1
|
Tran TM, Gill T, Bennett J, Hong S, Holt V, Lindstedt AJ, Bakshi S, Sikora K, Taurog JD, Breban M, Navid F, Colbert RA. Paradoxical Effects of Endoplasmic Reticulum Aminopeptidase 1 Deficiency on HLA-B27 and Its Role as an Epistatic Modifier in Experimental Spondyloarthritis. Arthritis Rheumatol 2023; 75:220-231. [PMID: 36577442 PMCID: PMC9892207 DOI: 10.1002/art.42327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE We undertook this study to examine the functional basis for epistasis between endoplasmic reticulum aminopeptidase 1 (ERAP1) and HLA-B27 in experimental spondyloarthritis (SpA). METHODS ERAP1-knockout rats were created using genome editing and bred with HLA-B27/human β2 -microglobulin-transgenic (HLA-B27-Tg) rats and HLA-B7-Tg rats. The effects of ERAP1 deficiency on HLA allotypes were determined using immunoprecipitation and immunoblotting, flow cytometry, allogeneic T cell proliferation assays, and gene expression analyses. Animals were examined for clinical features of disease, and tissue was assessed by histology. RESULTS ERAP1 deficiency increased the ratio of folded to unfolded (β2 m-free) HLA-B27 heavy chains, while having the opposite effect on HLA-B7. Furthermore, in rats with ERAP1 deficiency, HLA-B27 misfolding was reduced, while free HLA-B27 heavy chain dimers on the cell surface and monomers were increased. The effects of ERAP1 deficiency persisted during up-regulation of HLA-B27 and led to a reduction in endoplasmic reticulum stress. ERAP1 deficiency reduced the prevalence of arthritis in HLA-B27-Tg rats by two-thirds without reducing gastrointestinal inflammation. Dendritic cell abnormalities attributed to the presence of HLA-B27, including reduced allogeneic T cell stimulation and loss of CD103-positive/major histocompatibility complex class II-positive cells, were not rescued by ERAP1 deficiency, while excess Il23a up-regulation was mitigated. CONCLUSION ERAP1 deficiency reduced HLA-B27 misfolding and improved folding while having opposing effects on HLA-B7. The finding that HLA-B27-Tg rats had partial protection against SpA in this study is consistent with genetic evidence that loss-of-function and/or reduced expression of ERAP1 reduces the risk of ankylosing spondylitis. Functional studies support the concept that the effects of ERAP1 on HLA-B27 and SpA may be a consequence of how peptides affect the biology of this allotype rather than their role as antigenic determinants.
Collapse
Affiliation(s)
- Tri M. Tran
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Tejpal Gill
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Joshua Bennett
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Vance Holt
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Anders J. Lindstedt
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Sufia Bakshi
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Keith Sikora
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Joel D. Taurog
- Division of Rheumatic Diseases, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Maxime Breban
- Infection & Inflammation, UMR1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux & Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| | - Fatemeh Navid
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| | - Robert A. Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD
| |
Collapse
|
2
|
Thakur AK, Rana MK, Luthra-Guptasarma M. Resistance to unfolding by acidic pH and resistance to lysosomal degradation explains disease-association of HLA-B27 subtypes. Int Immunopharmacol 2022; 112:109226. [PMID: 36162243 DOI: 10.1016/j.intimp.2022.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Several hypotheses have been proposed to explain the high rate of disease association of HLA-B27 with ankylosing spondylitis (AS), including formation of disulfide-bonded dimers and misfolding of the heavy chain (HC), involving formation of high molecular weight (HMW) multimers. Recently, we have shown that the HMW entities of non-disease associated (non-DA) subtypes cause activation of endosomal-lysosomal pathways, while disease-associated (DA) subtypes of HLA-B27 cause activation of autophagy and unfolded protein response (UPR) pathways. In this paper, we seek an explanation for the failure of these pathways to degrade the HMW entities of DA subtypes of HLA-B27, using a combination of in vitro assays, using extracellular domains of heavy chains (EDHC), as well as in vivo assays, using stable transfectants of the full lengths of heavy chains (FLHC) of DA and non-DA subtypes. Our data shows that both DA and non-DA subtypes form HMW entities. However, non-DA HMW entities display far greater levels of degradation than DA HMW species. Non-DA EDHC display greater loss of structure at lysosomal pH in vitro. This was confirmed by experiments showing that (i) DA FLHCs co-localize with LAMP1, and (ii) induction of autophagy by rapamycin causes significant decrease in levels of non-DA HMW entities, but not that of DA HMW entities. These results point towards lack of facile lysosomal clearance of FLHCs of DA subtypes, suggesting that disease association of HLA-B27 subtypes is correlated with higher persistence of HMW entities in the low pH of lysosomes, with higher potential to trigger immune response.
