1
|
Sadeghi Shaker M, Rokni M, Mahmoudi M, Farhadi E. Ras family signaling pathway in immunopathogenesis of inflammatory rheumatic diseases. Front Immunol 2023; 14:1151246. [PMID: 37256120 PMCID: PMC10225558 DOI: 10.3389/fimmu.2023.1151246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
The Ras (rat sarcoma virus) is a GTP-binding protein that is considered one of the important members of the Ras-GTPase superfamily. The Ras involves several pathways in the cell that include proliferation, migration, survival, differentiation, and fibrosis. Abnormalities in the expression level and activation of the Ras family signaling pathway and its downstream kinases such as Raf/MEK/ERK1-2 contribute to the pathogenic mechanisms of rheumatic diseases including immune system dysregulation, inflammation, and fibrosis in systemic sclerosis (SSc); destruction and inflammation of synovial tissue in rheumatoid arthritis (RA); and autoantibody production and immune complexes formation in systemic lupus erythematosus (SLE); and enhance osteoblast differentiation and ossification during skeletal formation in ankylosing spondylitis (AS). In this review, the basic biology, signaling of Ras, and abnormalities in this pathway in rheumatic diseases including SSc, RA, AS, and SLE will be discussed.
Collapse
Affiliation(s)
- Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Fernández-Medarde A, Santos E. Ras GEF Mouse Models for the Analysis of Ras Biology and Signaling. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:361-395. [PMID: 33977490 DOI: 10.1007/978-1-0716-1190-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.
Collapse
Affiliation(s)
- Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Salamanca, Spain
| |
Collapse
|
4
|
Nras Q61R/+ and Kras-/- cooperate to downregulate Rasgrp1 and promote lympho-myeloid leukemia in early T-cell precursors. Blood 2021; 137:3259-3271. [PMID: 33512434 PMCID: PMC8351901 DOI: 10.1182/blood.2020009082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Kras−/−; NrasQ61R/+ mice develop early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. We identify Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is an aggressive subtype of T-cell ALL. Although genetic mutations hyperactivating cytokine receptor/Ras signaling are prevalent in ETP-ALL, it remains unknown how activated Ras signaling contributes to ETP-ALL. Here, we find that in addition to the frequent oncogenic RAS mutations, wild-type (WT) KRAS transcript level was significantly downregulated in human ETP-ALL cells. Similarly, loss of WT Kras in NrasQ61R/+ mice promoted hyperactivation of extracellular signal-regulated kinase (ERK) signaling, thymocyte hyperproliferation, and expansion of the ETP compartment. Kras−/−; NrasQ61R/+ mice developed early onset of T-cell malignancy that recapitulates many biological and molecular features of human ETP-ALL. Mechanistically, RNA-sequencing analysis and quantitative proteomics study identified that Rasgrp1, a Ras guanine nucleotide exchange factor, was greatly downregulated in mouse and human ETP-ALL. Unexpectedly, hyperactivated Nras/ERK signaling suppressed Rasgrp1 expression and reduced Rasgrp1 level led to increased ERK signaling, thereby establishing a positive feedback loop to augment Nras/ERK signaling and promote cell proliferation. Corroborating our cell line data, Rasgrp1 haploinsufficiency induced Rasgrp1 downregulation and increased phosphorylated ERK level and ETP expansion in NrasQ61R/+ mice. Our study identifies Rasgrp1 as a negative regulator of Ras/ERK signaling in oncogenic Nras-driven ETP-like leukemia.
Collapse
|
5
|
Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene 2020; 39:6920-6934. [PMID: 32989257 PMCID: PMC7655557 DOI: 10.1038/s41388-020-01469-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in RAS genes, like KRASG12D or NRASG12D, trap Ras in the active state and cause myeloproliferative disorder and T cell leukemia (T-ALL) when induced in the bone marrow via Mx1CRE. The RAS exchange factor RASGRP1 is frequently overexpressed in T-ALL patients. In T-ALL cell lines overexpression of RASGRP1 increases flux through the RASGTP/RasGDP cycle. Here we expanded RASGRP1 expression surveys in pediatric T-ALL and generated a RoLoRiG mouse model crossed to Mx1CRE to determine the consequences of induced RASGRP1 overexpression in primary hematopoietic cells. RASGRP1-overexpressing, GFP-positive cells outcompeted wild type cells and dominated the peripheral blood compartment over time. RASGRP1 overexpression bestows gain-of-function colony formation properties to bone marrow progenitors in medium containing limited growth factors. RASGRP1 overexpression enhances baseline mTOR-S6 signaling in the bone marrow, but not in vitro cytokine-induced signals. In agreement with these mechanistic findings, hRASGRP1-ires-EGFP enhances fitness of stem- and progenitor- cells, but only in the context of native hematopoiesis. RASGRP1 overexpression is distinct from KRASG12D or NRASG12D, does not cause acute leukemia on its own, and leukemia virus insertion frequencies predict that RASGRP1 overexpression can effectively cooperate with lesions in many other genes to cause acute T cell leukemia.
