism -372 A/G was not associated with the clinical features of disease. Likewise, the association with the sCD28 and the genotypes of -372 A/G polymorphism was not significant. The polymorphisms of the proximal promoter of CD28 are not associated with SLE, and the polymorphism -372 A/G is not associated with the diagnostic criteria of SLE or the sCD28.
Collapse
|
5
|
Toscano MG, Benabdellah K, Muñoz P, Frecha C, Cobo M, Martín F. Was cDNA sequences modulate transgene expression of was promoter-driven lentiviral vectors. Hum Gene Ther 2010; 20:1279-90. [PMID: 19630517 DOI: 10.1089/hum.2009.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract The development of vectors that express a therapeutic transgene efficiently and specifically in hematopoietic cells (HCs) is an important goal for gene therapy of hematological disorders. We have previously shown that a 500-bp fragment from the proximal Was gene promoter in a lentiviral vector (LV) was sufficient to achieve more than 100-fold higher levels of Wiskott-Aldrich syndrome protein in HCs than in nonhematopoietic cells (non-HCs). We show now that this differential was reduced up to 10 times when the enhanced green fluorescent protein gene (eGFP) was expressed instead of Was in the same LV backbone. Insertion of Was cDNA sequences downstream of eGFP in these LVs had a negative effect on transgene expression. This effect varied in different cell types but, overall, Was cDNA sequences increased the hematopoietic specificity of Was promoter-driven LV. We have characterized the minimal fragment required to increase hematopoietic specificity and have demonstrated that the mechanism involves Was promoter regulation and RNA processing. In addition, we have shown that Was cDNA sequences interfere with the enhancer activity of the woodchuck posttranscriptional regulatory element. These results represent the first data showing the role of Was intragenic sequences in gene regulation.
Collapse
Affiliation(s)
- Miguel G Toscano
- Immunology and Cell Biology Department, Institute of Parasitology and Biomedicine López Neyra-CSIC, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Peddireddi L, Cheng C, Ganta RR. Promoter analysis of macrophage- and tick cell-specific differentially expressed Ehrlichia chaffeensis p28-Omp genes. BMC Microbiol 2009; 9:99. [PMID: 19454021 PMCID: PMC2694197 DOI: 10.1186/1471-2180-9-99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 05/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ehrlichia chaffeensis is a rickettsial agent responsible for an emerging tick-borne illness, human monocytic ehrlichiosis. Recently, we reported that E. chaffeensis protein expression is influenced by macrophage and tick cell environments. We also demonstrated that host response differs considerably for macrophage and tick cell-derived bacteria with delayed clearance of the pathogen originating from tick cells. RESULTS In this study, we mapped differences in the promoter regions of two genes of p28-Omp locus, genes 14 and 19, whose expression is influenced by macrophage and tick cell environments. Primer extension and quantitative RT-PCR analysis were performed to map transcription start sites and to demonstrate that E. chaffeensis regulates transcription in a host cell-specific manner. Promoter regions of genes 14 and 19 were evaluated to map differences in gene expression and to locate RNA polymerase binding sites. CONCLUSION RNA analysis and promoter deletion analysis aided in identifying differences in transcription, DNA sequences that influenced promoter activity and RNA polymerase binding regions. This is the first description of a transcriptional machinery of E. chaffeensis. In the absence of available genetic manipulation systems, the promoter analysis described in this study can serve as a novel molecular tool for mapping the molecular basis for gene expression differences in E. chaffeensis and other related pathogens belonging to the Anaplasmataceae family.
Collapse
Affiliation(s)
- Lalitha Peddireddi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
7
|
Miccadei S, Pascucci B, Picardo M, Natali PG, Civitareale D. Identification of the minimal melanocyte-specific promoter in the melanocortin receptor 1 gene. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:71. [PMID: 19017395 PMCID: PMC2627824 DOI: 10.1186/1756-9966-27-71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/18/2008] [Indexed: 12/04/2022]
Abstract
Background The understanding of cutaneous pigmentation biology is relevant from the biologic and clinical point of view. The binding of α-melanocortin and its specific receptor, on the plasma membrane of melanin synthesising cells, plays a crucial role in melanins biosynthesis. Furthermore, loss of MC1R function is associated with an increased incidence of melanoma and non-melanoma skin cancer. The expression of the α-melanocortin receptor gene is highly controlled but, at the present, region responsible for tissue-specific activity of the gene promoter has not been identified. Methods We have cloned the genomic sequences upstream the human MC1R coding gene. A DNA fragment of 5 kilobases upstream the human MC1R encoding sequence was placed in front of a reporter gene and several deletion mutants of such fragment have been prepared. These constructs have been tested for the ability to drive the melanocyte-specific gene expression of the reporter gene using transfection experiments in melanocyte and non-melanocyte cell lines. From these experiments we identified a DNA fragment with the ability to drive the gene transcription in a tissue-specific way and we used this small DNA fragment in DNA-protein interaction assays. Results We show that the 150 base pairs upstream the MC1R gene initiation codon are able to drive the melanocyte-specific gene transcription. Furthermore, we provide experimental evidences suggesting that on such minimal melanocyte-specific gene promoter can assemble tissue-specific complexes. Conclusion The present results strongly imply that the transcriptional regulation of the melanocyte-specific MC1R gene requires an internal promoter located in the 150 base pairs upstream the initiation codon.