Collapse
Affiliation(s)
- Amit Kumar Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Manish Kumar Rana
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India.
| |
Collapse
|
3
|
Barrera MJ, Aguilera S, Castro I, González S, Carvajal P, Molina C, Hermoso MA, González MJ. Endoplasmic reticulum stress in autoimmune diseases: Can altered protein quality control and/or unfolded protein response contribute to autoimmunity? A critical review on Sjögren's syndrome. Autoimmun Rev 2018; 17:796-808. [PMID: 29890347 DOI: 10.1016/j.autrev.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
For many years, researchers in the field of autoimmunity have focused on the role of the immune components in the etiopathogenesis of autoimmune diseases. However, some studies have demonstrated the importance of target tissues in their pathogenesis and the breach of immune tolerance. The immune system as well as target tissue cells (plasmatic, β-pancreatic, fibroblast-like synoviocytes, thyroid follicular and epithelial cells of the lachrymal glands, salivary glands, intestine, bronchioles and renal tubules) share the characteristic of secretory cells with an extended endoplasmic reticulum (ER). The function of these cells depends considerably on a normal ER function and calcium homeostasis, so they can produce and secrete their main components, which include glycoproteins involved in antigenic presentation such as major histocompatibility complex (MHC) class I and II. All these proteins are synthesized and modified in the ER, and for this reason disturbances in the normal functions of this organelle such as protein folding, protein quality control, calcium homeostasis and redox balance, promote accumulation of unfolded or misfolded proteins, a condition known as ER stress. Autoimmune diseases are characterized by inflammation, which has been associated with an ER stress condition. Interestingly, patients with these diseases contain circulating auto-antibodies against chaperone proteins (such as Calnexin and GRP94), thus affecting the folding and assembly of MHC class I and II glycoproteins and their loading with peptide. The main purpose of this article is to review the involvement of the protein quality control and unfolded protein response (UPR) in the ER protein homeostasis (proteostasis) and their alterations in autoimmune diseases. In addition, we describe the interaction between ER stress and inflammation and evidences are shown of how autoimmune diseases are associated with an ER stress condition, with a special emphasis on the second most prevalent autoimmune rheumatic disease, Sjögren's syndrome.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Escuela de Postgrado, Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
5
|
Tran TM, Hong S, Edwan JH, Colbert RA. ERAP1 reduces accumulation of aberrant and disulfide-linked forms of HLA-B27 on the cell surface. Mol Immunol 2016; 74:10-7. [PMID: 27107845 PMCID: PMC5425939 DOI: 10.1016/j.molimm.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) variants contribute to the risk of ankylosing spondylitis in HLA-B27 positive individuals, implying a disease-related interaction between these gene products. The aim of this study was to determine whether reduced ERAP1 expression would alter the cell surface expression of HLA-B27 and the formation of aberrant disulfide-linked forms that have been implicated in the pathogenesis of spondyloarthritis. METHODS ERAP1 expression was knocked down in monocytic U937 cells expressing HLA-B27 and endogenous HLA class I. The effect of ERAP1 knockdown on the accumulation HLA-B alleles (B18, B51, and B27) was assessed using immunoprecipitation, isoelectric focusing, and immunoblotting, as well as flow cytometry with antibodies specific for different forms of HLA-B27. Cell surface expression of aberrant disulfide-linked HLA-B27 dimers was assessed by immunoprecipitation and electrophoresis on non-reducing polyacrylamide gels. RESULTS ERAP1 knockdown increased the accumulation of HLA-B27 on the cell surface including disulfide-linked dimers, but had no effect on levels of HLA-B18 or -B51. Antibodies with unique specificity for HLA-B27 confirmed increased cell surface expression of complexes shown previously to contain long peptides. IFN-γ treatment resulted in striking increases in the expression of disulfide-linked HLA-B27 heavy chains, even in cells with normal ERAP1 expression. CONCLUSIONS Our results suggest that normal levels of ERAP1 reduce the accumulation of aberrant and disulfide-linked forms of HLA-B27 in monocytes, and thus help to maintain the integrity of cell surface HLA-B27 complexes.
Collapse
Affiliation(s)
- Tri M Tran
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sohee Hong
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Jehad H Edwan
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Robert A Colbert
- Pediatric Translational Research Branch, National Institute of Arthritis Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| |
Collapse
|
6
|
Ghanem E, Al-Balushi M. Adopting the rapamycin trapping assay to track the trafficking of murine MHC class I alleles, H-2K(b). BMC Cell Biol 2015; 16:30. [PMID: 26714929 PMCID: PMC4696223 DOI: 10.1186/s12860-015-0077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background In mammalian cells, the quality control (QC) of properly folded proteins is monitored in the early secretory pathway, particularly in the endoplasmic reticulum (ER). Several proteins, including our protein of interest, major histocompatibility complex class I (MHC class I), can bypass the first line of ER-QC and reside in post-ER compartments in an unfolded form. Such forms entail both monomeric and dimeric structures that are devoid of peptides and thus cannot fulfill the immunological function of antigen presentation at the cell surface. MHC class I structures become mature and properly folded once loaded with the appropriate peptides in the framework of the peptide loading complex (PLC). Despite the flood of information on the diverse trafficking behavior of different MHC class I alleles, there is still controversy on the actual trajectory followed by improperly folded murine MHC class I alleles, namely H-2Kb. In this study, we employ an in vitro rapamycin trapping assay, live cell imaging, and a biochemical COPII budding approach to further investigate the trafficking of H-2Kb beyond the level of the ER. Results We confirm the egress of H-2Kb in an unfolded form to a post-ER compartment from where they can cycle back to the ER. Deciphering the exact identity of the post-ER compartment by laser scanning microscopy did not only point to the existence of the ERGIC and cis-Golgi compartments as residency areas for unfolded proteins, but also to the involvement of an addional compartment, that lies in close proximity and possesses high resemblance to the aforementioned compartments. Interestingly, we were capable of showing using the same rapamycin trapping assay that H-2Kb can undergo a potential maturation event during their cycling; this is attained upon addition of peptides and trapping of accumulated post-ER molecules at the cell surface. Conclusions Our findings deepen the understanding of H-2Kb trafficking outside the ER and pave the way to decipher the role and the trafficking of certain PLC chaperones, such as tapasin, throughout H-2Kb post-ER QC. Finally, we demonstrate the plausible usage of the rapamycin assay to assess the trafficking of defected proteins especially in diseases and under therapeutic studies.