Collapse
|
6
|
Tamehiro N, Oda H, Shirai M, Suzuki H. Overexpression of RhoH Permits to Bypass the Pre-TCR Checkpoint. PLoS One 2015; 10:e0131047. [PMID: 26114424 PMCID: PMC4482576 DOI: 10.1371/journal.pone.0131047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
RhoH, an atypical small Rho-family GTPase, critically regulates thymocyte differentiation through the coordinated interaction with Lck and Zap70. Therefore, RhoH deficiency causes defective T cell development, leading to a paucity of mature T cells. Since there has been no gain-of-function study on RhoH before, we decided to take a transgenic approach to assess how the overexpression of RhoH affects the development of T cells. Although RhoH transgenic (RhoHtg) mice expressed three times more RhoH protein than wild-type mice, β-selection, positive, and negative selection in the thymus from RhoHtg mice were unaltered. However, transgenic introduction of RhoH into Rag2 deficient mice resulted in the generation of CD4+CD8+ (DP) thymocytes, indicating that overexpression of RhoH could bypass β-selection without TCRβ gene rearrangement. This was confirmed by the in vitro development of DP cells from Rag2-/-RhoHtg DN3 cells on TSt-4/Dll-1 stroma in an Lck dependent manner. Collectively, our results indicate that an excess amount of RhoH is able to initiate pre-TCR signaling in the absence of pre-TCR complexes.
Collapse
Affiliation(s)
- Norimasa Tamehiro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Hiroyo Oda
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Mutsunori Shirai
- Department of Microbiology, Yamaguchi University School of Medicine, Ube, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
- * E-mail:
| |
Collapse
|
7
|
Diacylglycerol metabolism attenuates T-cell receptor signaling and alters thymocyte differentiation. Cell Death Dis 2013; 4:e912. [PMID: 24201811 PMCID: PMC3847306 DOI: 10.1038/cddis.2013.396] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 09/05/2013] [Indexed: 01/22/2023]
Abstract
Diacylglycerol (DAG) metabolism has a critical function in Ras-regulated functions in mature T cells, but causal data linking defects in DAG-based signals with altered thymus development are missing. To study the effect of increased DAG metabolism in T-cell development, we engineered a membrane-targeted constitutive active version of DAG kinase-α (DGKα). We show that transgenic expression of constitutive active DGK leads to developmental defects in T cells, with a marked accumulation of immature CD8 thymocytes and a reduction in positive selected populations. These alterations are reflected in the periphery by a CD4/CD8 cell imbalance and general T-cell lymphopenia. The results link DAG metabolism to T-cell homeostasis, and show that correctly controlled generation and consumption of this lipid at the plasma membrane ensure T-cell passage through quality-control checkpoints during differentiation.
Collapse
|
8
|
Ksionda O, Limnander A, Roose JP. RasGRP Ras guanine nucleotide exchange factors in cancer. FRONTIERS IN BIOLOGY 2013; 8:508-532. [PMID: 24744772 PMCID: PMC3987922 DOI: 10.1007/s11515-013-1276-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through -4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors.
Collapse
Affiliation(s)
- Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andre Limnander
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Hartzell C, Ksionda O, Lemmens E, Coakley K, Yang M, Dail M, Harvey RC, Govern C, Bakker J, Lenstra TL, Ammon K, Boeter A, Winter SS, Loh M, Shannon K, Chakraborty AK, Wabl M, Roose JP. Dysregulated RasGRP1 responds to cytokine receptor input in T cell leukemogenesis. Sci Signal 2013; 6:ra21. [PMID: 23532335 DOI: 10.1126/scisignal.2003848] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), but the underlying mechanisms are unclear. We identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which is not observed in rare early T cell precursor T-ALL patients with KRAS and NRAS mutations, such as K-Ras(G12D). Leukemia screens in wild-type mice, but not in mice expressing the mutant K-Ras(G12D) that encodes a constitutively active Ras, yielded frequent retroviral insertions that led to increased Rasgrp1 expression. Rasgrp1 and oncogenic K-Ras(G12D) promoted T-ALL through distinct mechanisms. In K-Ras(G12D) T-ALLs, enhanced Ras activation had to be uncoupled from cell cycle arrest to promote cell proliferation. In mouse T-ALL cells with increased Rasgrp1 expression, we found that Rasgrp1 contributed to a previously uncharacterized cytokine receptor-activated Ras pathway that stimulated the proliferation of T-ALL cells in vivo, which was accompanied by dynamic patterns of activation of effector kinases downstream of Ras in individual T-ALLs. Reduction of Rasgrp1 abundance reduced cytokine-stimulated Ras signaling and decreased the proliferation of T-ALL in vivo. The position of RasGRP1 downstream of cytokine receptors as well as the different clinical outcomes that we observed as a function of RasGRP1 abundance make RasGRP1 an attractive future stratification marker for T-ALL.
