1
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
2
|
Lin CL, Lin CC, Chen TT, Lo WJ, Tzeng SL. Analysis of Immune-Cell Distribution of Bone Marrow in Patients with Myelodysplastic Syndrome. Hematol Rep 2023; 15:50-56. [PMID: 36648883 PMCID: PMC9844488 DOI: 10.3390/hematolrep15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Myelodysplastic syndrome (MDS) immunity plays an important role in the proliferation and apoptosis of aberrant cells. Immune dysregulation has been studied in various prognostic subgroups. This study analyzed 60 patients with MDS via multidimensional flow cytometry to evaluate the expression of aberrant markers, such as CD7 and cytoplasmic CD3 on lymphocytes. The Revised International Prognostic Scoring System (IPSS-R) scores were used to classify the patients into risk groups. The results showed a significant downregulation of CyCD3- T cells in low-intermediate versus high-risk patients (p = 0.013). This study is the first to show that a significant decrease in cyCD3- T cells in patients with a lower IPSS-R score may indicate microenvironmental changes conducive to transformation in MDS.
Collapse
Affiliation(s)
- Chun-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Internal Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung 40343, Taiwan
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ching-Chan Lin
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Tzu-Ting Chen
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Jyi Lo
- Department of Hematology and Oncology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shu-Ling Tzeng
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022 (ext. 12226)
| |
Collapse
|
3
|
Ma L, Zhang H, Zhang Y, Li H, An M, Zhao B, Ding H, Xu J, Shang H, Han X. Integrated analysis of lncRNA, miRNA and mRNA profiles reveals potential lncRNA functions during early HIV infection. J Transl Med 2021; 19:135. [PMID: 33794921 PMCID: PMC8015739 DOI: 10.1186/s12967-021-02802-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) can regulate gene expression in a cis-regulatory fashion or as “microRNA sponges”. However, the expression and functions of lncRNAs during early human immunodeficiency virus (HIV) infection (EHI) remain unclear. Methods 3 HAART-naive EHI patients and 3 healthy controls (HCs) were recruited in this study to perform RNA sequencing and microRNA (miRNA) sequencing. The expression profiles of lncRNAs, mRNAs and miRNAs were obtained, and the potential roles of lncRNAs were analysed based on discovering lncRNA cis-regulatory target mRNAs and constructing lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on 175 lncRNA-associated differentially expressed (DE) mRNAs to investigate the potential functions of DE lncRNAs in ceRNA networks. Results A total of 242 lncRNAs, 1240 mRNAs and 21 mature known miRNAs were determined as differentially expressed genes in HAART-naive EHI patients compared to HCs. Among DE lncRNAs, 44 lncRNAs were predicted to overlap with 41 target mRNAs, and 107 lncRNAs might regulate their nearby DE mRNAs. Two DE lncRNAs might regulate their cis-regulatory target mRNAs BTLA and ZAP70, respectively, which were associated with immune activation. In addition, the ceRNA networks comprised 160 DE lncRNAs, 21 DE miRNAs and 175 DE mRNAs. Seventeen DE lncRNAs were predicted to regulate HIF1A and TCF7L2, which are involved in the process of HIV-1 replication. Twenty DE lncRNAs might share miRNA response elements (MREs) with FOS, FOSB and JUN, which are associated with both immune activation and HIV-1 replication. Conclusions This study revealed that lncRNAs might play a critical role in HIV-1 replication and immune activation during EHI. These novel findings are helpful for understanding of the pathogenesis of HIV infection and provide new insights into antiviral therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02802-9.
