1
|
Ivetic A, Hoskins Green HL, Hart SJ. L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Front Immunol 2019; 10:1068. [PMID: 31139190 PMCID: PMC6527602 DOI: 10.3389/fimmu.2019.01068] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
L-selectin (CD62L) is a type-I transmembrane glycoprotein and cell adhesion molecule that is expressed on most circulating leukocytes. Since its identification in 1983, L-selectin has been extensively characterized as a tethering/rolling receptor. There is now mounting evidence in the literature to suggest that L-selectin plays a role in regulating monocyte protrusion during transendothelial migration (TEM). The N-terminal calcium-dependent (C-type) lectin domain of L-selectin interacts with numerous glycans, including sialyl Lewis X (sLex) for tethering/rolling and proteoglycans for TEM. Although the signals downstream of L-selectin-dependent adhesion are poorly understood, they will invariably involve the short 17 amino acid cytoplasmic tail. In this review we will detail the expression of L-selectin in different immune cell subsets, and its influence on cell behavior. We will list some of the diverse glycans known to support L-selectin-dependent adhesion, within luminal and abluminal regions of the vessel wall. We will describe how each domain within L-selectin contributes to adhesion, migration and signal transduction. A significant focus on the L-selectin cytoplasmic tail and its proposed contribution to signaling via the ezrin-radixin-moesin (ERM) family of proteins will be outlined. Finally, we will discuss how ectodomain shedding of L-selectin during monocyte TEM is essential for the establishment of front-back cell polarity, bestowing emigrated cells the capacity to chemotax toward sites of damage.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Hannah Louise Hoskins Green
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| | - Samuel James Hart
- King's College London, School of Cardiovascular Medicine and Sciences, BHF Center of Research Excellence, London, United Kingdom
| |
Collapse
|
2
|
Ivetic A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res 2018; 371:437-453. [PMID: 29353325 PMCID: PMC5820395 DOI: 10.1007/s00441-017-2774-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
L-selectin is a type I transmembrane cell adhesion molecule expressed on most circulating leukocytes, including neutrophils. Engagement of L-selectin with endothelial-derived ligands initiates neutrophil tethering and rolling behaviour along luminal walls of post-capillary venules, constituting the first step of the multi-step adhesion cascade. There is a large body of evidence to suggest that signalling downstream of L-selectin can influence neutrophil behaviour: adhesion, migration and priming. This review will cover aspects of L-selectin form and function and introduce the “triad of L-selectin regulation”, highlighting the inextricable links between adhesion, signalling and ectodomain shedding and also highlighting the cytosolic proteins that interconnect them. Recent advances in how L-selectin impacts priming, transendothelial migration (TEM) and cell polarity will also be discussed.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- BHF Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, James Black Centre 125, Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
3
|
Ishida H, Nguyen LT, Gopal R, Aizawa T, Vogel HJ. Overexpression of Antimicrobial, Anticancer, and Transmembrane Peptides in Escherichia coli through a Calmodulin-Peptide Fusion System. J Am Chem Soc 2016; 138:11318-26. [DOI: 10.1021/jacs.6b06781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hiroaki Ishida
- Biochemistry
Research Group,
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Leonard T. Nguyen
- Biochemistry
Research Group,
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ramamourthy Gopal
- Biochemistry
Research Group,
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Tomoyasu Aizawa
- Biochemistry
Research Group,
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hans J. Vogel
- Biochemistry
Research Group,
Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
4
|
Distinct Intracellular Domain Substrate Modifications Selectively Regulate Ectodomain Cleavage of NRG1 or CD44. Mol Cell Biol 2015. [PMID: 26217011 DOI: 10.1128/mcb.00500-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ectodomain cleavage by A-disintegrin and -metalloproteases (ADAMs) releases many important biologically active substrates and is therefore tightly controlled. Part of the regulation occurs on the level of the enzymes and affects their cell surface abundance and catalytic activity. ADAM-dependent proteolysis occurs outside the plasma membrane but is mostly controlled by intracellular signals. However, the intracellular domains (ICDs) of ADAM10 and -17 can be removed without consequences for induced cleavage, and so far it is unclear how intracellular signals address cleavage. We therefore explored whether substrates themselves could be chosen for proteolysis via ICD modification. We report here that CD44 (ADAM10 substrate), a receptor tyrosine kinase (RTK) coreceptor required for cellular migration, and pro-NRG1 (ADAM17 substrate), which releases the epidermal growth factor (EGF) ligand neuregulin required for axonal outgrowth and myelination, are indeed posttranslationally modified at their ICDs. Tetradecanoyl phorbol acetate (TPA)-induced CD44 cleavage requires dephosphorylation of ICD serine 291, while induced neuregulin release depends on the phosphorylation of several NRG1-ICD serines, in part mediated by protein kinase Cδ (PKCδ). Downregulation of PKCδ inhibits neuregulin release and reduces ex vivo neurite outgrowth and myelination of trigeminal ganglion explants. Our results suggest that specific selection among numerous substrates of a given ADAM is determined by ICD modification of the substrate.
Collapse
|
5
|
Jing Y, Ni Z, Wu J, Higgins L, Markowski TW, Kaufman DS, Walcheck B. Identification of an ADAM17 cleavage region in human CD16 (FcγRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS One 2015; 10:e0121788. [PMID: 25816339 PMCID: PMC4376770 DOI: 10.1371/journal.pone.0121788] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
CD16a and CD16b are IgG Fc receptors expressed by human natural killer (NK) cells and neutrophils, respectively. Both CD16 isoforms undergo a rapid down-regulation in expression by ADAM17-mediated proteolytic cleavage upon cell activation by various stimuli. We examined soluble CD16 released from activated NK cells and neutrophils by mass spectrometric analysis, and identified three separate cleavage sites in close proximity at P1/P1′ positions alanine195/valine196, valine196/serine197, and threonine198/isoleucine199, revealing a membrane proximal cleavage region in CD16. Substitution of the serine at position 197 in the middle of the cleavage region for a proline (S197P) effectively blocked CD16a and CD16b cleavage in cell-based assays. We also show that CD16a/S197P was resistant to cleavage when expressed in the human NK cell line NK92 and primary NK cells derived from genetically-engineered human induced pluripotent stem cells. CD16a is a potent activating receptor and despite blocking CD16a shedding, the S197P mutation did not disrupt IgG binding by the receptor or its activation of NK92 cells by antibody-treated tumor cells. Our findings provide further characterization of CD16 cleavage by ADAM17 and they demonstrate that a non-cleavable version of CD16a can be expressed in engineered NK cells.
Collapse
Affiliation(s)
- Yawu Jing
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
| | - Zhenya Ni
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
| | - Todd W. Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
| | - Dan S. Kaufman
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis and St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
6
|
Möller-Hackbarth K, Dewitz C, Schweigert O, Trad A, Garbers C, Rose-John S, Scheller J. A disintegrin and metalloprotease (ADAM) 10 and ADAM17 are major sheddases of T cell immunoglobulin and mucin domain 3 (Tim-3). J Biol Chem 2013; 288:34529-44. [PMID: 24121505 DOI: 10.1074/jbc.m113.488478] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4(+) and CD8(+) effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu(181)-Asp(190) of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14(+) monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14(+) monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14(+) monocytes.
Collapse
Affiliation(s)
- Katja Möller-Hackbarth
- From the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24098 Kiel, Germany and
| | | | | | | | | | | | | |
Collapse
|
7
|
Deng W, Cho S, Li R. FERM domain of moesin desorbs the basic-rich cytoplasmic domain of l-selectin from the anionic membrane surface. J Mol Biol 2013; 425:3549-62. [PMID: 23796515 DOI: 10.1016/j.jmb.2013.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023]
Abstract
Moesin and calmodulin (CaM) jointly associate with the cytoplasmic domain of l-selectin in the cell to modulate the function and ectodomain shedding of l-selectin. Using fluorescence spectroscopy, we have examined the association of moesin FERM domain with the recombinant transmembrane and cytoplasmic domains of l-selectin (CLS) reconstituted in model phospholipid liposomes. The dissociation constant of moesin FERM domain to CLS in the phosphatidylcholine liposome is about 300nM. In contrast to disrupting the CaM association with CLS, inclusion of anionic phosphatidylserine lipids in the phosphatidylcholine liposome increased the apparent binding affinity of moesin FERM domain for CLS. Using the environmentally sensitive fluorescent probe attached to the cytoplasmic domain of CLS and the nitroxide quencher attached to the lipid bilayer, we showed that the association of moesin FERM domain induced the desorption of the basic-rich cytoplasmic domain of CLS from the anionic membrane surface, which enabled subsequent association of CaM to the cytoplasmic domain of CLS. These results have elucidated the molecular basis for the moesin/l-selectin/CaM ternary complex and suggested an important role of phospholipids in modulating l-selectin function and shedding.
