1
|
Agammaglobulinemia with normal B-cell numbers in a patient lacking Bob1. J Allergy Clin Immunol 2021; 147:1977-1980. [DOI: 10.1016/j.jaci.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
|
2
|
Yeremenko N, Danger R, Baeten D, Tomilin A, Brouard S. Transcriptional regulator BOB.1: Molecular mechanisms and emerging role in chronic inflammation and autoimmunity. Autoimmun Rev 2021; 20:102833. [PMID: 33864944 DOI: 10.1016/j.autrev.2021.102833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their development and functions must be strictly regulated to avoid inappropriate immune responses, such as autoimmune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte-restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent developments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Richard Danger
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dominique Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russian Federation
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
3
|
Hitomi Y, Aiba Y, Kawai Y, Kojima K, Ueno K, Nishida N, Kawashima M, Gervais O, Khor SS, Nagasaki M, Tokunaga K, Nakamura M, Tsuiji M. rs1944919 on chromosome 11q23.1 and its effector genes COLCA1/COLCA2 confer susceptibility to primary biliary cholangitis. Sci Rep 2021; 11:4557. [PMID: 33633225 PMCID: PMC7907150 DOI: 10.1038/s41598-021-84042-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which intrahepatic bile ducts are destroyed by an autoimmune reaction. Our previous genome-wide association study (GWAS) identified chromosome 11q23.1 as a susceptibility gene locus for PBC in the Japanese population. Here, high-density association mapping based on single nucleotide polymorphism (SNP) imputation and in silico/in vitro functional analyses identified rs1944919 as the primary functional variant. Expression-quantitative trait loci analyses showed that the PBC susceptibility allele of rs1944919 was significantly associated with increased COLCA1/COLCA2 expression levels. Additionally, the effects of rs1944919 on COLCA1/COLCA2 expression levels were confirmed using genotype knock-in versions of cell lines constructed using the CRISPR/Cas9 system and differed between rs1944919-G/G clones and -T/T clones. To our knowledge, this is the first study to demonstrate the contribution of COLCA1/COLCA2 to PBC susceptibility.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan.,The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | | | - Olivier Gervais
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.,Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
4
|
Chu CS, Hellmuth JC, Singh R, Ying HY, Skrabanek L, Teater MR, Doane AS, Elemento O, Melnick AM, Roeder RG. Unique Immune Cell Coactivators Specify Locus Control Region Function and Cell Stage. Mol Cell 2020; 80:845-861.e10. [PMID: 33232656 DOI: 10.1016/j.molcel.2020.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
Locus control region (LCR) functions define cellular identity and have critical roles in diseases such as cancer, although the hierarchy of structural components and associated factors that drive functionality are incompletely understood. Here we show that OCA-B, a B cell-specific coactivator essential for germinal center (GC) formation, forms a ternary complex with the lymphoid-enriched OCT2 and GC-specific MEF2B transcription factors and that this complex occupies and activates an LCR that regulates the BCL6 proto-oncogene and is uniquely required by normal and malignant GC B cells. Mechanistically, through OCA-B-MED1 interactions, this complex is required for Mediator association with the BCL6 promoter. Densely tiled CRISPRi screening indicates that only LCR segments heavily bound by this ternary complex are essential for its function. Our results demonstrate how an intimately linked complex of lineage- and stage-specific factors converges on specific and highly essential enhancer elements to drive the function of a cell-type-defining LCR.
