1
|
Berd D. Portrait of an autologous cancer vaccine: Then and now. Hum Vaccin Immunother 2023; 19:2172925. [PMID: 36755486 PMCID: PMC10012894 DOI: 10.1080/21645515.2023.2172925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Active immunotherapy of cancer with therapeutic vaccines has been the subject of experimental and clinical studies for at least 50 years. Our approach has employed 1) autologous, human cancer cells because of extensive evidence that tumor rejection antigens may differ between multiple tumors of the same histology; 2) the immunopotentiating drug, cyclophosphamide; and 3) haptens, particularly dinitrophenyl. Multiple clinical trials in 455 patients with melanoma and ovarian cancer have shown that administration of haptenized vaccines at the proper dosage-schedule regularly induces T cell-mediated immunity to autologous tumor cells as measured by delayed-type hypersensitivity. Moreover, the vaccine causes changes in the tumor site suggestive of an immune reaction, including inflammation and infiltration with CD8+ T lymphocytes that are activated and produce cytokines. The T cell response is oligoclonal, and dominant Vβ families differ between patients. Studies of measurable metastases show clinically important tumor regression. Commercial development of this technology is clearly feasible.
Collapse
Affiliation(s)
- David Berd
- Biovaxys Technology Corp, Etobicoke, ON, Canada
| |
Collapse
|
2
|
Hogan SA, Courtier A, Cheng PF, Jaberg-Bentele NF, Goldinger SM, Manuel M, Perez S, Plantier N, Mouret JF, Nguyen-Kim TDL, Raaijmakers MIG, Kvistborg P, Pasqual N, Haanen JBAG, Dummer R, Levesque MP. Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for Immunotherapy against Melanoma. Cancer Immunol Res 2018; 7:77-85. [PMID: 30425105 DOI: 10.1158/2326-6066.cir-18-0136] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 11/16/2022]
Abstract
Many metastatic melanoma patients experience durable responses to anti-PD1 and/or anti-CTLA4; however, a significant proportion (over 50%) do not benefit from the therapies. In this study, we sought to assess pretreatment liquid biopsies for biomarkers that may correlate with response to checkpoint blockade. We measured the combinatorial diversity evenness of the T-cell receptor (TCR) repertoire (the DE50, with low values corresponding to more clonality and lack of TCR diversity) in pretreatment peripheral blood mononuclear cells from melanoma patients treated with anti-CTLA4 (n = 42) or anti-PD1 (n = 38) using a multi-N-plex PCR assay on genomic DNA (gDNA). A receiver operating characteristic curve determined the optimal threshold for a dichotomized analysis according to objective responses as defined by RECIST1.1. Correlations between treatment outcome, clinical variables, and DE50 were assessed in multivariate regression models and confirmed with Fisher exact tests. In samples obtained prior to treatment initiation, we showed that low DE50 values were predictive of a longer progression-free survival and good responses to PD-1 blockade, but, on the other hand, predicted a poor response to CTLA4 inhibition. Multivariate logistic regression models identified DE50 as the only independent predictive factor for response to anti-CTLA4 therapy (P = 0.03) and anti-PD1 therapy (P = 0.001). Fisher exact tests confirmed the association of low DE50 with response in the anti-CTLA4 (P = 0.041) and the anti-PD1 cohort (P = 0.0016). Thus, the evaluation of basal TCR repertoire diversity in peripheral blood, using a PCR-based method, could help predict responses to anti-PD1 and anti-CTLA4 therapies.