Collapse
Affiliation(s)
- Wei Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Room 440, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
8
|
Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc Natl Acad Sci U S A 2013; 110:9776-81. [PMID: 23720309 DOI: 10.1073/pnas.1307478110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ectodomain cleavage of cell-surface proteins by A disintegrin and metalloproteinases (ADAMs) is highly regulated, and its dysregulation has been linked to many diseases. ADAM10 and ADAM17 cleave most disease-relevant substrates. Broad-spectrum metalloprotease inhibitors have failed clinically, and targeting the cleavage of a specific substrate has remained impossible. It is therefore necessary to identify signaling intermediates that determine substrate specificity of cleavage. We show here that phorbol ester or angiotensin II-induced proteolytic release of EGF family members may not require a significant increase in ADAM17 protease activity. Rather, inducers activate a signaling pathway using PKC-α and the PKC-regulated protein phosphatase 1 inhibitor 14D that is required for ADAM17 cleavage of TGF-α, heparin-binding EGF, and amphiregulin. A second pathway involving PKC-δ is required for neuregulin (NRG) cleavage, and, indeed, PKC-δ phosphorylation of serine 286 in the NRG cytosolic domain is essential for induced NRG cleavage. Thus, signaling-mediated substrate selection is clearly distinct from regulation of enzyme activity, an important mechanism that offers itself for application in disease.
Collapse
|
9
|
Deng W, Putkey JA, Li R. Calmodulin adopts an extended conformation when interacting with L-selectin in membranes. PLoS One 2013; 8:e62861. [PMID: 23658780 PMCID: PMC3642142 DOI: 10.1371/journal.pone.0062861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 03/26/2013] [Indexed: 01/19/2023] Open
Abstract
Calmodulin, an intracellular calcium-binding protein, is thought to regulate ectodomain shedding of many membrane proteins, but the underlying molecular mechanism has remained unclear. Basing on a solution structure of calcium-loaded calmodulin in complex with a L-selectin fragment that contains a portion of its transmembrane domain, Gifford et al. (University of Calgary) recently suggested that calmodulin regulates L-selectin shedding by binding directly to a portion of the L-selectin transmembrane domain in a compact conformation. Using fluorescently labeled calmodulin, we show however that calmodulin adopts a distinctly different and much more extended conformation when it binds to the CLS peptide (i.e. the entire transmembrane and cytoplasmic domains of L-selectin) reconstituted in the phosphatidylcholine liposome with micromolar dissociation constant and in a calcium-independent manner. Calmodulin adopts a similarly extended conformation in a ternary complex with the N-terminal FERM domain of moesin and CLS reconstituted in the phospholipid liposome that mimics the native membrane environment. These results indicate that calmodulin does not bind directly to the transmembrane domain of L-selectin. Understanding the association of calmodulin with L-selectin helps to shed light on the mechanisms underlying regulation of ectodomain shedding.
Collapse
Affiliation(s)
- Wei Deng
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - John A. Putkey
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gifford JL, Ishida H, Vogel HJ. Structural insights into calmodulin-regulated L-selectin ectodomain shedding. J Biol Chem 2012; 287:26513-27. [PMID: 22711531 DOI: 10.1074/jbc.m112.373373] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The L-selectin glycoprotein receptor mediates the initial steps of leukocyte migration into secondary lymphoid organs and sites of inflammation. Following cell activation through the engagement of G-protein-coupled receptors or immunoreceptors, the extracellular domains of L-selectin are rapidly shed, a process negatively controlled via the binding of the ubiquitous eukaryotic calcium-binding protein calmodulin to the cytoplasmic tail of L-selectin. Here we present the solution structure of calcium-calmodulin bound to a peptide encompassing the cytoplasmic tail and part of the transmembrane domain of L-selectin. The structure and accompanying biophysical study highlight the importance of both calcium and the transmembrane segment of L-selectin in the interaction between these two proteins, suggesting that by binding this region, calmodulin regulates in an "inside-out" fashion the ectodomain shedding of the receptor. Our structure provides the first molecular insight into the emerging new role for calmodulin as a transmembrane signaling partner.
Collapse
Affiliation(s)
- Jessica L Gifford
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
11
|
2-Aminoethoxydiphenyl borate (2-APB) reduces respiratory burst, MMP-9 release and CD11b expression, and increases l-selectin shedding in bovine neutrophils. Res Vet Sci 2012; 92:103-10. [DOI: 10.1016/j.rvsc.2010.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/10/2010] [Accepted: 10/12/2010] [Indexed: 11/21/2022]
|
12
|
Scott AJ, O'Dea KP, O'Callaghan D, Williams L, Dokpesi JO, Tatton L, Handy JM, Hogg PJ, Takata M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem 2011; 286:35466-35476. [PMID: 21865167 DOI: 10.1074/jbc.m111.277434] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α-converting enzyme (TACE) is responsible for the shedding of cell surface TNF. Studies suggest that reactive oxygen species (ROS) mediate up-regulation of TACE activity by direct oxidization or modification of the protein. However, these investigations have been largely based upon nonphysiological stimulation of promonocytic cell lines which may respond and process TACE differently from primary cells. Furthermore, investigators have relied upon TACE substrate shedding as a surrogate for activity quantification. We addressed these concerns, employing a direct, cell-based fluorometric assay to investigate the regulation of TACE catalytic activity on freshly isolated primary human monocytes during LPS stimulation. We hypothesized that ROS mediate up-regulation of TACE activity indirectly, by activation of intracellular signaling pathways. LPS up-regulated TACE activity rapidly (within 30 min) without changing cell surface TACE expression. Scavenging of ROS or inhibiting their production by flavoprotein oxidoreductases significantly attenuated LPS-induced TACE activity up-regulation. Exogenous ROS (H(2)O(2)) also up-regulated TACE activity with similar kinetics and magnitude as LPS. H(2)O(2)- and LPS-induced TACE activity up-regulation were effectively abolished by a variety of selective p38 MAPK inhibitors. Activation of p38 was redox-sensitive as H(2)O(2) caused p38 phosphorylation, and ROS scavenging significantly reduced LPS-induced phospho-p38 expression. Inhibition of the p38 substrate, MAPK-activated protein kinase 2, completely attenuated TACE activity up-regulation, whereas inhibition of ERK had little effect. Lastly, inhibition of cell surface oxidoreductases prevented TACE activity up-regulation distal to p38 activation. In conclusion, our data indicate that in primary human monocytes, ROS mediate LPS-induced up-regulation of TACE activity indirectly through activation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Alasdair J Scott
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - David O'Callaghan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Justina O Dokpesi
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Louise Tatton
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Jonathan M Handy
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Philip J Hogg
- Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| |
Collapse
|
13
|
Deng W, Srinivasan S, Zheng X, Putkey JA, Li R. Interaction of calmodulin with L-selectin at the membrane interface: implication on the regulation of L-selectin shedding. J Mol Biol 2011; 411:220-33. [PMID: 21664913 DOI: 10.1016/j.jmb.2011.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 12/18/2022]
Abstract
The calmodulin (CaM) hypothesis of ectodomain shedding stipulates that CaM, an intracellular Ca²⁺-dependent regulatory protein, associates with the cytoplasmic domain of L-selectin to regulate ectodomain shedding of L-selectin on the other side of the plasma membrane. To understand the underlying molecular mechanism, we have characterized the interactions of CaM with two peptides derived from human L-selectin. The peptide ARR18 corresponds to the entire cytoplasmic domain of L-selectin (residues Ala317-Tyr334 in the mature protein), and CLS corresponds to residues Lys280-Tyr334, which contains the entire transmembrane and cytoplasmic domains of l-selectin. Monitoring the interaction by fluorescence spectroscopy and other biophysical techniques, we found that CaM can bind to ARR18 in aqueous solutions or the L-selectin cytoplasmic domain of CLS reconstituted in the phosphatidylcholine bilayer, both with an affinity of approximately 2 μM. The association is calcium independent and dynamic and involves both lobes of CaM. In a phospholipid bilayer, the positively charged L-selectin cytoplasmic domain of CLS is associated with anionic phosphatidylserine (PS) lipids at the membrane interface through electrostatic interactions. Under conditions where the PS content mimics that in the inner leaflet of the cell plasma membrane, the interaction between CaM and CLS becomes undetectable. These results suggest that the association of CaM with L-selectin in the cell can be influenced by the membrane bilayer and that anionic lipids may modulate ectodomain shedding of transmembrane receptors.