Collapse
Affiliation(s)
- Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Johannes C Hellmuth
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rajat Singh
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hsia-Yuan Ying
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lucy Skrabanek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Matthew R Teater
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashley S Doane
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Yoo EJ, Cooke NE, Liebhaber SA. Identification of a secondary promoter within the human B cell receptor component gene hCD79b. J Biol Chem 2013; 288:18353-65. [PMID: 23649625 DOI: 10.1074/jbc.m113.461988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The human B cell-specific protein, CD79b (also known as Igβ and B29) constitutes an essential signal transduction component of the B cell receptor. Although its function is central to the triggering of B cell terminal differentiation in response to antigen stimulation, the transcriptional determinants that control CD79b gene expression remain poorly defined. In the present study, we explored these determinants using a series of hCD79b transgenic mouse models. Remarkably, we observed that the previously described hCD79b promoter along with its associated enhancer elements and first exon could be deleted without appreciable loss of hCD79b transcriptional activity or tissue specificity. In this deletion setting, a secondary promoter located within exon 2 maintained full levels and specificity of hCD79b transcription. Of note, this secondary promoter was also active, albeit at lower levels, in the wild-type hCD79b locus. The activity of the secondary promoter was dependent on the action(s) of a conserved sequence element mapping to a chromatin DNase I hypersensitive site located within intron 1. mRNA generated from this secondary promoter is predicted to encode an Igβ protein lacking a signal sequence and thus unable to serve normal B cell receptor function. Although the physiologic role of the hCD79b secondary promoter and its encoded protein remain unclear, the current data suggest that it has the capacity to play a role in normal as well as pathologic states in B cell proliferation and function.
Collapse
Affiliation(s)
- Eung Jae Yoo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
6
|
Sims R, Vandergon VO, Malone CS. The mouse B cell-specific mb-1 gene encodes an immunoreceptor tyrosine-based activation motif (ITAM) protein that may be evolutionarily conserved in diverse species by purifying selection. Mol Biol Rep 2011; 39:3185-96. [PMID: 21688146 DOI: 10.1007/s11033-011-1085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 06/11/2011] [Indexed: 11/25/2022]
Abstract
The B-lymphocyte accessory molecule Ig-alpha (Ig-α) is encoded by the mouse B cell-specific gene (mb-1), and along with the Ig-beta (Ig-β) molecule and a membrane bound immunoglobulin (mIg) makes up the B-cell receptor (BCR). Ig-α and Ig-β form a heterodimer structure that upon antigen binding and receptor clustering primarily initiates and controls BCR intracellular signaling via a phosphorylation cascade, ultimately triggering an effector response. The signaling capacity of Ig-α is contained within its immunoreceptor tyrosine-based activation motif (ITAM), which is also a key component for intracellular signaling initiation in other immune cell-specific receptors. Although numerous studies have been devoted to the mb-1 gene product, Ig-α, and its signaling mechanism, an evolutionary analysis of the mb-1 gene has been lacking until now. In this study, mb-1 coding sequences from 19 species were compared using Bayesian inference. Analysis revealed a gene phylogeny consistent with an expected species divergence pattern, clustering species from the primate order separate from lower mammals and other species. In addition, an overall comparison of non-synonymous and synonymous nucleotide mutational changes suggests that the mb-1 gene has undergone purifying selection throughout its evolution.
Collapse
Affiliation(s)
- Richard Sims
- Department of Biology, California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330-8303, USA
| | | | | |
Collapse
|
7
|
Huang X, Takata K, Sato Y, Tanaka T, Ichimura K, Tamura M, Oka T, Yoshino T. Downregulation of the B-cell receptor signaling component CD79b in plasma cell myeloma: a possible post transcriptional regulation. Pathol Int 2011; 61:122-9. [PMID: 21355953 DOI: 10.1111/j.1440-1827.2010.02634.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CD79 molecule, encoded by the CD79a and CD79b genes, is a signaling unit of the B-cell receptor complex, which transmits signals of B-cell activation, growth, and differentiation. They are B-cell-specific and expressed at most stages of B-cell development. Although plasma cells have been believed to lack these gene products, the regulation of CD79 expression in plasma cells is still controversial. In particular, the regulation of CD79b expression remains unclear. We sought to examine CD79b expression in normal and neoplastic plasma cells by immunohistochemical analysis. Out of the 23 clinical samples and 11 cell lines of plasma cell myeloma (PCM), none of the clinical samples and only 1 of 11 cell lines expressed CD79b immunohistologically, whereas non-neoplastic plasma cells in reactive hyperplastic lymph nodes exhibited loss of CD79b protein expression. This finding is quite different from our previous report on CD79a. Not only immunocytochemistry, but also RT-PCR and Western blot analysis of PCM cell lines gave identical results. Interestingly, we detected mRNA transcripts of CD79b in PCM cell lines, although protein translation was lacking. These findings suggest that expression of CD79b is downregulated in both plasma cells and plasma cell myeloma, and this process is possibly under post transcriptional regulation.