Collapse
Affiliation(s)
- Sabrina A Hogan
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Pia Kvistborg
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Reinhard Dummer
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Ravindranathan S, Nguyen KG, Kurtz SL, Frazier HN, Smith SG, Koppolu BP, Rajaram N, Zaharoff DA. Tumor-derived granulocyte colony-stimulating factor diminishes efficacy of breast tumor cell vaccines. Breast Cancer Res 2018; 20:126. [PMID: 30348199 PMCID: PMC6198508 DOI: 10.1186/s13058-018-1054-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Although metastasis is ultimately responsible for about 90% of breast cancer mortality, the vast majority of breast-cancer-related deaths are due to progressive recurrences from non-metastatic disease. Current adjuvant therapies are unable to prevent progressive recurrences for a significant fraction of patients with breast cancer. Autologous tumor cell vaccines (ATCVs) are a safe and potentially useful strategy to prevent breast cancer recurrence, in a personalized and patient-specific manner, following standard-of-care tumor resection. Given the high intra-patient and inter-patient heterogeneity in breast cancer, it is important to understand which factors influence the immunogenicity of breast tumor cells in order to maximize ATCV effectiveness. METHODS The relative immunogenicity of two murine breast carcinomas, 4T1 and EMT6, were compared in a prophylactic vaccination-tumor challenge model. Differences in cell surface expression of antigen-presentation-related and costimulatory molecules were compared along with immunosuppressive cytokine production. CRISPR/Cas9 technology was used to modulate tumor-derived cytokine secretion. The impacts of cytokine deletion on splenomegaly, myeloid-derived suppressor cell (MDSC) accumulation and ATCV immunogenicity were assessed. RESULTS Mice vaccinated with an EMT6 vaccine exhibited significantly greater protective immunity than mice vaccinated with a 4T1 vaccine. Hybrid vaccination studies revealed that the 4T1 vaccination induced both local and systemic immune impairments. Although there were significant differences between EMT6 and 4T1 in the expression of costimulatory molecules, major disparities in the secretion of immunosuppressive cytokines likely accounts for differences in immunogenicity between the cell lines. Ablation of one cytokine in particular, granulocyte-colony stimulating factor (G-CSF), reversed MDSC accumulation and splenomegaly in the 4T1 model. Furthermore, G-CSF inhibition enhanced the immunogenicity of a 4T1-based vaccine to the extent that all vaccinated mice developed complete protective immunity. CONCLUSIONS Breast cancer cells that express high levels of G-CSF have the potential to diminish or abrogate the efficacy of breast cancer ATCVs. Fortunately, this study demonstrates that genetic ablation of immunosuppressive cytokines, such as G-CSF, can enhance the immunogenicity of breast cancer cell-based vaccines. Strategies that combine inhibition of immunosuppressive factors with immune stimulatory co-formulations already under development may help ATCVs reach their full potential.
Collapse
Affiliation(s)
| | - Khue G Nguyen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha L Kurtz
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Haven N Frazier
- Honors College, University of Arkansas, Fayetteville, AR, USA
| | - Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Bhanu Prasanth Koppolu
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA. .,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA. .,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA. .,Honors College, University of Arkansas, Fayetteville, AR, USA. .,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Compositional characteristics of human peripheral TRBV pseudogene rearrangements. Sci Rep 2018; 8:5926. [PMID: 29651132 PMCID: PMC5897323 DOI: 10.1038/s41598-018-24367-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/03/2018] [Indexed: 11/08/2022] Open
Abstract
The diversity of the T cell receptor (TCR) complementarity determining region 3 (CDR3) repertoire is the result of random combinations, insertions and deletions during recombination of the germline V, D and J gene fragments. During evolution, some human TCR beta chain variable (TRBV) pseudogenes have been retained. Many previous studies have focused on functional TRBV genes, while little attention has been given to TRBV pseudogenes. To describe the compositional characteristics of TRBV pseudogene rearrangements, we compared and analysed TRBV pseudogenes, TRBV open reading frames (ORFs) and functional TRBV genes via high-throughput sequencing of DNA obtained from the peripheral blood of 4 healthy volunteers and 4 patients. Our results revealed several differences in J and D gene usage. The V deletion distribution profile of the pseudogenes was significantly different from that of the ORFs and functional genes. In addition, arginine, lysine and cysteine were more frequently used in putative CDR3 pseudogene rearrangements, while functional rearrangements used more leucine. This study presents a comprehensive description of the compositional characteristics of peripheral TRBV pseudogene rearrangements, which will provide a reference for further research on TRBV pseudogenes.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
6
|
Ren W, Ji A, Wang MX, Ai HW. Expanding the Genetic Code for a Dinitrophenyl Hapten. Chembiochem 2015; 16:2007-10. [PMID: 26185102 DOI: 10.1002/cbic.201500204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 01/20/2023]
Abstract
Haptens, such as dinitrophenyl (DNP) are small molecules that induce strong immune responses when attached to proteins or peptides and, as such, have been exploited for diverse applications. We engineered a Methanosarcina barkeri pyrrolysyl-tRNA synthetase (mbPylRS) to genetically encode a DNP-containing unnatural amino acid, N(6) -(2-(2,4-dinitrophenyl)acetyl)lysine (DnpK). Although this moiety was unstable in Escherichia coli, we found that its stability was enhanced in mammalian HEK 293T cells and was able to induce selective interactions with anti-DNP antibodies. The capability of genetically introducing DNP into proteins is expected to find broad applications in biosensing, immunology, and therapeutics.