Collapse
Affiliation(s)
- Wei Deng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
14
|
Wedepohl S, Beceren-Braun F, Riese S, Buscher K, Enders S, Bernhard G, Kilian K, Blanchard V, Dernedde J, Tauber R. L-selectin--a dynamic regulator of leukocyte migration. Eur J Cell Biol 2011; 91:257-64. [PMID: 21546114 DOI: 10.1016/j.ejcb.2011.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 01/13/2023] Open
Abstract
The leukocytic cell adhesion receptor L-selectin mediates the initial step of the adhesion cascade, the capture and rolling of leukocytes on endothelial cells. This event enables leukocytes to migrate out of the vasculature into surrounding tissues during inflammation and immune surveillance. Distinct domains of L-selectin contribute to proper leukocyte migration. In this review, we discuss the contributions of these domains with respect to L-selectin function: the regulation by serine phosphorylation of the cytoplasmic tail, the role of the transmembrane domain in receptor positioning on the cell surface as well as the N-glycosylation of the extracellular part and the identification of novel binding partners.
Collapse
Affiliation(s)
- Stefanie Wedepohl
- Zentralinstitut für Laboratoriumsmedizin und Pathobiochemie, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 2010; 293:925-37. [PMID: 20503387 DOI: 10.1002/ar.20757] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
16
|
Mo X, Nguyen NX, Mu FT, Yang W, Luo SZ, Fan H, Andrews RK, Berndt MC, Li R. Transmembrane and trans-subunit regulation of ectodomain shedding of platelet glycoprotein Ibalpha. J Biol Chem 2010; 285:32096-104. [PMID: 20716526 DOI: 10.1074/jbc.m110.111864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ectodomain shedding of transmembrane proteins may be regulated by their cytoplasmic domains. To date, the effecting cytoplasmic domain and the shed extracellular domain have been in the same polypeptide. In this study, shedding of GPIbα, the ligand-binding subunit of the platelet GPIb-IX complex and a marker for platelet senescence and storage lesion, was assessed in Chinese hamster ovary cells with/without functional GPIbα sheddase ADAM17. Mutagenesis of the GPIb-IX complex, which contains GPIbα, GPIbβ, and GPIX subunits, revealed that the intracellular membrane-proximal calmodulin-binding region of GPIbβ is critical for ADAM17-dependent shedding of GPIbα induced by the calmodulin inhibitor, W7. Perturbing the interaction between GPIbα and GPIbβ subunits further lessened the restraint of GPIbβ on GPIbα shedding. However, contrary to the widely accepted model of calmodulin regulation of ectodomain shedding, the R152E/L153E mutation in the GPIbβ cytoplasmic domain disrupted calmodulin binding to GPIbβ but had little effect on GPIbα shedding. Analysis of induction of GPIbα shedding by membrane-permeable GPIbβ-derived peptides implicated the association of GPIbβ with an unidentified intracellular protein in mediating regulation of GPIbα shedding. Overall, these results provide evidence for a novel trans-subunit mechanism for regulating ectodomain shedding.
Collapse
Affiliation(s)
- Xi Mo
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Zhang AC, Ni Z, Herrera A, Walcheck B. ADAM17 activity and other mechanisms of soluble L-selectin production during death receptor-induced leukocyte apoptosis. THE JOURNAL OF IMMUNOLOGY 2010; 184:4447-54. [PMID: 20220092 DOI: 10.4049/jimmunol.0902925] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-selectin is an adhesion molecule expressed by neutrophils that broadly directs their infiltration in to sites of inflammation. It is also present at relatively high levels in the serum of normal individuals. It is well established that L-selectin is efficiently shed from the surface of neutrophils upon their activation, a process that regulates its density and binding activity. Neutrophil programmed cell death is critical for the resolution of inflammation, and L-selectin downregulation is induced during this process as well. The mechanisms underpinning this latter process are much less understood, and were investigated in this study. Using a disintegrin and metalloprotease (ADAM)-17 radiation chimeric mice, we demonstrate for the first time that during early events of death receptor-mediated neutrophil apoptosis, L-selectin downregulation occurs primarily by ADAM17-mediated shedding. This was observed as well upon using shRNA to knock down ADAM17 expression in Jurkat cells, a well-studied cell line in terms of the molecular processes involved in the induction of apoptosis. These findings directly reveal that ADAM17 activity occurs during programmed cell death. Hence, the cleavage of particular ADAM17 substrates may be an additional component of the anti-inflammatory program initiated by apoptotic neutrophils. Of interest was that during later stages of induced leukocyte apoptosis, soluble L-selectin production occurred independent of ADAM17, as well as membrane events, such as blebbing and microparticle production. This process may provide an explanation for the lack of diminished serum L-selectin levels in ADAM17-null mice, and suggests a mechanism for the homeostatic maintenance of soluble L-selectin levels in the blood of healthy individuals.
Collapse
Affiliation(s)
- Yue Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
18
|
Ni Z, Walcheck B. Cutaneous lymphocyte-associated antigen (CLA) T cells up-regulate P-selectin ligand expression upon their activation. Clin Immunol 2009; 133:257-64. [PMID: 19665434 DOI: 10.1016/j.clim.2009.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/16/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
Memory T cells expressing CLA occur in humans and accumulate in normal and inflamed skin. These cells uniformly bind to the vascular adhesion molecule E-selectin, yet only a subset binds to P-selectin. The latter cells are distinguished by the mAb CHO-131, and are enriched in psoriasis lesions. Activated T cells up-regulate CLA expression, but little is currently known about their binding to P-selectin. We observed that CLA(+) CD4(+) T cells derived from stimulated naive T cells uniformly express the CHO-131 epitope. This occurred as well upon the restimulation of memory CLA(+) CD4(+) T cells. The latter cells also expressed higher levels of PSGL-1 modified by P-selectin glycan ligands; C2GlcNAcT-1 mRNA, a glycosyltransferase critical for such glycan synthesis; and more uniformly bound to P-selectin. Our findings thus indicate that unlike memory CLA(+) CD4(+) T cells, when activated these cells can broadly bind to P-selectin, suggesting a more diverse tissue trafficking capacity.
Collapse
Affiliation(s)
- Zhenya Ni
- The Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
19
|
Wang Y, Herrera AH, Li Y, Belani KK, Walcheck B. Regulation of mature ADAM17 by redox agents for L-selectin shedding. THE JOURNAL OF IMMUNOLOGY 2009; 182:2449-57. [PMID: 19201900 DOI: 10.4049/jimmunol.0802770] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
L-selectin is constitutively expressed by neutrophils and plays a key role in directing these cells to sites of inflammation. Upon neutrophil activation, L-selectin is rapidly and efficiently down-regulated from the cell surface by ectodomain shedding. We have directly shown that A disintegrin and metalloprotease 17 (ADAM17) is a primary and nonredundant sheddase of L-selection by activated neutrophils in vivo. Following cell activation, intracellular signals lead to the induction of ADAM17's enzymatic activity; however, the target of this inducer mechanism remains unclear. Our study provides evidence of an activation mechanism that involves the extracellular region of the mature form of cell surface ADAM17 and not its intracellular region. We demonstrate that the catalytic activity of purified ADAM17 lacking a prodomain and its intracellular region is diminished under mild reducing conditions by DTT and enhanced by H(2)O(2) oxidation. Moreover, H(2)O(2) reversed ADAM17 inhibition by DTT. The treatment of neutrophils with H(2)O(2) also induced L-selectin shedding in an ADAM17-dependent manner. These findings suggest that thiol-disulfide conversion occurring in the extracellular region of ADAM17 may be involved in its activation. An analysis of ADAM17 revealed that within its disintegrin/cysteine-rich region are two highly conserved, vicinal cysteine sulfhydryl motifs (cysteine-X-X-cysteine), which are well-characterized targets for thiol-disulfide exchange in various other proteins. Using a cell-based ADAM17 reconstitution assay, we demonstrate that the cysteine-X-X-cysteine motifs are critical for L-selectin cleavage. Taken together, our findings suggest that reduction-oxidation modifications of cysteinyl sulfhydryl groups in mature ADAM17 may serve as a mechanism for regulating the shedding of L-selectin following neutrophil stimulation.