Collapse
Affiliation(s)
- Lianwei Ma
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Yue Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Haibo Ding
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Junjie Xu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China. .,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China. .,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Zhang T, Huang C, Luo H, Li J, Huang H, Liu X, Zhan S. Identification of key genes and immune profile in limited cutaneous systemic sclerosis-associated pulmonary arterial hypertension by bioinformatics analysis. Life Sci 2021; 271:119151. [PMID: 33539912 DOI: 10.1016/j.lfs.2021.119151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
AIMS Limited cutaneous systemic sclerosis-associated pulmonary arterial hypertension (lcSSc-PAH) is a complex multi-system disease with high morbidity and mortality. The purpose of this study is to identify the hub genes and immune characteristics of limited cutaneous systemic sclerosis (lcSSc) and lcSSc-PAH through bioinformatics. MAIN METHODS LcSSc-PAH raw data were obtained from the GEO database (GSE19617). Weighted gene Co-expression Network analysis (WGCNA) was used to evaluate key modules. Then, we performed Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis with R software and verified the diagnostic value of the hub genes. Finally, Immune Cell Abundance Identifier (ImmuCellAI) was used to analyze the immune characteristics of the normal subjects, lcSSc and lcSSc-PAH patients, the results were displayed graphically. KEY FINDINGS Enrichment of two important modules by GO and KEGG identified key biological processes and pathways related to pathogen infection and immune function. Three hub genes (BID, IFNGR1, ZAP70) related to immune function were identified. The analysis of immune characteristics showed that the correlation and abundance of immune cells such as inducible regulatory T (iTreg) cells, B cells, macrophages, natural killer (NK) cells, CD8T cells, mucosal-associated invariant T(MAIT) cells and dendritic cells(DCs) were significantly different in the normal subjects, lcSSc and lcSSc-PAH patients. SIGNIFICANCE Pathogen infection, changes in the number and function of immune cells, and interactions among immune cells may preliminarily reveal the pathological mechanism of lcSSc-PAH. The hub genes, pathways and immune characteristics identified in this research remains to be further studied.
Collapse
Affiliation(s)
- Tiange Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hu Luo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
van der Donk LEH, Ates LS, van der Spek J, Tukker LM, Geijtenbeek TBH, van Heijst JWJ. Separate signaling events control TCR downregulation and T cell activation in primary human T cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:223-238. [PMID: 33350598 PMCID: PMC7860602 DOI: 10.1002/iid3.383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022]
Abstract
Introduction T‐cell antigen receptor (TCR) interaction with cognate peptide:MHC complexes trigger clustering of TCR:CD3 complexes and signal transduction. Triggered TCR:CD3 complexes are rapidly internalized and degraded in a process called ligand‐induced TCR downregulation. Classic studies in immortalized T‐cell lines have revealed a major role for the Src family kinase Lck in TCR downregulation. However, to what extent a similar mechanism operates in primary human T cells remains unclear. Methods Here, we developed an anti‐CD3‐mediated TCR downregulation assay, in which T‐cell gene expression in primary human T cells can be knocked down by microRNA constructs. In parallel, we used CRISPR/Cas9‐mediated knockout in Jurkat cells for validation experiments. Results We efficiently knocked down the expression of tyrosine kinases Lck, Fyn, and ZAP70, and found that, whereas this impaired T cell activation and effector function, TCR downregulation was not affected. Although TCR downregulation was marginally inhibited by the simultaneous knockdown of Lck and Fyn, its full abrogation required broad‐acting tyrosine kinase inhibitors. Conclusions These data suggest that there is substantial redundancy in the contribution of individual tyrosine kinases to TCR downregulation in primary human T cells. Our results highlight that TCR downregulation and T cell activation are controlled by different signaling events and illustrate the need for further research to untangle these processes.
Collapse
Affiliation(s)
- Lieve E H van der Donk
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Louis S Ates
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jet van der Spek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura M Tukker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Neogene Therapeutics, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
7
|
Abstract
T cell receptors (TCRs) are protein complexes formed by six different polypeptides. In most T cells, TCRs are composed of αβ subunits displaying immunoglobulin-like variable domains that recognize peptide antigens associated with major histocompatibility complex molecules expressed on the surface of antigen-presenting cells. TCRαβ subunits are associated with the CD3 complex formed by the γ, δ, ε, and ζ subunits, which are invariable and ensure signal transduction. Here, we review how the expression and function of TCR complexes are orchestrated by several fine-tuned cellular processes that encompass (a) synthesis of the subunits and their correct assembly and expression at the plasma membrane as a single functional complex, (b) TCR membrane localization and dynamics at the plasma membrane and in endosomal compartments, (c) TCR signal transduction leading to T cell activation, and (d) TCR degradation. These processes balance each other to ensure efficient T cell responses to a variety of antigenic stimuli while preventing autoimmunity.