Collapse
Affiliation(s)
- Wei Ren
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Ao Ji
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Michael X Wang
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.,John W. North High School, 1550 3rd Street, Riverside, CA, 92507, USA
| | - Hui-wang Ai
- Department of Chemistry, University of California Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
7
|
Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma. PLoS One 2014; 9:e111817. [PMID: 25372838 PMCID: PMC4221131 DOI: 10.1371/journal.pone.0111817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/08/2014] [Indexed: 12/29/2022] Open
Abstract
Canine Diffuse Large B-cell Lymphoma (cDLBCL) is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs) by high-resolution array comparative genomic hybridization (aCGH) in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (>30%) were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (>41%). In these segments, MYC, LDHB, HSF1, KIT and PDGFRα are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL.
Collapse
|
8
|
Hapten-induced contact hypersensitivity, autoimmune reactions, and tumor regression: plausibility of mediating antitumor immunity. J Immunol Res 2014; 2014:175265. [PMID: 24949488 PMCID: PMC4052058 DOI: 10.1155/2014/175265] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/27/2014] [Indexed: 01/21/2023] Open
Abstract
Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD) using animal contact hypersensitivity (CHS) models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD) to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1) ex vivo haptenation, (2) in situ haptenation, (3) epifocal hapten application, and (4) antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.
Collapse
|
9
|
Zuleger CL, Macklin MD, Bostwick BL, Pei Q, Newton MA, Albertini MR. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells. J Immunol Methods 2010; 365:76-86. [PMID: 21182840 DOI: 10.1016/j.jim.2010.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/01/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies.
Collapse
|
10
|
Serana F, Sottini A, Caimi L, Palermo B, Natali PG, Nisticò P, Imberti L. Identification of a public CDR3 motif and a biased utilization of T-cell receptor V beta and J beta chains in HLA-A2/Melan-A-specific T-cell clonotypes of melanoma patients. J Transl Med 2009; 7:21. [PMID: 19317896 PMCID: PMC2667493 DOI: 10.1186/1479-5876-7-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/24/2009] [Indexed: 12/26/2022] Open
Abstract
Background Assessment of T-cell diversity, besides giving insights about the molecular basis of tumor antigen recognition, has clinical implications since it provides criteria for evaluating antigen-specific T cells clinically relevant for spontaneous and vaccine-induced anti-tumor activity. Melan-A is one of the melanoma antigens most frequently recognized by peripheral and tumor-infiltrating lymphocytes in HLA-A2+ melanoma patients. Many clinical trials involving anti-tumor vaccination have been conducted using modified versions of this peptide. Methods We conducted an in-depth characterization of 210 T-cell receptor beta chain (TRB) clonotypes derived from T cells of HLA-A2+ melanoma patients displaying cytotoxic activity against natural and A27L-modified Melan-A peptides. One hundred and thirteen Melan-A-specific clonotypes from melanoma-free subjects, 199 clonotypes from T-cell clones from melanoma patients specific for melanoma antigens other than Melan-A, and 305 clonotypes derived from T cells of HLA-A2+ individuals showing unrelated specificities, were used as control. After sequence analysis, performed according to the IMGT definitions, TRBV and TRBJ usage, CDR3 length and amino acid composition were compared in the four groups of clonotypes. Results TRB sequences of Melan-A-specific clonotypes obtained from melanoma patients were highly heterogeneous, but displayed a preferential usage of few TRBV and TRBJ segments. Furthermore, they included a recurrent "public" amino acid motif (Glycine-Leucine-Glycine at positions 110-112-113 of the CDR3) rearranged with dominant TRBV and TRBJ segments and, in one case, associated with a full conservation of the entire TRB sequence. Conclusion Contrary to what observed for public anti-Melan-A T-cell receptor alpha motifs, which had been identified in several clonotypes of both melanoma patients and healthy controls, the unexpectedly high contribution of a public TRB motif in the recognition of a dominant melanoma epitope in melanoma patients may provide important information about the biology of anti-tumor T-cell responses and improve monitoring strategies of anti-tumor vaccines.