Collapse
Affiliation(s)
- Esther Ghanem
- Department of Biology, Faculty of Natural and Applied Sciences, Notre Dame University, 72, Zouk Mosbeh, Keserwan district, Lebanon.
| | - Mohammed Al-Balushi
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
7
|
McHugh K, Rysnik O, Kollnberger S, Shaw J, Utriainen L, Al-Mossawi MH, Payeli S, Belaunzaran OM, Milling S, Renner C, Bowness P. Expression of aberrant HLA-B27 molecules is dependent on B27 dosage and peptide supply. Ann Rheum Dis 2013; 73:763-70. [PMID: 23625978 DOI: 10.1136/annrheumdis-2012-203080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Cellular expression of non-classical forms of human leukocyte antigen (HLA)-B27 (NC-B27) may be involved in spondyloarthritis (SpA) pathogenesis. We used a novel B27-specific monoclonal antibody, HD6, to ask if B27 transgenic (TG) rat splenocytes express these NC-B27 molecules. We also investigated whether B27-binding peptides could affect the expression and functional immune recognition of HD6-reactive B27 molecules. METHODS Splenocytes from B27-TG, B7-TG and non-transgenic rats, and HLA-B27+ cell lines were stained with monoclonal antibodies recognising classical (ME-1, HLA-ABC-m1) and non-classical (HD6, HC10) B27. Cells were further cultured in the presence of HLA-B27-binding peptides, or subjected to brief low pH treatment prior to mAb staining and/or immunoprecipitation or co-culture with KIR3DL2-CD3ε-expressing Jurkat reporter cells. RESULTS HD6-reactive molecules were detected in the majority of adult B27-TG rat splenocyte cell subsets, increasing with age and concomitant increased B27 expression. HD6 staining was inhibited by incubation with B27-binding peptides and induced by low pH treatment. HD6 staining correlated with KIR3DL2-CD3ε-expressing Jurkat reporter cell activity. Thus, IL-2 production was decreased when B27-expressing antigen-presenting cells were preincubated with B27-binding peptides, but increased following pretreatment with low pH buffer. CONCLUSIONS Surface expression of HD6-reactive B27 molecules on B27-TG rat splenocytes is consistent with a pathogenic role for NC-B27 in SpA. Interaction of NC-B27 with innate immune receptors could be critical in SpA pathogenesis, and we show that this may be influenced by the availability and composition of the B27-binding peptide pool.
Collapse
Affiliation(s)
- Kirsty McHugh
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, , Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11:823-36. [PMID: 22076556 DOI: 10.1038/nri3084] [Citation(s) in RCA: 1233] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
9
|
Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011. [PMID: 22076556 DOI: 10.1038/nri3084.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.
Collapse
|
10
|
Antoniou AN, Guiliano DB, Lenart I, Burn G, Powis SJ. The oxidative folding and misfolding of human leukocyte antigen-b27. Antioxid Redox Signal 2011; 15:669-84. [PMID: 21671754 DOI: 10.1089/ars.2010.3692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major histocompatibility complex class I molecule human leukocyte antigen (HLA)-B27 is strongly associated with a group of inflammatory arthritic disorders known as the spondyloarthropathies. Many autoimmune diseases exhibit associations with major histocompatibility complex molecules encoded within the class II locus with defined immune responses either mediated by T or B-lymphocytes. Despite the association being known for over 30 years, no defined immune response and target autoantigens have been characterized for the spondyloarthropathies. Thus, the mechanism and role of HLA-B27 in disease pathogenesis remains undetermined. One hypothesis that has recently received much attention has focused around the enhanced propensity for HLA-B27 to misfold and the increased tendency of the heavy chain to dimerize. The misfolding of HLA-B27 has been associated with its redox status and this is postulated to be involved in disease development. Here we discuss the impact of the redox status on HLA-B27 biosynthesis and function.
Collapse
Affiliation(s)
- Antony N Antoniou
- Division of Infection and Immunity/Centre of Rheumatology, Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Science, London, United Kingdom.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Almost four decades of research into the role of human leukocyte antigen-B27 (HLA-B27) in susceptibility to spondyloarthritis has yet to yield a convincing answer. New results from an HLA-B27 transgenic rat model now demonstrate quite convincingly that CD8(+) T cells are not required for the inflammatory phenotype. Discoveries that the HLA-B27 heavy chain has a tendency to misfold during the assembly of class I complexes in the endoplasmic reticulum (ER) and to form aberrant disulfide-linked dimers after transport to the cell surface have forced the generation of new ideas about its role in disease pathogenesis. In transgenic rats, HLA-B27 misfolding generates ER stress and leads to activation of the unfolded protein response, which dramatically enhances the production of interleukin-23 (IL-23) in response to pattern recognition receptor agonists. These findings have led to the discovery of striking T-helper 17 cell activation and expansion in this animal model, consistent with results emerging from humans with spondyloarthritis and the discovery of IL23R as an additional susceptibility gene for ankylosing spondylitis. Together, these results suggest a novel link between HLA-B27 and the T-helper 17 axis through the consequences of protein misfolding and open new avenues of investigation as well as identifying new targets for therapeutic intervention in this group of diseases.