Collapse
Affiliation(s)
- Andrés Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| | - Balbino Alarcón
- Severo Ochoa Center for Molecular Biology, CSIC-UAM, Madrid 28049, Spain;
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France; ,
| |
Collapse
|
8
|
Luo T, Hu J, Xi D, Xiong H, He W, Liu J, Li M, Lu H, Zhao J, Lai W, Guo Z. Lck Inhibits Heat Shock Protein 65-Mediated Reverse Cholesterol Transport in T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3861-3870. [PMID: 27742830 DOI: 10.4049/jimmunol.1502710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 09/20/2016] [Indexed: 02/05/2023]
Abstract
Previously, we reported that heat shock protein (HSP)65 impairs the effects of high-density lipoprotein on macrophages. We also showed that immune response activation adversely affects reverse cholesterol transport (RCT). In this study, we investigated the effects of the Src family kinase lymphocyte-specific protein tyrosine kinase (Lck) and elucidated the mechanism underlying HSP65-regulated cholesterol efflux in T cells. We evaluated cell proliferation, Lck expression, and inflammatory cytokine production in Jurkat cells and CD4+ T cells. HSP65-mediated inhibition of RCT was assessed by evaluating ABCA1, ABCG1, SR-BI, PPAR-γ, and liver X receptor-α expression. A dose-dependent relationship was found between the levels of these proteins and the suppression of cholesterol efflux. Stimulation of Lck-silenced T cells with ionomycin resulted in a decrease in intracellular calcium levels. Treatment of Jurkat cells with PP2, an inhibitor of Src family kinase, inhibited calcium-induced, but not PMA-induced, ERK phosphorylation. NF-κB activation in response to PMA was minimally inhibited in cells stimulated with PP2. HSP65 failed to trigger downstream ERK or JNK phosphorylation or to activate NF-κB or protein kinase C-γ in Lck-silenced cells. Additionally, elevation of intracellular calcium was also impaired. However, HSP65 significantly enhanced cholesterol efflux and decreased cellular cholesterol content by inducing the expression of cholesterol transport proteins in Lck-silenced cells. The treatment of Jurkat cells with PP2 also inhibited cell proliferation and promoted RCT. In conclusion, Lck is a key molecule in the TCR signaling cascade that inhibits cholesterol efflux and upregulates intracellular cholesterol ester content in T cells. Our results demonstrate that the immune response plays a previously unrecognized role in RCT.
Collapse
Affiliation(s)
- Tiantian Luo
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jing Hu
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Dan Xi
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Haowei Xiong
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenshuai He
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jichen Liu
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Menghao Li
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Hao Lu
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jinzhen Zhao
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenyan Lai
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhigang Guo
- Division of Cardiology, HuiQiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
9
|
Mancuso RV, Welzenbach K, Steinberger P, Krähenbühl S, Weitz-Schmidt G. Downstream effect profiles discern different mechanisms of integrin αLβ2 inhibition. Biochem Pharmacol 2016; 119:42-55. [PMID: 27613223 DOI: 10.1016/j.bcp.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/02/2016] [Indexed: 10/24/2022]
Abstract
The integrin leucocyte function-associated antigen-1 (αLβ2, LFA-1) plays crucial roles in T cell adhesion, migration and immunological synapse (IS) formation. Consequently, αLβ2 is an important therapeutic target in autoimmunity. Three major classes of αLβ2 inhibitors with distinct modes of action have been described to date: Monoclonal antibodies (mAbs), small molecule α/β I allosteric and small molecule α I allosteric inhibitors. The objective of this study was to systematically compare these three modes of αLβ2 inhibition for their αLβ2 inhibitory as well as their potential agonist-like effects. All inhibitors assessed were found to potently block αLβ2-mediated leucocyte adhesion. None of the inhibitors induced ZAP70 phosphorylation, indicating absence of agonistic outside-in signalling. Paradoxically, however, the α/β I allosteric inhibitor XVA143 induced conformational changes within αLβ2 characteristic for an intermediate affinity state. This effect was not observed with the α I allosteric inhibitor LFA878 or the anti-αLβ2 mAb efalizumab. On the other hand, efalizumab triggered the unscheduled internalization of αLβ2 in CD4+ and CD8+ T cells while LFA878 and XVA143 did not affect or only mildly reduced αLβ2 surface expression, respectively. Moreover, efalizumab, in contrast to the small molecule inhibitors, disturbed the fine-tuned internalization/recycling of engaged TCR/CD3, concomitantly decreasing ZAP70 expression levels. In conclusion, different modes of αLβ2 inhibition are associated with fundamentally different biologic effect profiles. The differential established here is expected to provide important translational guidance as novel αLβ2 inhibitors will be advanced from bench to bedside.