Collapse
Affiliation(s)
- Xingang Huang
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Vettermann C, Lutz J, Selg M, Bösl M, Jäck HM. Genomic suppression of murine B29/Ig-β promoter-driven transgenes. Eur J Immunol 2006; 36:3324-33. [PMID: 17111355 DOI: 10.1002/eji.200636536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunoglobulin beta (Ig-beta) is a critical signal transducer of precursor B cell and B cell receptors. B29, the gene coding for Ig-beta, is switched on in progenitor B cells and expressed until the terminal stage of antibody-producing plasma cells. Although several cis-acting elements and transcription factors required for B29 expression have been characterized in cell lines, the in vivo significance of individual motifs located in the 1.2-kb promoter region remained unclear. To address whether this region drives B lineage-specific expression in mice as efficiently as in transfected cell lines, we established transgenic animals carrying the B29 promoter fused to either enhanced green fluorescent protein (EGFP) or the precursor B cell receptor component lambda5. Surprisingly, only minimal levels of B29-derived transcripts were produced in B lymphoid tissues of several independent transgenic lines, and the respective proteins were below the detection limit. In addition, transgenic transcripts were found in testis, kidney and brain. Hence, the 1.2-kb-sized B29 promoter does not define a strong, B lineage-restricted expression unit when randomly integrated into the genome and passed through the murine germ line. Therefore, yet unidentified genomic locus control elements are required to efficiently drive B29 expression in B lymphocytes.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
9
|
Malone CS, Kuraishy AI, Fike FM, Loya RG, Mikkili MR, Teitell MA, Wall R. B29 gene silencing in pituitary cells is regulated by its 3' enhancer. J Mol Biol 2006; 362:173-83. [PMID: 16920149 PMCID: PMC2104784 DOI: 10.1016/j.jmb.2006.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 12/26/2022]
Abstract
B cell-specific B29 (Igbeta, CD79b) genes in rat, mouse, and human are situated between the 5' growth hormone (GH) locus control region and the 3' GH gene cluster. The entire GH genomic region is DNase 1 hypersensitive in GH-expressing pituitary cells, which predicts an "open" chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3' enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3' enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3' enhancer in in vitro electrophoretic mobility shift assay and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3' enhancer acting as a powerful silencer in a context and tissue-specific manner.
Collapse
Affiliation(s)
- Cindy S Malone
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Bartholdy B, Du Roure C, Bordon A, Emslie D, Corcoran LM, Matthias P. The Ets factor Spi-B is a direct critical target of the coactivator OBF-1. Proc Natl Acad Sci U S A 2006; 103:11665-70. [PMID: 16861304 PMCID: PMC1513538 DOI: 10.1073/pnas.0509430103] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBF-1 (Bob.1, OCA-B) is a lymphoid-specific transcriptional coactivator that associates with the transcription factors Oct-1 or Oct-2 on the conserved octamer element present in the promoters of several ubiquitous and lymphoid-specific genes. OBF-1-deficient mice have B cell-intrinsic defects, lack germinal centers, and have severely impaired immune responses to T cell-dependent antigens. Crucial genes that are regulated by OBF-1 and that might explain the observed phenotype of OBF-1 deficiency have remained elusive to date. Here we have generated transgenic mice expressing OBF-1 specifically in T cells and examined these together with mice lacking OBF-1 to discover transcriptional targets of this coactivator. Using microarray analysis, we have identified the Ets transcription factor Spi-B as a direct target gene critically regulated by OBF-1 that can help explain the phenotype of OBF-1-deficient mice. Spi-B has been implicated in signaling pathways downstream of the B cell receptor and is essential for germinal center formation and maintenance. The present findings establish a hierarchy between these two factors and provide a molecular link between OBF-1 and B cell receptor signaling.