Collapse
Affiliation(s)
- Federico Serana
- Diagnostics Department, Spedali Civili di Brescia, 25123 Brescia, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The author has devised a novel approach to the immunotherapy of cancer based on modification of autologous tumor cells with the hapten, dinitrophenyl (DNP). This technology is being developed by AVAX Technologies (MO, USA) as a treatment for melanoma under the brand name, M-Vax. The treatment program consists of multiple intradermal injections of DNP-modified autologous tumor cells mixed with bacille Calmette-Guerin as an immunological adjuvant. Administration of DNP vaccine to patients with metastatic melanoma induces a unique reaction--the development of inflammation in metastatic masses. Following DNP-vaccine treatment, almost all patients develop delayed-type hypersensitivity (DTH) to autologous, DNP-modified melanoma cells and about half also exhibit DTH to autologous, unmodified tumor cells. The toxicity of the vaccine is mild, consisting mainly of papules or pustules at the injection sites. Clinical trials have been conducted in two populations of melanoma patients: Stage IV with measurable metastases, and clinical Stage III patients rendered tumor-free by lymphadenectomy. There were 11 antitumor responses in 83 patients with measurable metastases: two complete, four partial and five mixed. In 214 Stage III patients the 5-year overall survival rate was 44%, which compares favorably with the reported surgical rate of 20-25%. In both populations, the induction of DTH to unmodified autologous tumor cells was associated with significantly longer survival. This is a platform technology that is adaptable to other human cancers and early trials indicate immunological activity in ovarian and renal cell carcinomas.
Collapse
Affiliation(s)
- David Berd
- Department of Medicine, Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, PA 19107, USA.
| |
Collapse
|
12
|
Mosolits S, Markovic K, Fagerberg J, Frödin JE, Rezvany MR, Kiaii S, Mellstedt H, Jeddi-Tehrani M. T-cell receptor BV gene usage in colorectal carcinoma patients immunised with recombinant Ep-CAM protein or anti-idiotypic antibody. Cancer Immunol Immunother 2005; 54:557-70. [PMID: 15570423 PMCID: PMC11034216 DOI: 10.1007/s00262-004-0620-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 09/12/2004] [Indexed: 10/26/2022]
Abstract
The tumour-associated antigen, Ep-CAM, is over-expressed in colorectal carcinoma (CRC). In the present study, a recombinant Ep-CAM protein or a human anti-idiotypic antibody (anti-Id) mimicking Ep-CAM, either alone or in combination, was used for vaccination of CRC patients (n=9). GM-CSF was given as an adjuvant cytokine. A cellular immune response was assessed by measuring anti-Ep-CAM lymphoproliferation, IFN-gamma production (ELISPOT) and by analysing the TCR BV gene usage within the CD4+ and CD8+ T-cell subsets followed by CDR3 fragment analysis. A proliferative and/or IFN-gamma T-cell response was induced against the Ep-CAM protein in eight out of nine patients, and against Ep-CAM-derived peptides in nine out of nine patients. Analysis of the TCR BV gene usage showed a significantly higher usage of BV12 family in CD4+ T cells of patients both before and after immunisation than in those of healthy control donors (p<0.05). In the CD8+ T-cell subset, a significant (p<0.05) increase in the BV19 usage was noted in patients after immunisation. In individual patients, a number of TCR BV gene families in both CD4+ and CD8+ T cells were over-expressed mainly in post-immunisation samples. Analysis of the CDR3 length polymorphism revealed a higher degree of clonality in post-immunisation samples than in pre-immunisation samples. In vitro stimulation with Ep-CAM protein confirmed the expansion of anti-Ep-CAM T-cell clones. The results indicate that immunisation with the Ep-CAM protein and/or anti-Id entails the induction of an anti-Ep-CAM T-cell response in CRC patients, and suggest that BV19+ CD8+ T cells might be involved in a vaccine-induced immune response.