Collapse
Affiliation(s)
- Riccardo V Mancuso
- Division of Clinical Pharmacology and Toxicology and Department of Research, University Hospital, CH-4031 Basel, Switzerland
| | - Karl Welzenbach
- Novartis Pharma AG, Novartis Institutes of Biomedical Research, CH-4002 Basel, Switzerland
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology and Department of Research, University Hospital, CH-4031 Basel, Switzerland
| | | |
Collapse
|
10
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
11
|
Nassef Kadry Naguib Roufaiel M, Wells JW, Steptoe RJ. Impaired T-Cell Function in B-Cell Lymphoma: A Direct Consequence of Events at the Immunological Synapse? Front Immunol 2015; 6:258. [PMID: 26082776 PMCID: PMC4451642 DOI: 10.3389/fimmu.2015.00258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
Tumors can escape immune destruction through the development of antigen loss variants and loss of antigen processing/presentation pathways, thereby rendering them invisible to T cells. Alternatively, mechanisms of peripheral T-cell tolerance that would normally be important for protection from the development of autoimmunity may also be co-opted to (i) generate an immuno-inhibitory tumor environment, (ii) promote development of regulatory cell populations, or (iii) cell-intrinsically inactivate tumor-specific T cells. Emerging evidence suggests that T-cell function is impaired in hematological malignancies, which may manifest from cognate interactions between T cells and the tumor. The immunological synapse forms the cognate T-cell and antigen-presenting cell interaction and is the site where key signalling events, including those delivered by co-inhibitory receptors, that determine the fate of T cells occur. Here, we review evidence that events at the immune synapse between T cells and malignant B cells and alterations in immune synapse function may contribute to loss of T-cell function in B-cell malignancies.
Collapse
Affiliation(s)
- Marian Nassef Kadry Naguib Roufaiel
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute , Brisbane, QLD , Australia
| |
Collapse
|
12
|
Finetti F, Onnis A, Baldari CT. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 2015; 16:241-9. [PMID: 25393976 DOI: 10.1111/tra.12241] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/29/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023]
Abstract
The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | | | | |
Collapse
|
13
|
Barrera-Vargas A, Gómez-Martín D, Alcocer-Varela J. T cell receptor-associated protein tyrosine kinases: the dynamics of tolerance regulation by phosphorylation and its role in systemic lupus erythematosus. Hum Immunol 2014; 75:945-52. [PMID: 25173412 DOI: 10.1016/j.humimm.2014.08.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/10/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There are different abnormalities that lead to the autoreactive phenotype in T cells from systemic lupus erythematosus (SLE) patients. Proximal signaling, involving the T-cell receptor (TCR) and its associated protein tyrosine kinases (PTKs), is significantly affected in SLE. This ultimately leads to aberrant responses, which include enhanced tyrosine phosphorylation and calcium release, as well as decreased IL-2 secretion. Lck, ZAP70 and Syk, which are PTKs with a major role in proximal signaling, all present abnormal functioning that contributes to an altered T cell response in these patients. A number of other molecules, especially regulatory proteins, are also involved. This review will focus on the PTKs that participate in proximal signaling, with specific emphasis on their relevance in maintaining peripheral tolerance, their abnormalities in SLE and how these contribute to an altered T cell response.
Collapse
Affiliation(s)
- Ana Barrera-Vargas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| | - Jorge Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14000 Mexico City, Mexico.
| |
Collapse
|
14
|
Tsun A, Qureshi I, Stinchcombe JC, Jenkins MR, de la Roche M, Kleczkowska J, Zamoyska R, Griffiths GM. Centrosome docking at the immunological synapse is controlled by Lck signaling. J Cell Biol 2011; 192:663-74. [PMID: 21339332 PMCID: PMC3044125 DOI: 10.1083/jcb.201008140] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/25/2011] [Indexed: 11/22/2022] Open
Abstract
Docking of the centrosome at the plasma membrane directs lytic granules to the immunological synapse. To identify signals controlling centrosome docking at the synapse, we have studied cytotoxic T lymphocytes (CTLs) in which expression of the T cell receptor-activated tyrosine kinase Lck is ablated. In the absence of Lck, the centrosome is able to translocate around the nucleus toward the immunological synapse but is unable to dock at the plasma membrane. Lytic granules fail to polarize and release their contents, and target cells are not killed. In CTLs deficient in both Lck and the related tyrosine kinase Fyn, centrosome translocation is impaired, and the centrosome remains on the distal side of the nucleus relative to the synapse. These results show that repositioning of the centrosome in CTLs involves at least two distinct steps, with Lck signaling required for the centrosome to dock at the plasma membrane.