Collapse
Affiliation(s)
- Boris Bartholdy
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Camille Du Roure
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Alain Bordon
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
| | - Dianne Emslie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Lynn M. Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | - Patrick Matthias
- *Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Siegel R, Kim U, Patke A, Yu X, Ren X, Tarakhovsky A, Roeder RG. Nontranscriptional regulation of SYK by the coactivator OCA-B is required at multiple stages of B cell development. Cell 2006; 125:761-74. [PMID: 16713566 DOI: 10.1016/j.cell.2006.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 02/22/2006] [Accepted: 03/16/2006] [Indexed: 12/24/2022]
Abstract
OCA-B was originally identified as a nuclear transcriptional coactivator that is essential for antigen-driven immune responses. The later identification of a membrane bound, myristoylated form of OCA-B suggested additional, unique functions in B cell signaling pathways. This study has shown that OCA-B also functions in the pre-B1-to-pre-B2 cell transition and, most surprisingly, that it directly interacts with SYK, a tyrosine kinase critical for pre-BCR and BCR signaling. This unprecedented type of interaction-a transcriptional coactivator with a signaling kinase-occurs in the cytoplasm and directly regulates SYK stability. This study indicates that OCA-B is required for pre-BCR and BCR signaling at multiple stages of B cell development through its nontranscriptional regulation of SYK. Combined with the deregulation of OCA-B target genes, this may help explain the multitude of defects observed in B cell development and immune responses of Oca-b-/- mice.
Collapse
Affiliation(s)
- Rachael Siegel
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Shen RR, Ferguson DO, Renard M, Hoyer KK, Kim U, Hao X, Alt FW, Roeder RG, Morse HC, Teitell MA. Dysregulated TCL1 requires the germinal center and genome instability for mature B-cell transformation. Blood 2006; 108:1991-8. [PMID: 16728701 PMCID: PMC1895536 DOI: 10.1182/blood-2006-02-001354] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Most lymphomas arise by transformation of germinal center (GC) B cells. TCL1, a proto-oncogene first recognized for its role in T-cell transformation, also induces GC B-cell malignancies when dysregulated in pEmu-B29-TCL1 transgenic (TCL1-tg) mice. Clonal B-cell lymphomas develop from polyclonal populations with latencies of 4 months or more, suggesting that secondary genetic events are required for full transformation. The goals of this study were to determine the GC-related effects of TCL1 dysregulation that contribute to tumor initiation and to identify companion genetic alterations in tumors that function in disease progression. We report that compared with wild-type (WT) cells, B cells from TCL1-tg mice activated in a manner resembling a T-dependent GC reaction show enhanced resistance to FAS-mediated apoptosis with CD40 stimulation, independent of a B-cell antigen receptor (BCR) rescue signal. Mitogenic stimulation of TCL1-tg B cells also resulted in increased expression of Aicda. These GC-related enhancements in survival and Aicda expression could underlie B-cell transformation. Supporting this notion, no B-cell lymphomas developed for 20 months when TCL1-tg mice were crossed onto an Oct coactivator from B cell (OCA-B)-deficient background to yield mice incapable of forming GCs. Spectral karyotype analyses showed that GC lymphomas from TCL1-tg mice exhibit recurrent chromosome translocations and trisomy 15, with corresponding MYC overexpression. We conclude that pEmu-B29-TCL1 transgenic B cells primed for transformation must experience the GC environment and, for at least some, develop genome instability to become fully malignant.
Collapse
Affiliation(s)
- Rhine R Shen
- Department of Pathology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1732, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ushmorov A, Leithäuser F, Sakk O, Weinhaüsel A, Popov SW, Möller P, Wirth T. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 2005; 107:2493-500. [PMID: 16304050 DOI: 10.1182/blood-2005-09-3765] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many B-lineage-specific genes are down-regulated in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL). We investigated the involvement of epigenetic modifications in gene silencing in cHL cell lines and in microdissected primary HRS cells. We assessed the expression and methylation status of CD19, CD20, CD79B, SYK, PU.1, BOB.1/OBF.1, BCMA, and LCK, all of which are typically down-regulated in cHL. We could reactivate gene expression in cHL cell lines with the DNA demethylating agent 5-aza-deoxycytidine (5-aza-dC). Using methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and digestion with methylation-sensitive endonuclease followed by polymerase chain reaction (PCR), we determined the methylation status of promoter regions of PU.1, BOB.1/OBF.1, CD19, SYK, and CD79B. Down-regulation of transcription typically correlated with hypermethylation. Using bisulfite genomic sequencing we found that in microdissected HRS cells of primary cHL SYK, BOB.1/OBF.1, and CD79B promoters were also hypermethylated. Ectopic expression of both Oct2 and PU.1 in a cHL cell line potentiated endogenous PU.1 and SYK expression after 5-aza-dC treatment. These observations indicate that silencing of the B-cell-specific genes in cHL may be the consequence of a compromised regulatory network where down-regulation of a few master transcription factors results in silencing of numerous genes.