Collapse
Affiliation(s)
- Robert A Colbert
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
12
|
Martayan A, Sibilio L, Tremante E, Lo Monaco E, Mulder A, Fruci D, Cova A, Rivoltini L, Giacomini P. Class I HLA folding and antigen presentation in beta 2-microglobulin-defective Daudi cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3609-17. [PMID: 19265139 DOI: 10.4049/jimmunol.0802316] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To present virus and tumor Ags, HLA class I molecules undergo a complex multistep assembly involving discrete but transient folding intermediates. The most extensive folding abnormalities occur in cells lacking the class I L chain subunit, called beta(2)-microglobulin (beta(2)m). Herein, this issue was investigated taking advantage of eight conformational murine mAbs (including the prototypic W6/32 mAb) to mapped H chain epitopes of class I molecules, four human mAbs to class I alloantigens, as well as radioimmunoprecipitation, in vitro assembly, pulse-chase, flow cytometry, and peptide-pulse/ELISPOT experiments. We show that endogenous (HLA-A1, -A66, and -B58) as well as transfected (HLA-A2) heavy chains in beta(2)m-defective Burkitt lymphoma Daudi cells are capable of being expressed on the cell surface, although at low levels, and exclusively as immature glycoforms. In addition, HLA-A2 is: 1) partially folded at crucial interfaces with beta(2)m, peptide Ag, and CD8; 2) receptive to exogenous peptide; and 3) capable of presenting exogenous peptide epitopes (from virus and tumor Ags) to cytotoxic T lymphocytes (bulk populations as well as clones) educated in a beta(2)m-positive environment. These experiments demonstrate a precursor-product relationship between novel HLA class I folding intermediates, and define a stepwise mechanism whereby distinct interfaces of the class I H chain undergo successive, ligand-induced folding adjustments in vitro as well as in vivo. Due to this unprecedented class I plasticity, Daudi is the first human cell line in which folding and function of class I HLA molecules are observed in the absence of beta(2)m. These findings bear potential implications for tumor immunotherapy.
Collapse
Affiliation(s)
- Aline Martayan
- Laboratory of Immunology, Regina Elena Cancer Institute Centro della Ricerca Sperimentale, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim Y, Kang K, Kim I, Lee YJ, Oh C, Ryoo J, Jeong E, Ahn K. Molecular mechanisms of MHC class I-antigen processing: redox considerations. Antioxid Redox Signal 2009; 11:907-36. [PMID: 19178136 DOI: 10.1089/ars.2008.2316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to the cell surface for screening by CD8(+) T cells. A number of ER-resident chaperones assist the assembly of peptides onto MHC class I molecules, a process that can be divided into several steps. Early folding of the MHC class I heavy chain is followed by its association with beta(2)-microglobulin (beta(2)m). The MHC class I heavy chain-beta(2)m heterodimer is incorporated into the peptide-loading complex, leading to peptide loading, release of the peptide-filled MHC class I molecules from the peptide-loading complex, and exit of the complete MHC class I complex from the ER. Because proper antigen presentation is vital for normal immune responses, the assembly of MHC class I molecules requires tight regulation. Emerging evidence indicates that thiol-based redox regulation plays critical roles in MHC class I-restricted antigen processing and presentation, establishing an unexpected link between redox biology and antigen processing. We review the influences of redox regulation on antigen processing and presentation. Because redox signaling pathways are a rich source of validated drug targets, newly discovered redox biology-mediated mechanisms of antigen processing may facilitate the development of more selective and therapeutic drugs or vaccines against immune diseases.
Collapse
Affiliation(s)
- Youngkyun Kim
- National Creative Research Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2009; 8:663-74. [PMID: 18670423 DOI: 10.1038/nri2359] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many exogenous sources of stress can lead to cell death. In recent years, endogenous cellular sources of stress have also been identified, including the stress that arises from the accumulation of unfolded proteins within a cell's endoplasmic reticulum (ER). To counterbalance this type of ER stress, higher eukaryotic cells possess a three-pronged signal-transduction pathway termed the unfolded-protein response (UPR). This Review focuses on the role of the UPR in the mammalian immune system and how manipulation of this complex signalling pathway may be of therapeutic benefit in human disease.