Collapse
Affiliation(s)
- Yue Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
20
|
Hayashida K, Stahl PD, Park PW. Syndecan-1 ectodomain shedding is regulated by the small GTPase Rab5. J Biol Chem 2008; 283:35435-44. [PMID: 18957427 DOI: 10.1074/jbc.m804172200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ectodomain shedding of syndecan-1, a major cell surface heparan sulfate proteoglycan, modulates molecular and cellular processes central to the pathogenesis of inflammatory diseases. Syndecan-1 shedding is a highly regulated process in which outside-in signaling accelerates the proteolytic cleavage of syndecan-1 ectodomains at the cell surface. Several extracellular agonists that induce syndecan-1 shedding and metalloproteinases that cleave syndecan-1 ectodomains have been identified, but the intracellular mechanisms that regulate syndecan-1 shedding are largely unknown. Here we examined the role of the syndecan-1 cytoplasmic domain in the regulation of agonist-induced syndecan-1 shedding. Our results showed that the syndecan-1 cytoplasmic domain is essential because mutation of invariant cytoplasmic Tyr residues abrogates ectodomain shedding, but not because it is Tyr phosphorylated upon shedding stimulation. Instead, our data showed that the syndecan-1 cytoplasmic domain binds to Rab5, a small GTPase that regulates intracellular trafficking and signaling events, and this interaction controls the onset of syndecan-1 shedding. Syndecan-1 cytoplasmic domain bound specifically to Rab5 and preferentially to inactive GDP-Rab5 over active GTP-Rab5, and shedding stimulation induced the dissociation of Rab5 from the syndecan-1 cytoplasmic domain. Moreover, the expression of dominant-negative Rab5, unable to exchange GDP for GTP, interfered with the agonist-induced dissociation of Rab5 from the syndecan-1 cytoplasmic domain and significantly inhibited syndecan-1 shedding induced by several distinct agonists. Based on these data, we propose that Rab5 is a critical regulator of syndecan-1 shedding that serves as an on-off molecular switch through its alternation between the GDP-bound and GTP-bound forms.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
21
|
Furukawa Y, Umemoto E, Jang MH, Tohya K, Miyasaka M, Hirata T. Identification of novel isoforms of mouse L-selectin with different carboxyl-terminal tails. J Biol Chem 2008; 283:12112-9. [PMID: 18332130 DOI: 10.1074/jbc.m801745200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte adhesion molecule L-selectin mediates the recruitment of lymphocytes to secondary lymphoid organs and is involved in the accumulation of neutrophils at sites of inflammation. In this study, we report the identification of novel isoforms of the mouse L-selectin gene, termed L-selectin-v1 and L-selectin-v2. Sequence analysis revealed that these isoforms are generated by alternative splicing: the L-selectin-v2 transcript includes a previously unknown exon of 100 bp located between the 7th and 8th exons of the mouse L-selectin gene, while the L-selectin-v1 transcript contains the first 49-bp sequence of this new exon. The insertion of each new sequence adds a downstream reading frame, giving rise to predicted proteins that differ in their carboxyl-terminal tails. These splice variants were found in cells that express conventional L-selectin, termed L-selectin-c, including B and T lymphocytes and granulocytes. Functionally, like L-selectin-c, both L-selectin-v1 and L-selectin-v2 expressed in cultured cells underwent phorbol ester-induced shedding, although L-selectin-v1 and L-selectin-v2 were shed to a greater and lesser degree, respectively, than L-selectin-c. Under flow conditions, both L-selectin-v1 and L-selectin-v2 mediated faster cell rolling than did L-selectin-c. In addition, ligation of L-selectin-c and L-selectin-v1, but not L-selectin-v2, induced p38 mitogen-activated protein kinase phosphorylation. These results suggest that alternative splicing is one mechanism for generating functional diversity in L-selectin.
Collapse
Affiliation(s)
- Yuko Furukawa
- The 21st Century Center of Excellence Program, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Schaff U, Mattila PE, Simon SI, Walcheck B. Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J Leukoc Biol 2007; 83:99-105. [DOI: 10.1189/jlb.0507304] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
23
|
Duchesneau P, Gallagher E, Walcheck B, Waddell TK. Up-regulation of leukocyte CXCR4 expression by sulfatide: An L-selectin-dependent pathway on CD4+ T cells. Eur J Immunol 2007; 37:2949-60. [PMID: 17853408 DOI: 10.1002/eji.200737118] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CXCR4 plays significant roles in immune and inflammatory responses and is important for selective recruitment of leukocytes. We previously showed that CXCR4 surface expression of human lymphocytes was affected by sulfatide, an in vivo ligand for L-selectin. Increased CXCR4 expression was shown to promote biologically relevant functions such as integrin-dependent adhesion and transmigration. Here, we show that sulfatide-induced CXCR4 up-regulation also occurs on other leukocyte subsets in humans and mice. B cells and CD4(+)CD25(+) T cells had the highest CXCR4 up-regulation after sulfatide stimulation. Transfection of L-selectin was sufficient for K562 cells to acquire sulfatide-induced CXCR4 up-regulation, while analysis of L-selectin knockout mice revealed that this response was critically L-selectin dependent only for CD4(+) T cells, suggesting an alternative pathway in CD8(+) T cells and B cells. Sulfatide triggered several intracellular signaling events in CD4(+) T cells, but only tyrosine kinase activation, including members of the Src family, were essential for L-selectin to CXCR4 signaling. CXCR4 up-regulation was rapid, enhanced CXCL12-induced signaling and increased chemotaxis toward CXCL12, and therefore has potentially important roles in vivo. Thus, the response to CXCL12 depends in part on tissue expression of sulfatide and, specifically in CD4(+) T cells, also depends on the surface level of L-selectin.
Collapse
Affiliation(s)
- Pascal Duchesneau
- Division of Thoracic Surgery, The Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
24
|
Ahmad I, Hoessli DC, Gupta R, Walker-Nasir E, Rafik SM, Choudhary MI, Shakoori AR. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: implications for biological function. J Cell Biochem 2007; 100:1558-72. [PMID: 17230456 DOI: 10.1002/jcb.21156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Post-translational modifications provide the proteins with the possibility to perform functions in addition to those determined by their primary sequence. However, analysis of multifunctional protein structures in the environment of cells and body fluids is made especially difficult by the presence of other interacting proteins. Bioinformatics tools are therefore helpful to predict protein multifunctionality through the identification of serine and threonine residues wherein the hydroxyl group is likely to become modified by phosphorylation or glycosylation. Moreover, serines and threonines where both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes of the three selectins are based on the assumption that transitory and reversible protein modifications by phosphate and O-GlcNAc cause specific conformational changes and generate binding sites for other proteins. The computer-assisted prediction of glycosylation and phosphorylation sites in selectins should be helpful to assess the contribution of dynamic protein modifications in selectin-mediated inflammatory responses and cell-cell adhesion processes that are difficult to determine experimentally.
Collapse
Affiliation(s)
- Ishtiaq Ahmad
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan
| | | | | | | | | | | | | |
Collapse
|
25
|
Roda-Navarro P, Reyburn HT. Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J 2007; 21:1636-46. [PMID: 17314139 DOI: 10.1096/fj.06-7488rev] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immune synapses (IS) are supramolecular clusters providing intercellular communication among cells of the immune system. While the physiological role and consequences of IS formation are beginning to be understood, these studies have given rise to a new research topic in the biology of lymphocyte interactions: synaptic transfer of proteins between lymphocytes. During natural killer (NK) cell immunosurveillance, clustering and transfer of receptor and ligand molecules have been observed at both the inhibitory and cytotoxic NK cell immune synapse (NK-IS). The transfer of activating receptors seems to be associated with receptor distribution to thin membrane connective structures (MCS)/nanotubes that communicate effector and susceptible target cells. Strikingly, bidirectional transfer of the activating receptor NKG2D and its cellular ligand MICB correlates with a reduction in NK cell cytotoxic function. In this regard, synaptic uptake of MICB may represent a novel strategy of tumor immune evasion. Finally, synaptic acquisition of receptors by NK cells may also favor the spread of pathogens. In this review we discuss possible mechanisms of synaptic protein transfer and propose different testable hypotheses about the physiological and pathological significance of this process for NK cell function.
Collapse
|
26
|
Walcheck B, Herrera AH, St Hill C, Mattila PE, Whitney AR, Deleo FR. ADAM17 activity during human neutrophil activation and apoptosis. Eur J Immunol 2006; 36:968-76. [PMID: 16541467 DOI: 10.1002/eji.200535257] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Substrates of the metalloprotease ADAM17 (also known as TNF-alpha converting enzyme or TACE) undergo ectodomain shedding and include various inflammatory modulators. Though polymorphonuclear leukocytes contribute significantly to inflammation, direct analyses of ADAM17 on human neutrophils are very limited. In addition, the current understanding of the processes regulating ADAM17 activity primarily relate to its rapid activation. Therefore, to extend insights into the mechanisms of ADAM17 activity, we examined its surface expression and the shedding of its substrates during extended periods of neutrophil activation and apoptosis. Contrary to studies with immortalized hematopoietic cell lines, we report that surface expression of ADAM17 is maintained by human neutrophils activated with formyl peptides or by FcR/complement receptor-mediated phagocytosis. Interestingly, bacterial phagocytosis resulted in a significant increase in ADAM17 expression several hours after pathogen engulfment. We provide novel evidence that ADAM17 surface expression is also maintained during spontaneous and anti-Fas-induced neutrophil apoptosis. The well-validated ADAM17 substrates L-selectin and proTNF-alpha were shed efficiently by neutrophils under each of the conditions tested. Our data thus indicate prolonged ADAM17 expression during neutrophil effector functions. The implications of this may be a role by ADAM17 in both the induction and down-regulation of neutrophil activity.