Collapse
Affiliation(s)
- Alexey Ushmorov
- Department of Physiological Chemistry, University of Ulm, D-89069 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK, Tao Q, Murray PG, Diehl V, Teitell MA, Wall R. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol 2005; 350:631-40. [PMID: 15967459 DOI: 10.1016/j.jmb.2005.05.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/10/2005] [Accepted: 05/18/2005] [Indexed: 12/20/2022]
Abstract
Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) and primary effusion lymphoma (PEL) are derived from germinal center (GC) and post-GC B cells, respectively. Neither express many of the B cell genes or surface markers typically expressed by other GC-derived B cell lymphomas or normal B cells. This loss of B cell gene expression is not due to a lack of essential transcription factors, as studies have shown that the ectopic expression of missing transcription factors failed to reactivate endogenous target genes. These results implicate epigenetic mechanisms extinguishing B cell gene expression. Silenced endogenous B cell genes representing a surface receptor, B29 (Igbeta, CD79b), a signaling molecule, TCL1, and a transcription factor, Bob1 (OCA-B, OBF-1), were reactivated by 5-aza-2'-deoxycytidine, indicating that gene silencing in HRS and PEL cells is due to DNA methylation. Genomic bisulfite sequencing corroborated this prediction and revealed three distinct patterns of methylation for the silenced B29 and TCL1 promoters. These distinct patterns consisted of 5' promoter CpG methylation alone, 5' and 3' promoter CpG methylation sparing sites in the central cores, and complete CpG methylation throughout the promoter regions. The silenced Bob1 promoter showed one pattern of dense CpG methylation at essentially all sites. These consistent patterns predict that, although gene silencing in many HRS and PEL cells mimics appropriate gene silencing, in some cases of complete CpG methylation throughout entire promoters both the activation and targeting of methylation is abnormal.
Collapse
Affiliation(s)
- Jeanette R Doerr
- Department of Microbiology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brunner C, Laumen H, Nielsen PJ, Kraut N, Wirth T. Expression of the aldehyde dehydrogenase 2-like gene is controlled by BOB.1/OBF.1 in B lymphocytes. J Biol Chem 2003; 278:45231-9. [PMID: 12947107 DOI: 10.1074/jbc.m302539200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BOB.1/OBF.1 is a lymphocyte-restricted transcriptional coactivator. It binds to the Oct1 and Oct2 transcription factors and increases their transactivation potential. Targeted gene disruption experiments revealed that BOB.1/OBF.1 is critical at different stages of B cell development. A large number of genes expressed in B cells contain octamer motifs in their regulatory regions. However, only few genes have been described so far whose expression is dependent on BOB.1/OBF.1. To understand the molecular basis of BOB.1/OBF.1 function in B cell development, we searched for BOB.1/OBF.1 target genes by expression profiling. We have identified genes both induced and repressed by BOB.1/OBF.1. Using different genetic systems, we demonstrate regulation of a selection of these genes. Identified targets included genes encoding Ahd2-like, AKR1C13, Rbp1, Sdh, Idh2, protocadherin gamma, alpha-catenin, Ptprs, Id3, and Creg. Classification of BOB.1/OBF.1 target genes by function suggests that they affect various aspects of B cell physiology such as cellular metabolism, cell adhesion, and differentiation. To better understand the mechanism of BOB.1/OBF.1 action, we cloned the promoter of the gene encoding Ahd2-like, the gene showing the strongest regulation by BOB.1/OBF.1. This promoter indeed contains a perfect octamer motif. Furthermore, the motif was recognized by the Oct transcription factors as well as BOB.1/OBF.1 in vitro and in vivo, as shown by electromobility shift and chromatin immunoprecipitation assays. Transient transfections confirm that this promoter is activated by BOB.1/OBF.1. Our observations suggest that by regulating genes in different functional pathways, BOB.1/OBF.1 has a widespread effect on B cell development and function.