Collapse
Affiliation(s)
- Derrich J Todd
- Department of Infectious Diseases and Immunology, Harvard School of Public Health, 651 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Colbert RA, DeLay ML, Layh-Schmitt G, Sowders DP. HLA-B27 misfolding and spondyloarthropathies. Prion 2009; 3:15-26. [PMID: 19363299 DOI: 10.4161/pri.3.1.8072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HLA-B27 plays a central role in the pathogenesis of many spondyloarthropathies and in particular ankylosing spondylitis. The observation that the HLA-B27 heavy chain has a tendency to misfold has raised the possibility that associated diseases may belong in a rapidly expanding category of protein misfolding disorders. The synthesis of the HLA-B27 heavy chain, assembly with beta(2)m and the loading of peptide cargo, occurs in the endoplasmic reticulum (ER) before transport to the cell surface. The evidence indicates that misfolding occurs in the ER prior to beta(2)m association and peptide optimization and is manifested in the formation of aberrant inter- and intra-chain disulfide bonds and accumulation of heavy chain bound to the chaperone BiP. Enhanced accumulation of misfolded heavy chains during the induction of class I expression by cytokines, can cause ER stress resulting in activation of the unfolded protein response (UPR). Effects of UPR activation on cytokine production are beginning to emerge and may provide important missing links between HLA-B27 misfolding and spondyloarthritis. In this chapter we will review what has been learned about HLA-B27 misfolding in human cells and in the transgenic rat model of spondyloarthritis-like disease, considering it in the context of other protein misfolding disorders. These studies provide a framework to support much needed translational work assessing HLA-B27 misfolding and UPR activation in patient-derived material, its consequences for disease pathogenesis and ultimately how and where to focus intervention strategies.
Collapse
Affiliation(s)
- Robert A Colbert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
16
|
Colbert RA, DeLay ML, Layh-Schmitt G, Sowders DP. HLA-B27 misfolding and spondyloarthropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 649:217-34. [PMID: 19731632 DOI: 10.1007/978-1-4419-0298-6_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HLA-B27 plays a central role in the pathogenesis of many spondyloarthropathies and in particular ankylosing spondylitis. The observation that the HLA-B27 heavy chain has a tendency to misfold has raised the possibility that associated diseases may belong in a rapidly expanding category of protein misfolding disorders. The synthesis of the HLA-B27 heavy chain, assembly with beta2m and the loading of peptide cargo, occurs in the endoplasmic reticulum (ER) before transport to the cell surface. The evidence indicates that misfolding occurs in the ER prior to b2m association and peptide optimization and is manifested in the formation of aberrant inter- and intra-chain disulfide bonds and accumulation of heavy chain bound to the chaperone BiP. Enhanced accumulation ofmisfolded heavy chains during the induction of class I expression by cytokines, can cause ER stress resulting in activation of the unfolded protein response (UPR). Effects of UPR activation on cytokine production are beginning to emerge and may provide important missinglinks between HLA-B27 misfolding and spondyloarthritis. In this chapter we will review what has been learned about HLA-B27 misfolding in human cells and in the transgenic rat model of spondyloarthritis-like disease, considering it in the context of other protein misfolding disorders. These studies provide a framework to support much needed translational work assessing HLA-B27 misfolding and UPR activation in patient-derived material, its consequences for disease pathogenesis and ultimately how and where to focus intervention strategies.
Collapse
Affiliation(s)
- Robert A Colbert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | |
Collapse
|
17
|
Sharma R, Vasishta RK, Sen RK, Luthra-Guptasarma M. Refolding of HLA-B27 heavy chains in the absence of beta2m yields stable high molecular weight (HMW) protein forms displaying native-like as well as non-native-like conformational features: implications for autoimmune disease. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1258-69. [PMID: 18036353 DOI: 10.1016/j.bbadis.2007.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/08/2007] [Accepted: 10/25/2007] [Indexed: 11/19/2022]
Abstract
Refolding of the heavy chain of the Class I HLA molecule, HLA-B27, in the absence of beta(2)m, yields soluble high molecular weight (HMW) oligomers reminiscent of the oligomeric forms of beta(2)m-free heavy chains (FHCs) of class I HLA antigens observed on cell surfaces. Here we examine the structural characteristics of HMW B27 in respect of features potentially relevant to autoimmunity, such as: (a) retention of native-like structure, since this could facilitate non-canonical interactions with T-cell receptors even in the absence of bound beta(2)m and peptide, or (b) presence of non-native structure, since this could yield novel (non-self) antigenic conformational epitopes that could elicit immune attack. We report that HMW B27 is characterized by high secondary structural content, structural stability, stability to proteolysis by trypsin, and structural features that are both partly native-like, and partly non-native-like, as assessed through the binding of conformationally-distinguishing and cross-reacting scFv antibodies specifically selected against HMW B27. We also present cell ELISA data with conformation-specific scFv antibodies that distinguish between lymphocytes from individuals who are healthy and B27 positive, and those who are B27 positive but suffering from ankylosing spondylitis.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | | | | | | |
Collapse
|
18
|
Smith JA, Märker-Hermann E, Colbert RA. Pathogenesis of ankylosing spondylitis: current concepts. Best Pract Res Clin Rheumatol 2006; 20:571-91. [PMID: 16777583 DOI: 10.1016/j.berh.2006.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
More than three decades after the discovery of HLA-B27 as a major genetic clue to the origins of ankylosing spondylitis, much has been learned about pathogenesis. However, the role of this major histocompatibility complex class I allele remains undefined. Studies from animal models have demonstrated that HLA-B27 overexpression can cause inflammatory disease with spondyloarthritis features, and together with investigations of patient-derived material, both innate adaptive and immune responses have been implicated. The gastrointestinal immune response to pathogens and even normal flora, with subclinical or overt inflammation, may play a role as an environmental component of these diseases. Although there has been a large conceptual emphasis on mechanisms involving autoreactive T-cell recognition of HLA-B27 complexes displaying arthritogenic peptides, and more recently non-canonical recognition of abnormal forms of HLA-B27 free of beta(2)m (heavy-chain dimers or monomers), it remains unclear whether immunological recognition plays a role in pathogenesis. The recognition that the HLA-B27 heavy chain misfolds during assembly, and causes endoplasmic reticulum 'stress', has led to the observation that this activates the unfolded protein response. This has opened additional areas of investigation into the response of immune system cells to protein misfolding, and suggested novel alternative concepts that may explain the role of HLA-B27 in pathogenesis. This chapter will discuss available data and current concepts regarding the pathogenesis of ankylosing spondylitis.