Collapse
Affiliation(s)
- Andy Tsun
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Ihjaaz Qureshi
- Division of Immune Cell Biology, National Institute for Medical Research, London NW7 1AA, England, UK
| | - Jane C. Stinchcombe
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Misty R. Jenkins
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Maike de la Roche
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Joanna Kleczkowska
- Division of Immune Cell Biology, National Institute for Medical Research, London NW7 1AA, England, UK
| | - Rose Zamoyska
- Division of Immune Cell Biology, National Institute for Medical Research, London NW7 1AA, England, UK
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0XY, England, UK
| |
Collapse
|
15
|
Chae HD, Siefring JE, Hildeman DA, Gu Y, Williams DA. RhoH regulates subcellular localization of ZAP-70 and Lck in T cell receptor signaling. PLoS One 2010; 5:e13970. [PMID: 21103055 PMCID: PMC2980477 DOI: 10.1371/journal.pone.0013970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 10/19/2010] [Indexed: 01/26/2023] Open
Abstract
RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh(-/-) bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway.
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jamie E. Siefring
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Gu
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David A. Williams
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Fischer A, Picard C, Chemin K, Dogniaux S, le Deist F, Hivroz C. ZAP70: a master regulator of adaptive immunity. Semin Immunopathol 2010; 32:107-16. [DOI: 10.1007/s00281-010-0196-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/29/2009] [Indexed: 10/24/2022]
|
17
|
Uchino R. Domain analyses of the Runx1 transcription factor responsible for modulating T-cell receptor-beta/CD4 and interleukin-4/interferon-gamma expression in CD4(+) peripheral T lymphocytes. Immunology 2009; 128:16-24. [PMID: 19689732 DOI: 10.1111/j.1365-2567.2009.03042.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Runx1 transcription factor is one of the master regulators of T-lymphocyte differentiation. There have been several reports trying to assign a domain within the Runx1 protein that is responsible for gene expression in thymocytes. The Runx1 domains involved in regulating the expression of several genes in peripheral CD4(+) T cells were analysed. It was observed that Runx1 over-expression enhanced the surface expression of CD4 and CD69 molecules via its activation domain and VWRPY domain, and decreased that of T-cell receptor-beta via its activation domain. Runx1 over-expression enhanced interferon-gamma expression via its activation and VWRPY domains, and abolished interleukin-4 expression through its activation domain. Transduction of Runx1 did not down-regulate CD4 expression until 72 hr of culture, but the repression of CD4 expression became evident after 96 hr. The main region responsible for repressing CD4 expression was the inhibitory domain of Runx1. Taken together, these results lead to a proposal that the regions in Runx1 responsible for modulating gene expression are distinct in thymocytes and in peripheral CD4(+) T cells.
Collapse
Affiliation(s)
- Ryuji Uchino
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Graduate School of Life Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
18
|
Gay DL, Ramón H, Oliver PM. Cbl- and Nedd4-family ubiquitin ligases: balancing tolerance and immunity. Immunol Res 2009; 42:51-64. [PMID: 18827983 DOI: 10.1007/s12026-008-8034-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Engagement of the T cell receptor (TCR) with its cognate peptide/MHC initiates a cascade of signaling events that results in T cell activation. Limiting the extent and duration of TCR signaling ensures a tightly constrained response, protecting cells from the deleterious impact of chronic activation. In order to limit the duration of activation, T cells must adjust levels of key signaling proteins. This can be accomplished by altering protein synthesis or by changing the rate of protein degradation. Ubiquitination is a process of 'tagging' a protein with ubiquitin and is one means of initiating protein degradation. This process is activated when an E3 ubiquitin ligase mediates the transfer of ubiquitin to a target protein. Accordingly, E3 ubiquitin ligases have recently emerged as key regulators of immune cell function. This review will explore how a small group of E3 ubiquitin ligases regulate T cell responses and thus direct adaptive immunity.