Collapse
Affiliation(s)
- Stefania Miccadei
- Laboratory of Molecular Pathology and Ultrastructure, Regina Elena Cancer Institute, Rome, Italy.
| | | | | | | | | |
Collapse
|
8
|
Sun H, Skogerbø G, Wang Z, Liu W, Li Y. Structural relationships between highly conserved elements and genes in vertebrate genomes. PLoS One 2008; 3:e3727. [PMID: 19008958 PMCID: PMC2579482 DOI: 10.1371/journal.pone.0003727] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 10/26/2008] [Indexed: 02/03/2023] Open
Abstract
Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs) are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes.
Collapse
Affiliation(s)
- Hong Sun
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts, United States of America
- Shanghai Center for Bioinformation Technology, Shanghai, China
- Zhongxin Biotechnology Shanghai Co. Ltd., Shanghai, China
| | - Geir Skogerbø
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Biological Technologies, Wyeth Research, Cambridge, Massachusetts, United States of America
- * E-mail: (WL); (YL)
| | - Yixue Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (WL); (YL)
| |
Collapse
|
9
|
Hu Z, Shanker S, MacLean JA, Ackerman SL, Wilkinson MF. The RHOX5 homeodomain protein mediates transcriptional repression of the netrin-1 receptor gene Unc5c. J Biol Chem 2007; 283:3866-76. [PMID: 18077458 DOI: 10.1074/jbc.m706717200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The X-linked mouse Rhox gene cluster contains more than 30 homeobox genes that are candidates to regulate multiple steps in male and female gametogenesis. The founding member of the Rhox gene cluster, Rhox5, is an androgen-dependent gene expressed in Sertoli cells that promotes the survival and differentiation of the adjacent male germ cells. Here, we report the first identification and characterization of a Rhox5-regulated gene. This gene, Unc5c, encodes a pro-apoptotic receptor with tumor suppressor activity that we found is negatively regulated by Rhox5 in the testis in vivo. Transfection analyses in cell lines of different origin indicated that Rhox5-dependent down-regulation of Unc5c requires another Sertoli cell-specific cofactor. Examination of other mouse Rhox family members revealed that mouse RHOX2 and RHOX3 also have the ability to down-regulate Unc5c expression. The human RHOX protein PEPP2 (RHOXF2) also had this ability, indicating that Unc5c repression is a conserved RHOX-dependent response. Deletion analysis identified a Rhox5-responsive element in the Unc5c 5'-untranslated region. Although 5'-untranslated regions typically house post-transcriptional elements, several lines of evidence indicated that Rhox5 down-regulates Unc5c at the transcriptional level. The repression of Unc5c expression by Rhox5 may, in part, mediate the pro-survival function of Rhox5 in the testis, as we found that Unc5c mutant mice have decreased germ cell apoptosis in the testis. Along with our other data, these findings led us to propose a model in which Rhox5 is a negative regulator upstream of Unc5c in a Sertoli-cell pathway that promotes germ-cell survival.
Collapse
Affiliation(s)
- Zhiying Hu
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Background Comparative genomics approaches, where orthologous DNA regions are compared and inter-species conserved regions are identified, have proven extremely powerful for identifying non-coding regulatory regions located in intergenic or intronic regions. However, non-coding functional elements can also be located within coding region, as is common for exonic splicing enhancers, some transcription factor binding sites, and RNA secondary structure elements affecting mRNA stability, localization, or translation. Since these functional elements are located in regions that are themselves highly conserved because they are coding for a protein, they generally escaped detection by comparative genomics approaches. Results We introduce a comparative genomics approach for detecting non-coding functional elements located within coding regions. Codon evolution is modeled as a mixture of codon substitution models, where each component of the mixture describes the evolution of codons under a specific type of coding selective pressure. We show how to compute the posterior distribution of the entropy and parsimony scores under this null model of codon evolution. The method is applied to a set of growth hormone 1 orthologous mRNA sequences and a known exonic splicing elements is detected. The analysis of a set of CORTBP2 orthologous genes reveals a region of several hundred base pairs under strong non-coding selective pressure whose function remains unknown. Conclusion Non-coding functional elements, in particular those involved in post-transcriptional regulation, are likely to be much more prevalent than is currently known. With the numerous genome sequencing projects underway, comparative genomics approaches like that proposed here are likely to become increasingly powerful at detecting such elements.