Collapse
Affiliation(s)
- Cornelia Brunner
- University of Ulm, Department of Physiological Chemistry, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
16
|
Calame KL, Lin KI, Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu Rev Immunol 2003; 21:205-30. [PMID: 12524387 DOI: 10.1146/annurev.immunol.21.120601.141138] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.
Collapse
Affiliation(s)
- Kathryn L Calame
- Department of Microbiology and Biochemistry, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
17
|
Gordon MS, Kanegai CM, Doerr JR, Wall R. Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci U S A 2003; 100:4126-31. [PMID: 12651942 PMCID: PMC153059 DOI: 10.1073/pnas.0735266100] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Indexed: 12/27/2022] Open
Abstract
Somatic hypermutation (SHM), coupled to selection by antigen, generates high-affinity antibodies during germinal center (GC) B cell maturation. SHM is known to affect Bcl6, four additional oncogenes in diffuse large B cell lymphoma, and the CD95Fas gene and is regarded as a major mechanism of B cell tumorigenesis. We find that mutations in the genes encoding the B cell receptor (BCR) accessory proteins B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a) occur as often as Ig genes in a broad spectrum of GC- and post-GC-derived malignant B cell lines, as well as in normal peripheral B cells. These B29 and mb1 mutations are typical SHM consisting largely of single nucleotide substitutions targeted to hotspots. The B29 and mb1 mutations appear at frequencies similar to those of other non-Ig genes but lower than Ig genes. The distribution of mb1 mutations followed the characteristic pattern found in Ig and most non-Ig genes. In contrast, B29 mutations displayed a bimodal distribution resembling the CD95Fas gene, in which promoter distal mutations conferred resistance to apoptosis. Distal B29 mutations in the cytoplasmic domain may contribute to B cell survival by limiting BCR signaling. B29 and mb1 are mutated in a much broader spectrum of GC-derived B cells than any other known somatically hypermutated non-Ig gene. This may be caused by the common cis-acting regulatory sequences that control the requisite coexpression of the B29, mb1, and Ig chains in the BCR.
Collapse
Affiliation(s)
- Melinda S Gordon
- Department of Microbiology, Immunology, and Molecular Genetics, and David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
18
|
Sigvardsson M, Clark DR, Fitzsimmons D, Doyle M, Akerblad P, Breslin T, Bilke S, Li R, Yeamans C, Zhang G, Hagman J. Early B-cell factor, E2A, and Pax-5 cooperate to activate the early B cell-specific mb-1 promoter. Mol Cell Biol 2002; 22:8539-51. [PMID: 12446773 PMCID: PMC139876 DOI: 10.1128/mcb.22.24.8539-8551.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have suggested that the early-B-cell-specific mb-1(Igalpha) promoter is regulated by EBF and Pax-5. Here, we used in vivo footprinting assays to detect occupation of binding sites in endogenous mb-1 promoters at various stages of B-cell differentiation. In addition to EBF and Pax-5 binding sites, we detected occupancy of a consensus binding site for E2A proteins (E box) in pre-B cells. EBF and E box sites are crucial for promoter function in transfected pre-B cells, and EBF and E2A proteins synergistically activated the promoter in transfected HeLa cells. Other data suggest that EBF and E box sites are less important for promoter function at later stages of differentiation, whereas binding sites for Pax-5 (and its Ets ternary complex partners) are required for promoter function in all mb-1-expressing cells. Using DNA microarrays, we found that expression of endogenous mb-1 transcripts correlates most closely with EBF expression and negatively with Id1, an inhibitor of E2A protein function, further linking regulation of the mb-1 gene with EBF and E2A. Together, our studies demonstrate the complexity of factors regulating tissue-specific transcription and support the concept that EBF, E2A, and Pax-5 cooperate to activate target genes in early B-cell development.
Collapse
|