Collapse
Affiliation(s)
- Szilvia Mosolits
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
| | - Katja Markovic
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
| | - Jan Fagerberg
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
| | - Jan-Erik Frödin
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
| | - Mohammad-Reza Rezvany
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
| | - Shahryar Kiaii
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
| | - Håkan Mellstedt
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
- Immune and Gene Therapy Laboratory, Cancer Centre Karolinska, Karolinska Hospital, 171 76 Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Immune and Gene Therapy Laboratory, Department of Oncology (Radiumhemmet), Karolinska Institute, Stockholm, Sweden
- Department of Immunology, Monoclonal Antibody Research Center, Avesina Research Center, Tehran, Iran
| |
Collapse
|
13
|
Zhou J, Dudley ME, Rosenberg SA, Robbins PF. Selective growth, in vitro and in vivo, of individual T cell clones from tumor-infiltrating lymphocytes obtained from patients with melanoma. THE JOURNAL OF IMMUNOLOGY 2005; 173:7622-9. [PMID: 15585890 PMCID: PMC2174603 DOI: 10.4049/jimmunol.173.12.7622] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent clinical trials in patients with metastatic melanoma, adoptive transfer of tumor-reactive lymphocytes mediated the regression of metastatic tumor deposits. To better understand the role of individual T cell clones in mediating tumor regression, a 5' RACE technique was used to determine the distribution of TCR beta-chain V region sequences expressed in the transferred cells as well as in tumor samples and circulating lymphocytes from melanoma patients following adoptive cell transfer. We found that dominant T cell clones were present in the in vitro-expanded and transferred tumor-infiltrating lymphocyte samples and certain T cell clones including the dominant T cell clones persisted at relatively high levels in the peripheral blood of the patients that demonstrated clinical responses to adoptive immunotherapy. However, these dominant clones were either undetected or present at a very low level in the resected tumor samples used for tumor-infiltrating lymphocyte generation. These data demonstrated that there was selective growth and survival, both in vitro and in vivo, of individual T cell clones from a relatively small number of T cells in the original tumor samples. These results suggest that the persistent T cell clones played an active role in mediating tumor regression and that 5' RACE analysis may provide an important tool for the analysis of the role of individual T cell clones in mediating tumor regression. A similar analysis may also be useful for monitoring autoimmune responses.
Collapse
Affiliation(s)
| | | | - Steven A. Rosenberg
- Address correspondence and reprint requests to Dr. Steven A. Rosenberg, Surgery Branch, National Cancer Institute, National Institutes of Health, Room 2B42, Building 10, 9000 Rockville Pike, Bethesda, MD 20892. E-mail address:
| | | |
Collapse
|
14
|
Campoli M, Ferrone S. T-cell-based immunotherapy of melanoma: what have we learned and how can we improve? Expert Rev Vaccines 2004; 3:171-87. [PMID: 15056043 DOI: 10.1586/14760584.3.2.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lack of effective treatment for advanced stage melanoma by conventional therapies, such as radiation and chemotherapy, has highlighted the need to develop alternative therapeutic strategies. Among them, immunotherapy has attracted much attention because of the potential role played by immunological events in the clinical course of melanoma and the availability of well-characterized melanoma antigens to target melanoma lesions with immunological effector mechanisms. In recent years, T-cell-based immunotherapy has been emphasized, in part because of the disappointing results of the antibody-based trials conducted in the early 1980s, and in part because of the postulated major role played by T-cells in tumor growth control. In this review, the characteristics of antibody and T-cell-defined melanoma antigens will first be described, with emphasis on those used in clinical trials. Following a review of the current immunization and immunomonitoring strategies, the results from the T-cell-based immunotherapy clinical trials conducted to date will be reviewed.