Collapse
Affiliation(s)
- Hui Chen
- McGill Centre for Bioinformatics, McGill University, 3775 University St., room 332, Montreal, QC, Canada H3A 2B4
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics, McGill University, 3775 University St., room 332, Montreal, QC, Canada H3A 2B4
| |
Collapse
|
11
|
Lee YC, Higashi Y, Luu C, Shimizu C, Strott CA. Sp1 elements inSULT2B1bpromoter and 5′-untranslated region of mRNA: Sp1/Sp2 induction and augmentation by histone deacetylase inhibition. FEBS Lett 2005; 579:3639-45. [PMID: 15953604 DOI: 10.1016/j.febslet.2005.05.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 05/23/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022]
Abstract
The steroid/sterol sulfotransferase gene (SULT2B1) encodes for two isozymes of which one (SULT2B1b) sulfonates cholesterol and is selectively expressed in skin. The human SULT2B1 gene contains neither a TATAAA nor a CCAAT motif upstream of the coding region for SULT2B1b; however, this area is GC-rich. Of five Sp1 elements identified two had regulatory activity utilizing immortalized human keratinocytes: one element is located above the ostensible transcription initiation site, whereas the other is located within the 5'-untranslated region of the SULT2B1b mRNA. Sp1 and Sp2 transcription factors identified by supershift analyses induced reporter gene activity, an effect markedly augmented by histone deacetylase inhibition.
Collapse
Affiliation(s)
- Young C Lee
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
12
|
Lewis DE, Merched-Sauvage M, Goronzy JJ, Weyand CM, Vallejo AN. Tumor Necrosis Factor-α and CD80 Modulate CD28 Expression through a Similar Mechanism of T-cell Receptor-independent Inhibition of Transcription. J Biol Chem 2004; 279:29130-8. [PMID: 15128741 DOI: 10.1074/jbc.m402194200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Replicative senescence of human T cells is characterized by the loss of CD28 expression, exemplified by the clonal expansion of CD28(null) T cells during repeated stimulation in vitro as well as in chronic inflammatory and infectious diseases and in the normal course of aging. Because CD28 is the major costimulatory receptor for the induction of T cell-mediated immunity, the mechanism(s) underlying CD28 loss is of paramount interest. Current models of replicative senescence involve protracted procedures to generate CD28(null) cells from CD28(+) precursors; hence, a T-cell line model was used to examine the dynamics of CD28 expression. Here, we show the versatility of the JT and Jtag cell lines in tracking CD28(null) <--> CD28(hi) phenotypic transitions. JT and Jtag cells were CD28(null) and CD28(lo), respectively, but expressed high levels of CD28 when exposed to phorbol 12-myristate 13-acetate. This was a result of the reconstitution of the CD28 gene transcriptional initiator (INR). Tumor necrosis factor-alpha reduced CD28 expression because of the inhibition of INR-driven transcription. Ligation of CD28 by an antibody or by CD80 also down-regulated CD28 transcription through the same mechanism, providing evidence that CD28 can generate a T cell receptor-independent signal with a unique biological outcome. Collectively, these data unequivocally demonstrate the critical role of the INR in the regulation of CD28 expression. T cell lines with transient expression of CD28 are invaluable in the dissection of the biochemical processes involved in the transactivation of the CD28 INR, the silencing of which is a key event in the ontogenesis of senescent T cells.