Collapse
Affiliation(s)
- Judith A Smith
- Section of Rheumatology and Clinical Immunology, Department of Internal Medicine Dr. Horst Schmidt kliniken GmbH, Aukammallee 39 65191 Wiesbaden, Germany
| | | | | |
Collapse
|
19
|
Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, Brandewie JR, Taurog JD, Colbert RA. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. THE JOURNAL OF IMMUNOLOGY 2005; 175:2438-48. [PMID: 16081815 DOI: 10.4049/jimmunol.175.4.2438] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mechanism by which the MHC class I allele, HLA-B27, contributes to spondyloarthritis pathogenesis is unknown. In contrast to other alleles that have been examined, HLA-B27 has a tendency to form high m.w. disulfide-linked H chain complexes in the endoplasmic reticulum (ER), bind the ER chaperone BiP/Grp78, and undergo ER-associated degradation. These aberrant characteristics have provided biochemical evidence that HLA-B27 is prone to misfold. Recently, similar biochemical characteristics of HLA-B27 were reported in cells from HLA-B27/human beta2-microglobulin transgenic (HLA-B27 transgenic) rats, an animal model of spondyloarthritis, and correlated with disease susceptibility. In this study, we demonstrate that the unfolded protein response (UPR) is activated in macrophages derived from the bone marrow of HLA-B27 transgenic rats with inflammatory disease. Microarray analysis of these cells also reveals an IFN response signature. In contrast, macrophages derived from premorbid rats do not exhibit a strong UPR or evidence of IFN exposure. Activation of macrophages from premorbid HLA-B27 transgenic rats with IFN-gamma increases HLA-B27 expression and leads to UPR induction, while no UPR is seen in cells from nondisease-prone HLA-B7 transgenic or wild-type (nontransgenic) animals. This is the first demonstration, to our knowledge, that HLA-B27 misfolding is associated with ER stress that results in activation of the UPR. These observations link HLA-B27 expression with biological effects that are independent of immunological recognition, but nevertheless may play an important role in the pathogenesis of inflammatory diseases associated with this MHC class I allele.
Collapse
Affiliation(s)
- Matthew J Turner
- William S. Rowe Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sibilio L, Martayan A, Setini A, Fraioli R, Fruci D, Shabanowitz J, Hunt DF, Giacomini P. Impaired Assembly Results in the Accumulation of Multiple HLA-C Heavy Chain Folding Intermediates. THE JOURNAL OF IMMUNOLOGY 2005; 175:6651-8. [PMID: 16272320 DOI: 10.4049/jimmunol.175.10.6651] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Class I MHC H chains assemble with beta2-microglobulin (beta2m) and are loaded with peptide Ags through multiple folding steps. When free of beta2m, human H chains react with Abs to linear epitopes, such as L31. Immunodepletion and coimmunoprecipitation experiments, performed in this study, detected a preferential association of L31-reactive, beta2m-free H chains with calnexin in beta2m-defective cells, and with calreticulin and TAP in beta2m-expressing cells. In beta2m-defective cells, the accumulation of calnexin-bound H chains stoichiometrically exceeded their overall accumulation, a finding that supports both chaperoning preferences and distinct sorting abilities for different class I folds. No peptide species, in a mass range compatible with that of the classical class I ligands, could be detected by mass spectrometry of acidic eluates from L31-reactive HLA-Cw1 H chains. In vitro assembly experiments in TAP-defective T2 cells, and in cells expressing an intact Ag-processing machinery, demonstrated that L31 H chains are not only free of, but also unreceptive to, peptides. L31 and HC10, which bind nearly adjacent linear epitopes of the alpha1 domain alpha helix, reciprocally immunodepleted free HLA-C H chains, indicating the existence of a local un-/mis-folding involving the N-terminal end of the alpha1 domain alpha helix and peptide-anchoring residues of the class I H chain. Thus, unlike certain murine free H chains, L31-reactive H chains are not the immediate precursors of conformed class I molecules. A model inferring their precursor-product relationships with other known class I intermediates is presented.