Collapse
Affiliation(s)
- Catherine Hartzell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis. Leukemia 2011; 26:1038-45. [PMID: 22116551 DOI: 10.1038/leu.2011.328] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ras guanyl nucleotide-releasing proteins (RasGRPs) are activators of Ras. Previous studies have indicated the possible involvement of RasGRP1 and RasGRP4 in leukemogenesis. Here, the predominant role of RasGRP1 in T-cell leukemogenesis is clarified. Notably, increased expression of RasGRP1, but not RasGRP4, was frequently observed in human T-cell malignancies. In a mouse bone marrow transplantation model, RasGRP1 exclusively induced T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) after a shorter latency when compared with RasGRP4. Accordingly, Ba/F3 cells transduced with RasGRP1 survived longer under growth factor withdrawal or phorbol ester stimulation than those transduced with RasGRP4, presumably due to the efficient activation of Ras. Intriguingly, NOTCH1 mutations resulting in a gain of function were found in 77% of the RasGRP1-mediated mouse T-ALL samples. In addition, gain-of-function NOTCH1 mutation was found in human T-cell malignancy with elevated expression of RasGRP1. Importantly, RasGRP1 and NOTCH1 signaling cooperated in the progression of T-ALL in the murine model. The leukemogenic advantage of RasGRP1 over RasGRP4 was attenuated by the disruption of a protein kinase C phosphorylation site (RasGRP1(Thr184)) not present on RasGRP4. In conclusion, cooperation between aberrant expression of RasGRP1, a strong activator of Ras, and secondary gain-of-function mutations of NOTCH1 have an important role in T-cell leukemogenesis.
Collapse
|
11
|
Abstract
Ras guanyl nucleotide releasing proteins (RasGRPs) are guanyl nucleotide exchange factors that activate Ras and related GTPases such as Rap. Like Sos proteins, RasGRPs have a catalytic region composed of a Ras exchange motif (REM) and a CDC25 domain. RasGRPs also possess a pair of atypical EF hands that may bind calcium in vivo and a C1 domain resembling the diacylglycerol (DAG)-binding domain of protein kinase C. DAG directly activates RasGRPs by a membrane recruitment mechanism as well as indirectly by PKC-mediated phosphorylation. RasGRPs are prominently expressed in blood cells. RasGRP1 acts downstream of TCR, while RasGRP1 and RasGRP3 both act downstream of BCR. Together, they regulate Ras in adaptive immune cells. RasGRP2, through Rap, plays a role in controlling platelet adhesion, while RasGRP4 controls Ras activation in mast cells. RasGRP malfunction likely contributes to autoimmunity and may contribute to blood malignancies. RasGRPs might prove to be viable drug targets. The intracellular site of RasGRP action and the relationship between RasGRPs and other Ras regulatory mechanisms are subjects of lively debate.
Collapse
Affiliation(s)
- James C Stone
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Janas ML, Turner M. Interaction of Ras with p110γ is required for thymic β-selection in the mouse. THE JOURNAL OF IMMUNOLOGY 2011; 187:4667-75. [PMID: 21930962 DOI: 10.4049/jimmunol.1101949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thymocytes are tested for productive rearrangement of the tcrb locus by expression of a pre-TCR in a process termed β-selection, which requires both Notch1 and CXCR4 signaling. It has been shown that activation of the GTPase Ras allows thymocytes to proliferate and differentiate in the absence of a Pre-TCR; the direct targets of Ras at this checkpoint have not been identified, however. Mice with a mutant allele of p110γ unable to bind active Ras revealed that CXCR4-mediated PI3K activation is Ras dependent. The Ras-p110γ interaction was necessary for efficient β-selection-promoted proliferation but was dispensable for the survival or differentiation of thymocytes. Uncoupling Ras from p110γ provides unambiguous identification of a Ras interaction required for thymic β-selection.