Collapse
Affiliation(s)
- Dorothy E Lewis
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Elrayess MA, Webb KE, Flavell DM, Syvänne M, Taskinen MR, Frick MH, Nieminen MS, Kesäniemi YA, Pasternack A, Jukema JW, Kastelein JJP, Zwinderman AH, Humphries SE. A novel functional polymorphism in the PECAM-1 gene (53G>A) is associated with progression of atherosclerosis in the LOCAT and REGRESS studies. Atherosclerosis 2003; 168:131-8. [PMID: 12732396 DOI: 10.1016/s0021-9150(03)00089-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A 53G>A polymorphism identified in the 5' untranslated region (5'UTR) of the platelet endothelial cell adhesion molecule-1 (PECAM-1) gene alters a putative shear stress responsive element (SSRE). PECAM-1 was shown to be responsive to shear stress and transient transfection of human umbilical vein endothelial cell (HUVECs) with two luciferase reporter constructs driven by the PECAM-1 promoter and 5'UTR showed a response of the 53G allele, not the 53A allele, to shear stress. Association between the 53G>A, and the previously published L125V polymorphism, and coronary atherosclerosis was examined in two angiographic studies. The frequencies of the rare alleles of the 53G>A and L125V polymorphisms were 0.01 and 0.49, respectively, in the Lopid Coronary Angiography Trial (LOCAT) study and 0.02 and 0.49, respectively, in the Regression Growth Evaluation Statin Study (REGRESS) study. Compared with 53G homozygotes, carriers of the 53A allele showed less focal progression of disease in the LOCAT study and a similar trend in the diffuse progression of disease in the REGRESS study, whereas no association between L125V and coronary atherosclerosis was observed in either study. These data demonstrate that the PECAM-1 gene is responsive to shear stress in vitro and that decreased PECAM-1 gene expression in 53A carriers may influence reduced progression of vessel stenosis in patients with coronary artery disease.
Collapse
Affiliation(s)
- Mohamed A Elrayess
- The Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Royal Free and University College Medical School, University College London, Rayne Building, 5 University Street, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vallejo AN, Bryl E, Klarskov K, Naylor S, Weyand CM, Goronzy JJ. Molecular basis for the loss of CD28 expression in senescent T cells. J Biol Chem 2002; 277:46940-9. [PMID: 12324461 DOI: 10.1074/jbc.m207352200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CD28(null) T cells are the most consistent biological indicator of the aging immune system in humans and are predictors of immunoincompetence in the elderly. The loss of CD28 is the result of an inoperative transcriptional initiator (INR), which consists of two nonoverlapping alpha and beta motifs that have distinct protein binding profiles but function as a unit. In CD28(null) T cells, there is a coordinate loss of alpha-/beta-bound complexes, hence the alphabeta-INR is inactive. In the present work therefore, studies were conducted to identify the components of such complexes that may account for the trans-activation of the alphabeta-INR. By affinity chromatography and tandem mass spectrometry, two proteins, namely, nucleolin and the A isoform of heterogeneous nuclear ribonucleoprotein-D0 (hnRNP-D0A), were identified to be among the key components of the site alpha complex. In DNA binding assays, specific antibodies indicated their antigenic presence in alpha-bound complexes. Transcription assays showed that they are both required in the trans-activation of alphabeta-INR-driven DNA templates. Because CD28 is T cell-restricted, and nucleolin and hnRNP-D0A are ubiquitous proteins, these results support the notion that cell-specific functions can be regulated by commonly expressed proteins. The present data also provide evidence for INR-regulated transcription that is independent of the known components of the basal transcription complex.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Department of Medicine and Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Carleton M, Haks MC, Smeele SAA, Jones A, Belkowski SM, Berger MA, Linsley P, Kruisbeek AM, Wiest DL. Early growth response transcription factors are required for development of CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1649-58. [PMID: 11823493 DOI: 10.4049/jimmunol.168.4.1649] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Progression of immature CD4(-)CD8(-) thymocytes beyond the beta-selection checkpoint to the CD4(+)CD8(+) stage requires activation of the pre-TCR complex; however, few of the DNA-binding proteins that serve as molecular effectors of those pre-TCR signals have been identified. We demonstrate in this study that members of the early growth response (Egr) family of transcription factors are critical effectors of the signals that promote this developmental transition. Specifically, the induction of three Egr family members (Egr1, 2, and 3) correlates with pre-TCR activation and development of CD4(-)CD8(-) thymocytes beyond the beta-selection checkpoint. Enforced expression of each of these Egr factors is able to bypass the block in thymocyte development associated with defective pre-TCR function. However, Egr family members may play somewhat distinct roles in promoting thymocyte development, because there are differences in the genes modulated by enforced expression of particular Egr factors. Finally, interfering with Egr function using dominant-negative proteins disrupts thymocyte development from the CD4(-)CD8(-) to the CD4(+)CD8(+) stage. Taken together, these data demonstrate that the Egr proteins play an essential role in executing the differentiation program initiated by pre-TCR signaling.
Collapse
Affiliation(s)
- Michael Carleton
- Immunobiology Working Group, Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|