Collapse
Affiliation(s)
- Leonardo Sibilio
- Laboratory of Immunology, Regina Elena Cancer Institute Centro della Ricerca Sperimentale, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- J S Hill Gaston
- University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ.
| |
Collapse
|
22
|
Raine T, Allen R. MHC-I recognition by receptors on myelomonocytic cells: New tricks for old dogs? Bioessays 2005; 27:542-50. [PMID: 15832377 DOI: 10.1002/bies.20215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Receptors on cytotoxic T lymphocytes and natural killer cells play well-established roles in the immunological response and share a common ligand in the form of MHC-I. We discuss how a variety of MHC-I receptors are also expressed on myelomonocytic cells such as macrophages and dendritic cells. Since myelomonocytic MHC-I receptors recognise a broad range of alleles and MHC-I structures, we propose that their task is to discern expression levels and folding forms of MHC. We describe a model in which these recognition events would regulate bidirectional cross talk between cells of innate and adaptive immune systems to organise an ongoing combined immune response. We discuss how such a model is supported by recent literature and might function in a variety of contexts, including immunoregulation during pregnancy. Our model also offers an alternative explanation of immune dysregulation rather than autoimmunity during HLA-B27-associated spondyloarthropathies and addresses a number of conundrums in this field.
Collapse
Affiliation(s)
- Tim Raine
- Department of Pathology, Cambridge University, Cambridge, UK
| | | |
Collapse
|
23
|
Luthra-Guptasarma M, Singh B. HLA-B27 lacking associated β2-microglobulin rearranges to auto-display or cross-display residues 169-181: a novel molecular mechanism for spondyloarthropathies. FEBS Lett 2004; 575:1-8. [PMID: 15388324 DOI: 10.1016/j.febslet.2004.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/09/2004] [Accepted: 08/18/2004] [Indexed: 11/20/2022]
Abstract
Expression of the MHC class I allele, HLA-B27, is correlated with autoimmune disease. The misfolding and association of B27 heavy chains through non-native disulfide bonds has recently been implicated. Here, we propose that beta2m-free, peptide-free heavy chains support a helix-coil transition in the segment leading from the alpha2 domain to the alpha3 domain, facilitating rotation of backbone angles around residues 167/168, and allowing residues 169-181 (identical to a known B27 ligand) to loop around and occupy the molecule's own peptide-binding cleft. Such 'auto-display', occurring either within B27 molecules, or between B27 molecules, could provoke autoimmune attack.
Collapse
Affiliation(s)
- Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160 012, India.
| | | |
Collapse
|
24
|
Tran TM, Satumtira N, Dorris ML, May E, Wang A, Furuta E, Taurog JD. HLA-B27 in Transgenic Rats Forms Disulfide-Linked Heavy Chain Oligomers and Multimers That Bind to the Chaperone BiP. THE JOURNAL OF IMMUNOLOGY 2004; 172:5110-9. [PMID: 15067095 DOI: 10.4049/jimmunol.172.8.5110] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To test the hypothesis that HLA-B27 predisposes to disease by forming disulfide-linked homodimers, we examined rats transgenic for HLA-B27, mutant Cys(67)Ser HLA-B27, or HLA-B7. In splenic Con A blasts from high transgene copy B27 lines that develop inflammatory disease, the anti-H chain mAb HC10 precipitated four bands of molecular mass 78-105 kDa and additional higher molecular mass material, seen by nonreducing SDS-PAGE. Upon reduction, all except one 78-kDa band resolved to 44 kDa, the size of the H chain monomer. The 78-kDa band was found to be BiP/Grp78, and the other high molecular mass material was identified as B27 H chain. Analysis of a disease-resistant low copy B27 line showed qualitatively similar high molecular mass bands that were less abundant relative to H chain monomer. Disease-prone rats with a Cys(67)Ser B27 mutant showed B27 H chain bands at 95 and 115 kDa and a BiP band at 78 kDa, whereas only scant high molecular mass bands were found in cells from control HLA-B7 rats. (125)I-surface labeled B27 oligomers were immunoprecipitated with HC10, but not with a mAb to folded B27-beta(2)-microglobulin-peptide complexes. Immunoprecipitation of BiP with anti-BiP Abs coprecipitated B27 H chain multimers. Folding and maturation of B27 were slow compared with B7. These data indicate that disulfide-linked intracellular H chain complexes are more prone to form and bind BiP in disease-prone wild-type B27 and B27-C67S rats than in disease-resistant HLA-B7 rats. The data support the hypothesis that accumulation of misfolded B27 participates in the pathogenesis of B27-associated disease.
Collapse
Affiliation(s)
- Tri Minh Tran
- Harold C. Simmons Arthritis Research Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Colmegna I, Cuchacovich R, Espinoza LR. HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin Microbiol Rev 2004; 17:348-69. [PMID: 15084505 PMCID: PMC387405 DOI: 10.1128/cmr.17.2.348-369.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current evidence supports the concept that reactive arthritis (ReA) is an immune-mediated synovitis resulting from slow bacterial infections and showing intra-articular persistence of viable, non-culturable bacteria and/or immunogenetic bacterial antigens synthesized by metabolically active bacteria residing in the joint and/or elsewhere in the body. The mechanisms that lead to the development of ReA are complex and basically involve an interaction between an arthritogenic agent and a predisposed host. The way in which a host accommodates to invasive facultative intracellular bacteria is the key to the development of ReA. The details of the molecular pathways that explain the articular and extra-articular manifestations of the disease are still under investigation. Several studies have been done to gain a better understanding of the pathogenesis of ReA; these constitute the basis for a more rational therapeutic approach to this disease.