Collapse
Affiliation(s)
- Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Aktas B, Pozgajova M, Bergmeier W, Sunnarborg S, Offermanns S, Lee D, Wagner DD, Nieswandt B. Aspirin Induces Platelet Receptor Shedding via ADAM17 (TACE). J Biol Chem 2005; 280:39716-22. [PMID: 16179345 DOI: 10.1074/jbc.m507762200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Aspirin is effective in the therapy of cardiovascular diseases, because it causes acetylation of cyclooxygenase 1 (COX-1) leading to irreversible inhibition of platelets. Additional mechanisms can be suspected, because patients treated with other platelet COX inhibitors such as indomethacin do not display an increased bleeding tendency as observed for aspirin-treated patients. Recently, aspirin and other anti-inflammatory drugs were shown to induce shedding of L-selectin in neutrophils in a metalloproteinase-dependent manner. Therefore, we investigated the effects of aspirin on the von Willebrand Factor receptor complex glycoprotein (GP) Ib-V-IX, whose lack or dysfunction causes bleeding in patients. As quantified by fluorescence-activated cell sorting analysis in whole blood, aspirin, but not its metabolite salicylic acid, induced dose-dependent shedding of human and murine GPIbalpha and GPV from the platelet surface, whereas other glycoproteins remained unaffected by this treatment. Biotinylated fragments of GPV were detected by immunoprecipitation in the supernatant of washed mouse platelets, and the expression level of GPIbalpha was decreased in these platelets as measured by Western blot analysis. Although shedding occurred normally in COX-1-deficient murine platelets, shedding was completely blocked by a broad-range metalloproteinase inhibitor and, more importantly, in mouse platelets expressing an inactive form of ADAM17. Shed fragments of GPIbalpha and GPV were elevated in the plasma of aspirin-injected mice compared with animals injected with control buffer. These data demonstrate that aspirin at high concentrations induces shedding of GPIbalpha and GPV by an ADAM17-dependent mechanism and that this process can occur in vivo.
Collapse
Affiliation(s)
- Barsom Aktas
- Rudolf Virchow Center for Experimental Biomedicine, Versbacherstrasse 9, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
L-selectin is a cell adhesion molecule consisting of a large, highly glycosylated, extracellular domain, a single spanning transmembrane domain and a small cytoplasmic tail. It is expressed on most leukocytes and is involved in their rolling on inflamed vascular endothelium prior to firm adhesion and transmigration. It is also required for the constitutive trafficking of lymphocytes through secondary lymphoid organs. Like most adhesion molecules, L-selectin function is regulated by a variety of mechanisms including gene transcription, post-translational modifications, association with the actin cytoskeleton, and topographic distribution. In addition, it is rapidly downregulated by proteolytic cleavage near the cell surface by ADAM-17 (TACE) and at least one other "sheddase". This process of "ectodomain shedding" results in the release of most of the extracellular portion of L-selectin from the cell surface while retaining the cytoplasmic, transmembrane, and eleven amino acids of the extracellular domain on the cell. This review will examine the mechanism(s) of L-selectin ectodomain shedding and discuss the physiological implications.
Collapse
Affiliation(s)
- D M Smalley
- Cardiovascular Research Center and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22908-1294, USA
| | | |
Collapse
|
29
|
Peterson MD, Jin R, Hyduk S, Duchesneau P, Cybulsky MI, Waddell TK. Monocyte adhesion to xenogeneic endothelium during laminar flow is dependent on alpha-Gal-mediated monocyte activation. THE JOURNAL OF IMMUNOLOGY 2005; 174:8072-81. [PMID: 15944315 DOI: 10.4049/jimmunol.174.12.8072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes are the predominant inflammatory cell recruited to xenografts and participate in delayed xenograft rejection. In contrast to allogeneic leukocytes that require up-regulation of endothelial adhesion molecules to adhere and emigrate into effector tissues, we demonstrate that human monocytes adhere rapidly to unstimulated xenogeneic endothelial cells. The major xenoantigen galactosealpha(1,3)galactosebeta(1,4)GlcNAc-R (alpha-gal) is abundantly expressed on xenogeneic endothelium. We have identified a putative receptor for alpha-gal on human monocytes that is a member of the C-type family of lectin receptors. Monocyte arrest under physiological flow conditions is regulated by alpha-gal, because cleavage or blockade results in a dramatic reduction in monocyte adhesion. Recruitment of human monocytes to unactivated xenogeneic endothelial cells requires both alpha(4) and beta(2) integrins on the monocyte; binding of alpha-gal to monocytes results in rapid activation of beta(2), but not alpha(4), integrins. Thus, activation of monocyte beta(2) integrins by alpha-gal expressed on xenogeneic endothelium provides a mechanism that may explain the dramatic accumulation of monocytes in vivo.
Collapse
Affiliation(s)
- Mark D Peterson
- Division of Cardiac Surgery, Department of Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Chattopadhyay S, Santhamma KR, Sengupta S, McCue B, Kinter M, Sen GC, Sen I. Calmodulin binds to the cytoplasmic domain of angiotensin-converting enzyme and regulates its phosphorylation and cleavage secretion. J Biol Chem 2005; 280:33847-55. [PMID: 16096279 DOI: 10.1074/jbc.m501718200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of cleavage secretion of the enzymatically active ectodomain of angiotensin-converting enzyme (ACE) is regulated by tyrosine phosphorylation of the protein and by the phorbol ester, phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. Here, we report that both calmodulin inhibitor (CaMI) and calmodulin kinase inhibitor could also enhance cleavage secretion of ACE. This effect was accompanied by the dissociation of calmodulin from a specific region within the cytoplasmic domain of ACE to which it had been bound. The same domain of ACE was phosphorylated, and both CaMI and PMA caused dephosphorylation of ACE as well. Mass spectrometric and mutational analyses identified Ser730 as the only phosphorylated residue in the cytoplasmic domain of ACE. The Ser730 --> Ala mutant of ACE was not phosphorylated, but it still bound calmodulin, and its cleavage secretion was enhanced by both CaMI and PMA. Similarly, when Ser730 was replaced by the phosphoserine mimetic, Asp, cleavage secretion of the resultant mutant remained susceptible to the enhancing effect of CaMI and PMA. These results demonstrate that, although CaMI and PMA can enhance both cleavage secretion of ACE and its dephosphorylation, the two effects are not mutually interdependent.
Collapse
Affiliation(s)
- Saurabh Chattopadhyay
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Wei W, Wei FC, Hung LM. Diazoxide ameliorates microcirculatory disturbances through PKC-dependent Pathway in I/R-injured rat cremaster muscles. J Biomed Sci 2005; 12:521-9. [PMID: 15959630 DOI: 10.1007/s11373-005-3730-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 12/28/2004] [Indexed: 11/29/2022] Open
Abstract
Diazoxide is a selective mitochondria ATP-sensitive potassium (K(ATP)) channel opener, which has been reported to preserve the microvascular integrity of ischemia-reperfusion (I/R)-injured tissues. Our study aimed to assess diazoxide's effects on I/R-injured cremaster muscles and to further elucidate its underlying mechanisms. Male Sprague Dawley (SD) rats were randomized (n = 8 per group) into four groups: sham-operated control group, I/R group (4 h of pudic epigastic artery ischemia followed by 2 h of reperfusion), diazoxide + I/R group, and chelerythrine (PKC inhibitor)+diazoxide+I/R group. Microscopically, we observed that I/R markedly increased the number of rolling, adhering, and transmigrating leukocytes. I/R also markedly decreased the number of functional capillaries. Biochemically, we found that I/R significantly increased TNF-alpha, E-selectin,L-selectin and P-selectin expressions. However, I/R did not cause significant changes in ICAM-1 and PECAM-1 expressions. On the other hand, in I/R + diazoxide group, we found that diazoxide reduced the number of rolling, adhering, and transmigrating leukocytes. Furthermore, biochemical study revealed that diazoxide caused only a decrease in L-selectin expression but had no effect on TNF-alpha, E-selectin, P-selectin, ICAM-1, and PECAM-1 expressions. Finally, in chelerythrine + diazoxide + I/R group, we observed that diazoxide's protective effects were blocked by the addition of chelerythrine. Diazoxide's ability to protect against I/R injury was confirmed by the observation that it reduced the number of rolling, adhering, and transmigrating leukocytes, and increased the number of functional capillaries. Our results indicated that diazoxide operated via a PKC-dependent pathway to achieve protection against I/R injury.