Collapse
Affiliation(s)
- Denise L Gay
- The Children's Hospital of Philadelphia, Joseph Stokes, Jr. Research Institute, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
19
|
Primary Immunodeficiencies. PEDIATRIC ALLERGY, ASTHMA AND IMMUNOLOGY 2008. [PMCID: PMC7121684 DOI: 10.1007/978-3-540-33395-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary immunodeficiencies (PIDs), once considered to be very rare, are now increasingly recognized because of growing knowledge in the immunological field and the availability of more sophisticated diagnostic techniques and therapeutic modalities [161]. However in a database of >120,000 inpatients of a general hospital for conditions suggestive of ID 59 patients were tested, and an undiagnosed PID was found in 17 (29%) of the subjects tested [107]. The publication of the first case of agammaglobulinemia by Bruton in 1952 [60] demonstrated that the PID diagnosis is first done in the laboratory. However, PIDs require specialized immunological centers for diagnosis and management [33]. A large body of epidemiological evidence supports the hypothesis of the existence of a close etiopathogenetic relation between PID and atopy [73]. In particular, an elevated frequency of asthma, food allergy (FA), atopic dermatitis and enteric pathologies can be found in various PIDs. In addition we will discuss another subject that is certainly of interest: the pseudo-immunodepressed child with recurrent respiratory infections (RRIs), an event that often requires medical intervention and that very often leads to the suspicion that it involves antibody deficiencies [149].
Collapse
|
20
|
Hollier M, Whistler T, Dawson C, Vernon SD. Two optimized combination assays to examine apoptosis pathways in clinical samples. Cytometry A 2007; 71:675-85. [PMID: 17623880 DOI: 10.1002/cyto.a.20422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND A consequence of a number of diseases is an alteration in apoptosis. Currently, there is no single assay that measures the main stages of apoptosis, requiring that multiple assays be performed. This hinders studies on clinical samples that have limited cell numbers. Our objective was to combine and optimize assays that target specific stages of apoptosis for use in a typical clinical blood sample. METHODS Two flow cytometric assays were developed for use on peripheral blood mononuclear cells (PBMC) collected in two 8-ml tubes from a single draw. One measures caspase-12 activity, the level of active caspase-3 and DNA fragmentation. The second assesses depolarization of the mitochondria and phosphatidylserine externalization. Cell populations present within the samples were determined by flow cytometry. Apoptosis was validated by ELISA. RESULTS Each assay was optimized for use with cell numbers and sample volumes typical of clinical blood samples. Each combination assay effectively distinguished apoptotic from nonapoptotic blood cells. CONCLUSIONS This combined optimized method comprised of two independent assays makes it possible to assay the major pathways of apoptosis in addition to determining the blood cell subsets that are affected.
Collapse
Affiliation(s)
- Mark Hollier
- Chronic Viral Diseases Branch, Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
21
|
Petersen CC, Petersen MS, Agger R, Hokland ME. Accumulation in tumor tissue of adoptively transferred T cells: A comparison between intravenous and intraperitoneal injection. J Immunother 2006; 29:241-9. [PMID: 16699367 DOI: 10.1097/01.cji.0000203078.97493.c3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulation of T cells at the tumor is essential in cancer immunotherapy based on adoptive transfer of tumor-specific T cells. To gain further insight into the accumulation process and to evaluate the effect of using different routes of cell transfer, we investigated the accumulation of ovalbumin-specific CD8+ T cells (OT-I) injected either intravenously (IV) or intraperitoneally (IP) into mice carrying a subcutaneous tumor of the ovalbumin-expressing melanoma cell line B16-OVA. Maximal accumulation of the adoptively transferred cells in tumor tissue was observed 5 days after injection, irrespective of the injection route. The route of injection affected neither the total number of adoptively transferred cells found in tumor tissue nor the kinetics of this accumulation. In the spleen, however, the accumulation of adoptively transferred cells was clearly dependent on the injection route. IP injections resulted in a large number of adoptively transferred cells in the spleen on all days analyzed. In comparison, IV injection resulted in significantly fewer adoptively transferred cells in the spleen, and this number decreased over time. The route of injection affected neither the activation status of the adoptively transferred T cells that accumulated at the tumor site, nor the ability of these cells to control tumor growth. Two cell populations, SIINFEKL-tetramer(Low)(Tet(Low))CD69+ CD25+ and Tet(high)CD69- CD25-, were present in tumor samples, whereas only Tet(High)CD69- CD25- cells accumulated in the spleen. In tumors, IV injection resulted in a higher fraction of adoptively transferred cells with an activated phenotype (Tet(Low)CD69+ CD25+) compared with IP injection.