Collapse
Affiliation(s)
- Inés Colmegna
- Section of Rheumatology, Department of Medicine, LSU Health Science Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
26
|
Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ. Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J Biol Chem 2003; 279:8895-902. [PMID: 14684742 DOI: 10.1074/jbc.m311757200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human HLA-B27 class I molecule exhibits a strong association with the inflammatory arthritic disorder ankylosing spondylitis and other related arthropathies. Major histocompatibility complex class I heavy chains normally associate with beta(2)-microglobulin and peptide in the endoplasmic reticulum before transit to the cell surface. However, an unusual characteristic of HLA-B27 is its ability to form heavy chain homodimers through an unpaired cysteine at position 67 in the peptide groove. Homodimers have previously been detected within the ER and at the cell surface, but their mechanism of formation and role in disease remain undefined. Here we demonstrate, in the rat C58 thymoma cell line and in human HeLa cells transfected with HLA-B27, that homodimer formation involves not only cysteine at position 67 but also the conserved structural cysteine at position 164. We also show that homodimer formation can be induced in the non-disease-associated HLA class I allele HLA-A2 by slowing its assembly rate by incubation of cells at 26 degrees C, suggesting that homodimer formation in the endoplasmic reticulum may occur as a result of the slower folding kinetics of HLA-B27. Finally, we report an association between unfolded HLA-B27 molecules and immunoglobulin-binding protein at the cell surface.
Collapse
Affiliation(s)
- Antony N Antoniou
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Kuon W, Sieper J. Identification of HLA-B27-restricted peptides in reactive arthritis and other spondyloarthropathies: computer algorithms and fluorescent activated cell sorting analysis as tools for hunting of HLA-B27-restricted chlamydial and autologous crossreactive peptides involved in reactive arthritis and ankylosing spondylitis. Rheum Dis Clin North Am 2003; 29:595-611. [PMID: 12951870 DOI: 10.1016/s0889-857x(03)00050-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The illustrated clinical and experimental results demonstrate the strong relationship between the MHC class I antigen HLA-B27 and synovial CD8+ T cells with specificity for bacterial and possible self-antigen in SpA. These new aspects obtained in recent experimental and clinical studies might also provide clues to the pathomechanisms of joint inflammation in SpA. In particular, the newly developed techniques will be of great relevance in the near future. New and more precise bioalgorithms reflecting new insights in the biology and biochemistry of proteins as recently presented [98, 99] can be helpful (e.g., a program with an improved prediction of the features of immunoproteasomes). Intracellular and secreted cytokine staining by FACScan allows examination of a great number of cells expressing certain antigens in response to certain stimuli. The analysis of T-cell responses with tetramer/peptide complexes can be useful to screen tissue sections for TCR, recognizing foreign or self-derived epitopes on those complexes loaded with selected (e.g., bacterial) peptides. Identification of arthritogenic peptides and a further understanding of the immunology of the pathomechanisms in SpA might open ways to design new peptide vaccines to prevent inflammation, autoimmunity, and other diseases by early intervention [100].
Collapse
Affiliation(s)
- Wolfgang Kuon
- Section of Rheumatology, FU-Klinikum Benjamin Franklin, Berlin Hindenburgdamm 30, 12200 Berlin, Germany.
| | | |
Collapse
|
28
|
Abstract
To explain the strong association between HLA-B27 and ankylosing spondylitis, we suggest that the release of beta(2)-microglobulin (beta(2)m) from a subpopulation of cell surface-expressed HLA-B27 molecules leads to beta(2)m-deposition within synovia and to the initiation of an inflammatory process, which culminates in destructive spondyloarthropathy.
Collapse
Affiliation(s)
- Barbara Uchanska-Ziegler
- Institut für Immungenetik, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Spandauer Damm 130, 14050 Berlin, Germany.
| | | |
Collapse
|
29
|
Boyson JE, Erskine R, Whitman MC, Chiu M, Lau JM, Koopman LA, Valter MM, Angelisova P, Horejsi V, Strominger JL. Disulfide bond-mediated dimerization of HLA-G on the cell surface. Proc Natl Acad Sci U S A 2002; 99:16180-5. [PMID: 12454284 PMCID: PMC138585 DOI: 10.1073/pnas.212643199] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2002] [Indexed: 11/18/2022] Open
Abstract
HLA-G is a nonclassical class I MHC molecule with an unknown function and with unusual characteristics that distinguish it from other class I MHC molecules. Here, we demonstrate that HLA-G forms disulfide-linked dimers that are present on the cell surface. Immunoprecipitation of HLA-G from surface biotinylated transfectants using the anti-beta2-microglobulin mAb BBM.1 revealed the presence of an approximately equal 78-kDa form of HLA-G heavy chain that was reduced by using DTT to a 39-kDa form. Mutation of Cys-42 to a serine completely abrogated dimerization of HLA-G, suggesting that the disulfide linkage formed exclusively through this residue. A possible interaction between the HLA-G monomer or dimer and the KIR2DL4 receptor was also investigated, but no interaction between these molecules could be detected through several approaches. The cell-surface expression of dimerized HLA-G molecules may have implications for HLA-Greceptor interactions and for the search for specific receptors that bind HLA-G.
Collapse
Affiliation(s)
- Jonathan E Boyson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|