Collapse
Affiliation(s)
- William Wei
- Department of Life Science and Plastic & Reconstructive Surgery, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | | | | |
Collapse
|
32
|
Zou X, Shinde Patil VR, Dagia NM, Smith LA, Wargo MJ, Interliggi KA, Lloyd CM, Tees DFJ, Walcheck B, Lawrence MB, Goetz DJ. PSGL-1 derived from human neutrophils is a high-efficiency ligand for endothelium-expressed E-selectin under flow. Am J Physiol Cell Physiol 2005; 289:C415-24. [PMID: 15814589 DOI: 10.1152/ajpcell.00289.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) has been proposed as an important tethering ligand for E-selectin and is expressed at a modest level on human leukocytes. Sialyl Lewis x (sLe(x))-like glycans bind to E-selectin and are expressed at a relatively high level on circulating leukocytes. It is unclear whether PSGL-1 has unique biochemical attributes that contribute to its role as an E-selectin ligand. To probe this issue, we conjugated microspheres with either sLe(x) or PSGL-1 purified from myeloid cells (neutrophils and HL-60) and compared their adhesion to endothelial expressed E-selectin under defined shear conditions. We found that both sLe(x) and PSGL-1 microspheres adhere to 4 h of IL-1beta-activated human umbilical vein endothelial cells predominantly through E-selectin. Analysis of the adhesion revealed that the rate of initial tethering of the PSGL-1 microspheres to E-selectin was significantly greater than the rate of initial tethering of the sLe(x) microspheres despite the fact that the sLe(x) microspheres tested had higher ligand densities than the PSGL-1 microspheres. We also found that pretreatment of the PSGL-1 or sLe(x) microspheres with HECA-452 had no significant effect on initial tethering to E-selectin. These results support the hypotheses that 1) PSGL-1 is a high-efficiency tethering ligand for E-selectin, 2) ligand biochemistry can significantly influence initial tethering to E-selectin, and 3) PSGL-1 tethering to E-selectin can occur via non-HECA-452 reactive epitopes.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Department of Chemical Engineering, 172 Stocker Center, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mattila PE, Green CE, Schaff U, Simon SI, Walcheck B. Cytoskeletal interactions regulate inducible L-selectin clustering. Am J Physiol Cell Physiol 2005; 289:C323-32. [PMID: 15788481 DOI: 10.1152/ajpcell.00603.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
L-selectin (CD62L) amplifies neutrophil capture within the microvasculature at sites of inflammation. Activation by G protein-coupled stimuli or through ligation of L-selectin promotes clustering of L-selectin and serves to increase its adhesiveness, signaling, and colocalization with beta(2)-integrins. Currently, little is known about the molecular process regulating the lateral mobility of L-selectin. On neutrophil stimulation, a progressive change takes place in the organization of its plasma membrane, resulting in membrane domains that are characteristically enriched in glycosyl phosphatidylinositol (GPI)-anchored proteins and exclude the transmembrane protein CD45. Clustering of L-selectin, facilitated by E-selectin engagement or antibody cross-linking, resulted in its colocalization with GPI-anchored CD55, but not with CD45 or CD11c. Disrupting microfilaments in neutrophils or removing a conserved cationic motif in the cytoplasmic domain of L-selectin increased its mobility and membrane domain localization in the plasma membrane. In addition, the conserved element was critical for L-selectin-dependent tethering under shear flow. Our data indicate that L-selectin's lateral mobility is regulated by interactions with the actin cytoskeleton that in turn fortifies leukocyte tethering. We hypothesize that both membrane mobility and stabilization augment L-selectin's effector functions and are regulated by dynamic associations with membrane domains and the actin cytoskeleton.
Collapse
Affiliation(s)
- Polly E Mattila
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
34
|
St Hill CA, Bullard KM, Walcheck B. Expression of the high-affinity selectin glycan ligand C2-O-sLeX by colon carcinoma cells. Cancer Lett 2005; 217:105-13. [PMID: 15596301 DOI: 10.1016/j.canlet.2004.06.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 05/28/2004] [Accepted: 06/11/2004] [Indexed: 12/14/2022]
Abstract
The selectin family of adhesion proteins directs leukocytes in the blood to lymphoid organs and sites of inflammation, and is also thought to be involved in the dissemination of carcinomas expressing sialylated Lewis glycan structures, such as sialyl-Lewis X (sLeX). The expression of core 2 beta1,6 N-acetylglucosaminyltransferase (C2GnT) by leukocytes allows for the biosynthesis of core 2 O-glycans that when terminated by sLeX can serve as high-affinity selectin glycan ligands. In particular, the sLeX-modified core 2 O-glycan structure C2-O-sLeX has been directly demonstrated to confer significantly higher affinity selectin binding than sLeX. We have recently described the reactivity of the mAb CHO-131, which is dependent on the enzymes alpha2,3-sialyltransferase, alpha1,3-fucosyltransferase, and C2GnT, and specifically recognizes the glycan structure C2-O-sLeX. Here we examined a defined pair of colon carcinoma cell lines that are distinct in their capacity to bind E-selectin, as demonstrated by shear flow assays involving whole blood and shear stresses that occur in the microvasculature. CHO-131 demonstrated reactivity with such cancer cells, but only with the cell line that avidly attached to E-selectin. Hence, we demonstrate for the first time the detection of C2-O-sLeX on colon carcinoma cells, which, as with leukocytes, may be directly relevant to the expression of high affinity glycan ligands for the selectins.
Collapse
Affiliation(s)
- Catherine A St Hill
- Department of Veterinary and Biomedical Sciences, University of Minnesota-Twin Cities campuses, Minneapolis/St. Paul, MN 55108, USA
| | | | | |
Collapse
|
35
|
Bélanger SD, St-Pierre Y. Role of selectins in the triggering, growth, and dissemination of T-lymphoma cells: implication of L-selectin in the growth of thymic lymphoma. Blood 2005; 105:4800-6. [PMID: 15705798 DOI: 10.1182/blood-2004-04-1406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We previously showed that intercellular adhesion molecule-1 (ICAM-1) expression by the host is essential for lymphoma dissemination. Because selectins usually act in a coordinated fashion with ICAM-1 in the recruitment of circulating normal cells, we investigated their implication in lymphomagenesis and metastasis. Using selectin-deficient mice, we found that though the absence of E-, P-, or L-selectins did not affect the triggering of radiation-induced thymic lymphoma, the absence of L-selectin on lymphoma cells reduced their capacity to grow in the thymus. This defect, however, was overcome by altering the integrity of the L-selectin-mediated interactions in the thymus, as shown in L-selectin-deficient mice and by adoptive transfer experiments. We also found that lack of selectin expression by the host significantly delayed the dissemination of lymphomas to peripheral tissues. This resistance of selectin-deficient mice to lymphoma metastasis was dependent on the intrinsic properties of lymphoma cells because highly tumorigenic variants were insensitive to the absence of selectins. Observations that lymphoma cells disseminate with the same efficiency in normal and selectin-deficient mice suggest that selectins exert their influence at the posthoming stage of metastasis, as does ICAM-1. These results provide definitive evidence that selectins play a significant role at different steps of T-cell lymphoma development.
Collapse
Affiliation(s)
- Simon D Bélanger
- Institut National de la Recherche Scientifique, Université du Québec, Laval, Canada
| | | |
Collapse
|
36
|
Mascarell L, Truffa-Bachi P. T lymphocyte activation initiates the degradation of the CD62L encoding mRNA and increases the transcription of the corresponding gene. Immunol Lett 2005; 94:115-22. [PMID: 15234543 DOI: 10.1016/j.imlet.2004.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/19/2004] [Accepted: 04/19/2004] [Indexed: 11/19/2022]
Abstract
Following T-cell activation, CD62L, a member of the selectin family of cell adhesion molecules, is proteolytically cleaved by a constitutive endoprotease and subsequently re-expressed. To define whether the cleavage regulates CD62L gene transcription, we have analyzed the outcome of T-cell activation on the level of CD62L gene transcription and mRNA stability. Here, we report that CD62L shedding correlates with the concomitant upregulation of CD62L gene transcription and the rapid degradation of the corresponding mRNA. Novel protein synthesis is not required for CD62L gene upregulation, mRNA degradation or protein shedding. The three events are insensitive to cyclosporin A (CSA) and, thus, do not depend on the calcineurin signaling pathway. Activation of T cells in presence of a metallo-protease inhibitor, that protects CD62L shedding, does not prevent CD62L gene upregulation or mRNA degradation. In contrast induction of CD62L shedding by the chemically-induced dissociation of calmodulin from the CD62L cytosolic tail, in absence of T-cell activation, has no consequences on the levels of CD62L gene transcription or mRNA accumulation. These data demonstrate that the transcriptional and post-transcriptional events are exclusively regulated by T-cell activation and not by the CD62L density on cell membrane.