Collapse
Affiliation(s)
- Charlotte C Petersen
- Institute of Medical Microbiology and Immunology, Aarhus University, Aarhus 8000, Denmark.
| | | | | | | |
Collapse
|
22
|
Rieux-Laucat F, Hivroz C, Lim A, Mateo V, Pellier I, Selz F, Fischer A, Le Deist F. Inherited and somatic CD3zeta mutations in a patient with T-cell deficiency. N Engl J Med 2006; 354:1913-21. [PMID: 16672702 DOI: 10.1056/nejmoa053750] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A four-month-old boy with primary immunodeficiency was found to have a homozygous germ-line mutation of the gene encoding the CD3zeta subunit of the T-cell receptor-CD3 complex. CD3zeta is necessary for the development and function of T cells. Some of the patient's T cells had low levels of the T-cell receptor-CD3 complex and carried the Q70X mutation in both alleles of CD3zeta, whereas other T cells had normal levels of the complex and bore the Q70X mutation on only one allele of CD3zeta, plus one of three heterozygous somatic mutations of CD3zeta on the other allele, allowing expression of poorly functional T-cell receptor-CD3 complexes.
Collapse
|
23
|
Kim JR, Irie A, Tsukamoto H, Nishimura Y. A role of kinase inactive ZAP-70 in altered peptide ligand stimulated T cell activation. Biochem Biophys Res Commun 2006; 341:19-27. [PMID: 16412387 DOI: 10.1016/j.bbrc.2005.12.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/21/2005] [Indexed: 12/01/2022]
Abstract
T cell activation signals induced by altered peptide ligands (APLs) are different from those induced by the original agonistic peptide. The characteristics of the former are partial phosphorylation of TCR-zeta and no tyrosine-phosphorylation of zeta-associated protein-70 (ZAP-70). To analyze further those signaling pathways, we introduced a dominant negative (DN) form of ZAP-70 into a human CD4(+) T cell clone in which fully and partially agonistic peptide ligands have been well characterized. We found that some over-expressed partially agonistic ligands (OPALs) induced T cell responses without tyrosine-phosphorylation and kinase activation of ZAP-70. However, those responses were inhibited in T cells expressing DN ZAP-70, which could associate with partially phosphorylated TCR-zeta. In OPAL-stimulated T cells, PLC-gamma1 was phosphorylated and it was suppressed by DN ZAP-70 expression, suggesting that the ZAP-70-TCR-zeta association mediates the activation of PLC-gamma1 leading to T cell responses even in the absence of kinase activation of ZAP-70.
Collapse
Affiliation(s)
- Jeong-Ran Kim
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | | | |
Collapse
|
24
|
Davanture S, Leignadier J, Milani P, Soubeyran P, Malissen B, Malissen M, Schmitt-Verhulst AM, Boyer C. Selective defect in antigen-induced TCR internalization at the immune synapse of CD8 T cells bearing the ZAP-70(Y292F) mutation. THE JOURNAL OF IMMUNOLOGY 2005; 175:3140-9. [PMID: 16116204 DOI: 10.4049/jimmunol.175.5.3140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cbl proteins have been implicated in ligand-induced TCR/CD3 down-modulation, but underlying mechanisms are unclear. We analyzed the effect of mutation of a cbl-binding site on ZAP-70 (ZAP-Y292F) on dynamics, internalization, and degradation of the TCR/CD3 complex in response to distinct stimuli. Naive CD8 T cells expressing the P14 transgenic TCR from ZAP-Y292F mice were selectively affected in TCR/CD3 down-modulation in response to antigenic stimulation, whereas neither anti-CD3 Ab-, and PMA-induced TCR down-modulation, nor constitutive receptor endocytosis/cycling were impaired. We further established that the defect in TCR/CD3 down-modulation in response to Ag was paralleled by an impaired TCR/CD3 internalization and CD3zeta degradation. Analysis of T/APC conjugates revealed that delayed redistribution of TCR at the T/APC contact zone was paralleled by a delay in TCR internalization in the synaptic zone in ZAP-Y292F compared with ZAP-wild-type T cells. Cbl recruitment to the synapse was also retarded in ZAP-Y292F T cells, although F-actin and LFA-1 redistribution was similar for both cell types. This study identifies a step involving ZAP-70/cbl interaction that is critical for rapid internalization of the TCR/CD3 complex at the CD8 T cell/APC synapse.