Collapse
Affiliation(s)
- Michael Campoli
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
15
|
thor Straten P, Schrama D, Andersen MH, Becker JC. T-cell clonotypes in cancer. J Transl Med 2004; 2:11. [PMID: 15072580 PMCID: PMC419379 DOI: 10.1186/1479-5876-2-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/08/2004] [Indexed: 01/23/2023] Open
Abstract
Cells of the immune system spontaneously recognize autologous tumor cells and T cells are believed to be the main effector cells for the immune surveillance of cancer. Recent advances in our understanding of basic and tumor immunology together with methodological developments implies that tumor specific T cells can now be studied functionally, phenotypically as well as molecularly. T cells recognize peptide antigens in the context of MHC molecules through the clonally distributed T-cell receptor (TCR), thus, the clonal distribution of the TCR offers the means to detect and track specific T cells based upon detection of the unique TCR. In this review, we present and discuss available data on TCR utilization of tumor specific T cells in murine models as well as spontaneous and treatment induced anti-tumor T-cell responses in humans.
Collapse
Affiliation(s)
- Per thor Straten
- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | - David Schrama
- Department of Dermatology, Julius Maximilians-University, D-97080 Würzburg, Germany
| | - Mads Hald Andersen
- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | - Jürgen C Becker
- Department of Dermatology, Julius Maximilians-University, D-97080 Würzburg, Germany
| |
Collapse
|
16
|
Lotem M, Shiloni E, Pappo I, Drize O, Hamburger T, Weitzen R, Isacson R, Kaduri L, Merims S, Frankenburg S, Peretz T. Interleukin-2 improves tumour response to DNP-modified autologous vaccine for the treatment of metastatic malignant melanoma. Br J Cancer 2004; 90:773-80. [PMID: 14970852 PMCID: PMC2410164 DOI: 10.1038/sj.bjc.6601563] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This paper is a report of response rate (RR) and survival of 34 metastatic melanoma patients who received a dinitrophenyl (DNP)-modified autologous melanoma cell vaccine. In all, 27 patients started the vaccine as a primary treatment for metastatic melanoma and seven started it as an adjuvant, with no evidence of disease at the time, but had developed new metastases. Interleukin-2 (IL-2) was administered in 24 out of the 34 patients: 19 who progressed on vaccine alone and five who had the combination from start. Interleukin-2 was administered in the intravenous, bolus high-dose regimen (seven patients) or as subcutaneous (s.c.) low-dose treatment (17). Overall response for the entire group was 35% (12 patients out of 34), 12% having a complete response (CR) and 23% a partial response (PR). However, only two patients had tumour responses while on the vaccine alone, whereas the other 10 demonstrated objective tumour regression following the combination with IL-2 (two CR, eight PR), lasting for a median duration of 6 months (range 3–50 months). Of the 12 responding patients, 11 attained strong skin reactivity to the s.c. injection of irradiated, unmodified autologous melanoma cells. None of the patients with a negative reactivity experienced any tumour response. Patients with positive skin reactions survived longer (median survival – 54 months). The results suggest enhanced RRs to the combination of IL-2 and autologous melanoma vaccine. Skin reactivity to unmodified autologous melanoma cells may be a predictor of response and improved survival, and therefore a criterion for further pursuing of immunotherapeutic strategies.
Collapse
Affiliation(s)
- M Lotem
- Sharett Institute of Oncology, Hadassah University Hospital, Jerusalem 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|