Collapse
Affiliation(s)
- Laurent Mascarell
- Unité de Biologie des Populations Lymphocytaires, Department of Immunology, Institut Pasteur, 25 rue du Dr Roux, Cedex 15, 75724 Paris, France.
| | | |
Collapse
|
37
|
Rabie T, Strehl A, Ludwig A, Nieswandt B. Evidence for a role of ADAM17 (TACE) in the regulation of platelet glycoprotein V. J Biol Chem 2005; 280:14462-8. [PMID: 15691827 DOI: 10.1074/jbc.m500041200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein V (GPV) is a subunit of the GPIb-IX-V receptor for von Willebrand factor and thrombin and has been shown to modulate platelet responses to the two strongest physiological agonists, thrombin and collagen. Thrombin directly cleaves GPV from the platelet surface, yielding a 69-kDa fragment GPV f1 of unknown function. We show here that a approximately 82-kDa fragment of GPV is shed from the platelet surface upon cellular activation with phorbol 12-myristate 13-acetate or the collagen-related peptide. This shedding was inhibited by the broad range metalloproteinase inhibitor GM6001, the two potent ADAM17 inhibitors GW280264X and TAPI-2, and was absent in mice lacking functional ADAM17 (ADAM17 lacking Zn-binding domain; ADAM17(DeltaZn/DeltaZn)). Furthermore, we show that recombinant ADAM17 ectodomain efficiently releases GPV from the platelet surface. GPV is known to be associated with the intracellular regulatory protein calmodulin, which has previously been shown to be involved in ADAM17-mediated shedding of l-selectin from the surface of leukocytes. As in these reports, inhibition of calmodulin led to rapid GPV shedding from the platelet surface, a process that was again blocked by GM6001 or ADAM17 inhibitors and that was absent in ADAM17(DeltaZn/DeltaZn) mice. Inhibition of outside-in signaling through GPIIb/IIIa did not significantly affect GPV shedding, excluding an essential role of this pathway for the regulation of ADAM17 activity. These results demonstrate that GPV is cleaved upon agonist-induced platelet activation and show that ADAM17 is the major enzyme mediating this process.
Collapse
Affiliation(s)
- Tamer Rabie
- Vascular Biology, Rudolf Virchow Center, Deutsche Forschungsgemeinschaft Research Center for Experimental Biomedicine, University of Würzburg, 97078 Würzburg, Germany
| | | | | | | |
Collapse
|
38
|
Gardiner EE, Arthur JF, Kahn ML, Berndt MC, Andrews RK. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 2004; 104:3611-7. [PMID: 15308568 DOI: 10.1182/blood-2004-04-1549] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thrombosis can be initiated when activated platelets adhere to injured blood vessels via the interaction of subendothelial collagen with its platelet receptor, glycoprotein (GP) VI. Here we observed that incubation of platelets with convulxin, collagen, or collagen-related peptide (CRP) resulted in GPVI signaling-dependent loss of surface GPVI and the appearance of an approximately 55-kDa soluble fragment of GPVI as revealed by immunoblotting. Ethylenediaminetetraacetic acid (EDTA) or GM6001 (a metalloproteinase inhibitor with broad specificity) prevented this loss. In other receptor systems, calmodulin binding to membrane-proximal cytoplasmic sequences regulates metalloproteinase-mediated ectodomain shedding. In this regard, we have previously shown that calmodulin binds to a positively charged, membrane-proximal sequence within the cytoplasmic tail of GPVI. Incubation of platelets with calmodulin inhibitor W7 (150 μM) resulted in a time-dependent loss of GPVI from the platelet surface. Both EDTA and GM6001 prevented this loss. Surface plasmon resonance demonstrated that W7 specifically blocked the association of calmodulin with an immobilized synthetic peptide corresponding to the calmodulin-binding sequence of GPVI. These findings suggest that disruption of calmodulin binding to receptor cytoplasmic tails by agonist binding to the receptor triggers metalloproteinase-mediated loss of GPVI from the platelet surface. This process may represent a potential mechanism to regulate GPVI-dependent platelet adhesion.
Collapse
Affiliation(s)
- Elizabeth E Gardiner
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia, 3800.
| | | | | | | | | |
Collapse
|
39
|
Ivetic A, Florey O, Deka J, Haskard DO, Ager A, Ridley AJ. Mutagenesis of the Ezrin-Radixin-Moesin Binding Domain of L-selectin Tail Affects Shedding, Microvillar Positioning, and Leukocyte Tethering. J Biol Chem 2004; 279:33263-72. [PMID: 15178693 DOI: 10.1074/jbc.m312212200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-selectin is a cell adhesion molecule that mediates the initial capture (tethering) and subsequent rolling of leukocytes along ligands expressed on endothelial cells. We have previously identified ezrin and moesin as novel binding partners of the 17-amino acid L-selectin tail, but the biological role of this interaction is not known. Here we identify two basic amino acid residues within the L-selectin tail that are required for binding to ezrin-radixinmoesin (ERM) proteins: arginine 357 and lysine 362. L-selectin mutants defective for ERM binding show reduced localization to microvilli and decreased phorbol 12-myristate 13-acetate-induced shedding of the L-selectin ectodomain. Cells expressing these L-selectin mutants have reduced tethering to the L-selectin ligand P-selectin glycoprotein ligand-1, but rolling velocity on P-selectin glycoprotein ligand-1 is not affected. These results suggest that ERM proteins are required for microvillar positioning of L-selectin and that this is important both for leukocyte tethering and L-selectin shedding.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Kilian K, Dernedde J, Mueller EC, Bahr I, Tauber R. The interaction of protein kinase C isozymes alpha, iota, and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor. J Biol Chem 2004; 279:34472-80. [PMID: 15192100 DOI: 10.1074/jbc.m405916200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte adhesion molecule L-selectin has an important role in the initial steps of leukocyte extravasation during inflammation and lymphocyte homing. Its cytoplasmic domain is involved in signal transduction after L-selectin cross-linking and in the regulation of receptor binding activity in response to intracellular signals. However, the signaling events occurring at the level of the receptor are largely unknown. This study therefore addressed the question of whether protein kinases associate with the cytoplasmic domain of the receptor and mediate its phosphorylation. Using a glutathione S-transferase fusion protein of the L-selectin cytoplasmic domain, we isolated a kinase activity from cellular extracts of the human leukemic Jurkat T-cell line that phosphorylated L-selectin on serine residues. This kinase showed characteristics of the protein kinase C (PKC) family. Moreover, the Ca(2+)-independent PKC isozymes theta and iota were found associated with the cytoplasmic domain of L-selectin. Pseudosubstrate inhibitors of these isozymes abolished phosphorylation of the cytoplasmic domain, demonstrating that these kinases are responsible for the phosphorylation. Analysis of proteins specifically bound to the phosphorylated cytoplasmic tail of L-selectin revealed that PKCalpha and -theta are strongly associated with the phosphorylated cytoplasmic domain of L-selectin. Binding of these isozymes to L-selectin was also found in intact cells after phorbol ester treatment inducing serine phosphorylation of the receptor. Furthermore, stimulation of Jurkat T-cells by CD3 cross-linking induced association of PKCalpha and -theta with L-selectin, indicating a role of these kinases in the regulation of L-selectin through the T-cell receptor complex. The phosphorylation-regulated association of PKC isozymes with the cytoplasmic domain of L-selectin indicates an important role of this kinase family in L-selectin signal transduction.
Collapse
Affiliation(s)
- Karin Kilian
- Institut für Klinische Chemie und Pathobiochemie, Charité, Berlin 12200, Germany.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P, Steeber DA, Tedder TF. Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 2003; 19:713-24. [PMID: 14614858 DOI: 10.1016/s1074-7613(03)00295-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-selectin mediates lymphocyte migration to peripheral lymph nodes and leukocyte rolling on vascular endothelium during inflammation. One unique feature that distinguishes L-selectin from other adhesion molecules is that it is rapidly cleaved from the cell surface after cellular activation. The biological significance of L-selectin endoproteolytic release was determined by generating gene-targeted mice expressing a modified receptor that was not cleaved from the cell surface. Blocking L-selectin cleavage on antigen-stimulated lymphocytes allowed their continued migration to peripheral lymph nodes and inhibited their short-term redirection to the spleen. Blocking homeostatic L-selectin cleavage also resulted in a constitutive 2-fold increase in overall L-selectin expression by leukocytes. As a result, neutrophils entered the inflamed peritoneum in greater numbers or for a longer duration. Thus, endoproteolytic cleavage regulates both homeostatic and activation-induced changes in cell surface L-selectin density, which directs the migration patterns of activated lymphocytes and neutrophils in vivo.