Collapse
Affiliation(s)
- Suzel Davanture
- Centre d'Immunologie de Marseille-Luminy, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université de la Méditerranée, Marseille, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The ZAP-70 tyrosine kinase has been described more than ten years ago. Its key role in thymocytes development and mature T lymphocytes activation has been illustrated by the characterization of several human immunodeficiencies presenting with mutations in the zap-70 gene resulting in the absence of ZAP-70 expression. More recently, it has been shown that deregulation of ZAP-70 activity can induce autoimmune diseases. Finally, ZAP-70 expression has been shown in some B chronic lymphocytic leukaemia and correlated with bad prognosis of the disease. The diversity of pathologies associated with deregulation of ZAP-70 demonstrates its key role in immune responses. Research aiming at deciphering the different signalling pathways regulated by ZAP-70 will not only shed some lights on these pathologies, but will also help finding new pharmacological tools, targeting ZAP-70, designed to induce immunosuppression or tolerance.
Collapse
Affiliation(s)
- Claire Hivroz
- Inserm U.365, Institut Curie, Section Recherche, 26, rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
26
|
Steinberg M, Adjali O, Swainson L, Merida P, Di Bartolo V, Pelletier L, Taylor N, Noraz N. T-cell receptor–induced phosphorylation of the ζ chain is efficiently promoted by ZAP-70 but not Syk. Blood 2004; 104:760-7. [PMID: 15059847 DOI: 10.1182/blood-2003-12-4314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEngagement of the T-cell receptor (TCR) results in the activation of Lck/Fyn and ZAP-70/Syk tyrosine kinases. Lck-mediated tyrosine phosphorylation of signaling motifs (ITAMs) in the CD3-ζ subunits of the TCR is an initial step in the transduction of signaling cascades. However, ζ phosphorylation is also promoted by ZAP-70, as TCR-induced ζ phosphorylation is defective in ZAP-70–deficient T cells. We show that this defect is corrected by stable expression of ZAP-70, but not Syk, in primary and transformed T cells. Indeed, these proteins are differentially coupled to the TCR with a 5- to 10-fold higher association of ZAP-70 with ζ as compared to Syk. Low-level Syk-ζ binding is associated with significantly less Lck coupled to the TCR. Moreover, diminished coupling of Lck to ζ correlates with a poor phosphorylation of the positive regulatory tyr352 residue of Syk. Thus, recruitment of Lck into the TCR complex with subsequent ζ chain phosphorylation is promoted by ZAP-70 but not Syk. Importantly, the presence of ZAP-70 positively regulates the TCR-induced tyrosine phosphorylation of Syk. The interplay between Syk and ZAP-70 in thymocytes, certain T cells, and B-chronic lymphocytic leukemia cells, in which they are coexpressed, will therefore modulate the amplitude of antigen-mediated receptor signaling.
Collapse
Affiliation(s)
- Marcos Steinberg
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique Unité de Recherches 5535/Institut Fédératife de Recherche, F-34293 Montpellier 5, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bommireddy R, Saxena V, Ormsby I, Yin M, Boivin GP, Babcock GF, Singh RR, Doetschman T. TGF-beta 1 regulates lymphocyte homeostasis by preventing activation and subsequent apoptosis of peripheral lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4612-22. [PMID: 12707339 DOI: 10.4049/jimmunol.170.9.4612] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TGF-beta1 plays an important role in the maintenance of immune homeostasis and self-tolerance. To determine the mechanism by which TGF-beta1 prevents autoimmunity we have analyzed T cell activation in splenic lymphocytes from TGF-beta1-deficient mice. Here we demonstrate that unlike wild-type splenic lymphocytes, those from Tgfb1(-/-) mice are hyporesponsive to receptor-mediated mitogenic stimulation, as evidenced by diminished proliferation and reduced IL-2 production. However, they have elevated levels of IFN-gamma and eventually undergo apoptosis. Receptor-independent stimulation of Tgfb1(-/-) T cells by PMA plus ionomycin induces IL-2 production and mitogenic response, and it rescues them from anergy. Tgfb1(-/-) T cells display decreased CD3 expression; increased expression of the activation markers LFA-1, CD69, and CD122; and increased cell size, all of which indicate prior activation. Consistently, mutant CD4(+) T cells have elevated intracellular Ca(2+) levels. However, upon subsequent stimulation in vitro, increases in Ca(2+) levels are less than those in wild-type cells. This is also consistent with the anergic phenotype. Together, these results demonstrate that the ex vivo proliferative hyporesponsiveness of Tgfb1(-/-) splenic lymphocytes is due to prior in vivo activation of T cells resulting from deregulated intracellular Ca(2+) levels.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|