Collapse
Affiliation(s)
- Guglielmo M Venturi
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Walcheck B, Alexander SR, St Hill CA, Matala E. ADAM-17-independent shedding of L-selectin. J Leukoc Biol 2003; 74:389-94. [PMID: 12949242 DOI: 10.1189/jlb.0403141] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
L-selectin is expressed by leukocytes and facilitates their adhesion under flow along the walls of blood vessels. As do a variety of membrane proteins, L-selectin undergoes ectodomain shedding. Using approaches that monitor full-length L-selectin in short-term assays, it has been determined that L-selectin shedding is defective in tumor necrosis factor alpha-converting enzyme (ADAM-17)-deficient cells. In this study, we examined the steady-state levels of L-selectin on ADAM-17-deficient cells using a monoclonal antibody to the cytoplasmic region of L-selectin, which allows for the detection of total L-selectin (full-length and the membrane-associated cleavage fragment). We demonstrate that ADAM-17-deficient cells generate a 6-kDa transmembrane fragment of L-selectin. Although inducible L-selectin shedding by phorbol 12-myristate 13-acetate stimulation was not observed by these cells in short-term assays, basal turnover did occur, resulting in the production of soluble L-selectin, as determined by enzyme-linked immunosorbent assay. L-selectin turnover was greatly increased upon ADAM-17 reconstitution. Truncating the juxtamembrane region of L-selectin blocked ADAM-17-independent shedding as did a hydroxymate metalloprotease inhibitor. Together, these findings demonstrate that a metalloprotease activity separate from ADAM-17 can use the cleavage domain of L-selectin. We speculate that separate proteolytic mechanisms of L-selectin shedding may regulate distinct antiadhesive mechanisms, such as inducible shedding for the rapid dissociation of cell-cell interactions and constitutive shedding for the homeostatic maintenance of high serum levels of soluble L-selectin, a potential adhesion buffer.
Collapse
Affiliation(s)
- Bruce Walcheck
- Department of Veterinary PathoBiology, University of Minnesota Academic Health Center, St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
44
|
St Hill CA, Alexander SR, Walcheck B. Indirect capture augments leukocyte accumulation on P-selectin in flowing whole blood. J Leukoc Biol 2003; 73:464-71. [PMID: 12660221 DOI: 10.1189/jlb.1002491] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Leukocytes are captured directly by E- and P-selectin on activated endothelium and by indirect means, which includes attached leukocytes capturing free-flowing leukocytes. However, controversy exists as to whether the latter mechanism occurs in the presence of red blood cells. We analyzed leukocyte capture mechanisms on P-selectin under circulatory hydrodynamics using whole blood. The selective disruption of leukocyte-leukocyte interactions with an L-selectin monoclonal antibody reduced leukocyte accumulation by >50% under various stringencies (substrate concentrations and shear stresses). In addition, a direct analysis of leukocyte capture events revealed that 69% were indirect. Our data indicate that in the presence of red blood cells, P-selectin-attached leukocytes, individually and as a monolayer, augment leukocyte accumulation by indirect capture. This mechanism may contribute to increasing the density of leukocytes on discrete areas of activated endothelial cells at sites of inflammation. These findings are significant since L-selectin accounts for the majority of the leukocyte rolling flux in small venules at diverse inflammatory settings. Yet, the primary mechanism by which L-selectin mediates leukocyte accumulation remains unresolved.
Collapse
Affiliation(s)
- Catherine A St Hill
- The Center for Immunology, University of Minnesota Academic Health Center, University of Minnesota, St. Paul, USA
| | | | | |
Collapse
|
45
|
Phong MC, Gutwein P, Kadel S, Hexel K, Altevogt P, Linderkamp O, Brenner B. Molecular mechanisms of L-selectin-induced co-localization in rafts and shedding [corrected]. Biochem Biophys Res Commun 2003; 300:563-9. [PMID: 12504120 DOI: 10.1016/s0006-291x(02)02886-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leukocyte recruitment to lymph nodes or inflammatory sites is regulated by adhesion and activation. L-selectin (CD62L) is expressed on leukocytes and mediates tethering and rolling of leukocytes on endothelial cells. Upon stimulation L-selectin is down-regulated by proteolytic cleavage but the molecular mechanisms regulating this shedding step are poorly defined. To study intracellular mechanisms, we induced shedding of L-selectin by cross-linking with an immobilized L-selectin antibody (Dreg56) in Jurkat cells. The loss of surface expression was quantitated by flow cytometry and the increase of soluble L-selectin was determined by Western blot analysis. We find that Jurkat and p56(lck)-deficient JCaM1.6 cells released L-selectin to similar extent (18+/-4% and 17+/-3%, respectively) and revealed comparable inhibition with the src-tyrosine kinase inhibitor PP2. Glutathione (GSH), an inhibitor of the neutral sphingomyelinase, PD98059, a MAP-kinase (MAP-K) inhibitor and metalloprotease inhibitors (MPI) (TAPI, Ro 31-9790, and BB-3103) reduced significantly L-selectin-induced shedding by 60-80%. In Jurkat cells, L-selectin was present in Triton X-100 insoluble membrane rafts and was constitutively tyr-phosphorylated. Dreg56 cross-linking enhanced phosphorylation and recruitment of L-selectin into rafts which was significantly decreased by pretreatment of cells with PD98059. We conclude, that the metalloproteinase-mediated cleavage of L-selectin from cell surface is triggered by intracellular signaling pathways that are independent of p56(lck) tyrosine kinase activity, but require other tyrosine kinases and the neutral sphingomyelinase. The cleavage of L-selectin might involve membrane rafts as signaling platform.
Collapse
Affiliation(s)
- Minh-Chau Phong
- Department of Pediatrics, Division of Neonatology, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
de Rossi LW, Horn NA, Buhre W, Gass F, Hutschenreuter G, Rossaint R. The Effect of Isoflurane on Neutrophil Selectin and β2-Integrin Activation In Vitro. Anesth Analg 2002. [DOI: 10.1213/00000539-200209000-00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
de Rossi LW, Horn NA, Buhre W, Gass F, Hutschenreuter G, Rossaint R. The effect of isoflurane on neutrophil selectin and beta(2)-integrin activation in vitro. Anesth Analg 2002; 95:583-7, table of contents. [PMID: 12198042 DOI: 10.1097/00000539-200209000-00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED Isoflurane is reported to reduce ischemia-reperfusion injury. Lower expression of CD11b may be responsible for attenuated postischemic neutrophil adhesion to vascular endothelium. However, neutrophil adhesion to vascular endothelium is a multistep process involving several selectins and beta(2)-integrins. Therefore, we assessed whether isoflurane affects the activation of the selectins P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin and the beta(2)-integrins CD11a and CD11b. Whole blood was incubated for 60 min with 0.5 or 1 minimum alveolar anesthetic concentration (MAC) isoflurane. After incubation, neutrophils were activated with N-formyl-methionyl-leucyl-phenylalanine (FMLP) or phorbol-12-myristate-13-acetate (PMA). Activation of adhesion molecules was evaluated via flow cytometry, and 1 MAC isoflurane reduced the expression of CD11a in the unstimulated samples. After stimulation with FMLP and PMA, shedding of L-selectin was lower in the presence of isoflurane. Furthermore, 1 MAC isoflurane reduced FMLP-induced activation of CD11a and CD11b compared with unexposed blood samples. These results demonstrate that isoflurane affects the activation of three adhesion molecules involved in the multistep process of neutrophil recruitment. First, isoflurane inhibits the activation of L-selectin, which mediates the neutrophil tethering and rolling on the vascular endothelium. Second, isoflurane attenuates the activation of both beta(2)-integrins-CD11a and CD11b-which mediate firm adhesion and transendothelial migration. IMPLICATIONS Adhesion of neutrophils to endothelial cells in reperfusion injury is mediated by different adhesion molecules. This study indicates that the inhibiting effect of isoflurane on neutrophil recruitment may be mediated by a decreased activation of the L-selectin and by attenuation of the activation of the beta(2)-integrins CD11a and CD11b.
Collapse
Affiliation(s)
- Lothar W de Rossi
- Department of Anesthesiology, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Hudrisier D, Bongrand P. Intercellular transfer of antigen-presenting cell determinants onto T cells: molecular mechanisms and biological significance. FASEB J 2002; 16:477-86. [PMID: 11919150 DOI: 10.1096/fj.01-0933rev] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Upon physiological stimulation, receptors with tyrosine kinase activity (RTK) are rapidly internalized together with their soluble ligands. T cell activation is the consequence of recognition by the T cell receptor (TCR) of specific peptide-major histocompatibility protein complexes (peptide-MHC) present at the membrane of antigen-presenting cells (APC). The TCR belongs to the RTK family and is known to be endocytosed upon ligand recognition. It differs from most other RTK in that its ligand, the peptide-MHC complex, is membrane bound and the TCR-ligand interaction is quite weak. Recent experiments have shown that the TCR ligand becomes internalized by T cells upon stimulation. Here we review current knowledge on the molecular mechanisms by which the membrane-bound MHC molecules can be transferred onto T cells, and propose hypotheses on the role this phenomenon could play in physio-pathological situations involving T cells.
Collapse
Affiliation(s)
- Denis Hudrisier
- INSERM U 395, CHU Purpan and Paul Sabatier University, BP3028 31024 Toulouse Cedex 3, France.
| | | |
Collapse
|