Collapse
Affiliation(s)
- Michelle L Janas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | | |
Collapse
|
13
|
Targeted Sos1 deletion reveals its critical role in early T-cell development. Proc Natl Acad Sci U S A 2011; 108:12407-12. [PMID: 21746917 DOI: 10.1073/pnas.1104295108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of the small G protein Ras is required for thymocyte differentiation. In thymocytes, Ras is activated by the Ras guanine exchange factors (RasGEFs) Sos1, Sos2, and RasGRP1. We report the development of a floxed allele of sos1 to assess the role of Sos1 during thymocyte development. Sos1 was required for pre-T-cell receptor (pre-TCR)- but not TCR-stimulated developmental signals. Sos1 deletion led to a partial block at the DN-to-DP transition. Sos1-deficient thymocytes showed reduced pre-TCR-stimulated proliferation, differentiation, and ERK phosphorylation. In contrast, TCR-stimulated positive selection, and negative selection under strong stimulatory conditions, remained intact in Sos1-deficient mice. Comparison of RasGEF expression at different developmental stages showed that relative to Sos2 and RasGRP1, Sos1 is most abundant in DN thymocytes, but least abundant in DP thymocytes. These data reveal that Sos1 is uniquely positioned to affect signal transduction early in thymocyte development.
Collapse
|
14
|
Riese MJ, Grewal J, Das J, Zou T, Patil V, Chakraborty AK, Koretzky GA. Decreased diacylglycerol metabolism enhances ERK activation and augments CD8+ T cell functional responses. J Biol Chem 2010; 286:5254-65. [PMID: 21138839 DOI: 10.1074/jbc.m110.171884] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Modulation of T cell receptor signal transduction in CD8(+) T cells represents a novel strategy toward enhancing the immune response to tumor. Recently, levels of guanine exchange factors, RasGRP and SOS, within T cells have been shown to represent a key determinant in the regulation of the analog to the digital activation threshold of Ras. One important for regulating activation levels of RasGRP is diacylglycerol (DAG), and its levels are influenced by diacylglycerol kinase-ζ (DGKζ), which metabolizes DAG into phosphatidic acid, terminating DAG-mediated Ras signaling. We sought to determine whether DGKζ-deficient CD8(+) T cells demonstrated enhanced in vitro responses in a manner predicted by the current model of Ras activation and to evaluate whether targeting this threshold confers enhanced CD8(+) T cell responsiveness to tumor. We observed that DGKζ-deficient CD8(+) T cells conform to most predictions of the current model of how RasGRP levels influence Ras activation. But our results differ in that the EC(50) value of stimulation is not altered for any T cell receptor stimulus, a finding that suggests a further degree of complexity to how DGKζ deficiency affects signals important for Ras and ERK activation. Additionally, we found that DGKζ-deficient CD8(+) T cells demonstrate enhanced responsiveness in a subcutaneous lymphoma model, implicating the analog to a digital conversion threshold as a novel target for potential therapeutic manipulation.
Collapse
Affiliation(s)
- Matthew J Riese
- Abramson Family Cancer Research Institute, Department of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Qu HQ, Grant SFA, Bradfield JP, Kim C, Frackelton E, Hakonarson H, Polychronakos C. Association of RASGRP1 with type 1 diabetes is revealed by combined follow-up of two genome-wide studies. J Med Genet 2009; 46:553-4. [PMID: 19465406 DOI: 10.1136/jmg.2009.067140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The two genome-wide association studies published by us and by the Wellcome Trust Case-Control Consortium (WTCCC) revealed a number of novel loci, but neither had the statistical power to elucidate all of the genetic components of type 1 diabetes risk, a task for which larger effective sample sizes are needed. METHODS We analysed data from two sources: (1) The previously published second stage of our study, with a total sample size of the two stages consisting of 1046 Canadian case-parent trios and 538 multiplex families with 929 affected offspring from the Type 1 Diabetes Genetics Consortium (T1DGC); (2) the Rapid Response 2 (RR2) project of the T1DGC, which genotyped 4417 individuals from 1062 non-overlapping families, including 2059 affected individuals (mostly sibling pairs) for the 1536 markers with the highest statistical significance for type 1 diabetes in the WTCCC results. RESULTS One locus, mapping to a linkage disequilibrium (LD) block at chr15q14, reached statistical significance by combining results from two markers (rs17574546 and rs7171171) in perfect LD with each other (r2 = 1). We obtained a joint p value of 1.3 x 10(-6), which exceeds by an order of magnitude the conservative threshold of 3.26 x 10(-5) obtained by correcting for the 1536 single nucleotide polymorphisms (SNPs) tested in our study. Meta-analysis with the original WTCCC genome-wide data produced a p value of 5.83 x 10(-9). CONCLUSIONS A novel type 1 diabetes locus was discovered. It involves RASGRP1, a gene known to play a crucial role in thymocyte differentiation and T cell receptor (TCR) signalling by activating the Ras signalling pathway.
Collapse
|
16
|
Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J, Horita T, Kataoka H, Atsumi T, Koike T. Defective expression of Ras guanyl nucleotide-releasing protein 1 in a subset of patients with systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2007; 179:4890-900. [PMID: 17878389 DOI: 10.4049/jimmunol.179.7.4890] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dysregulation of Ras guanyl nucleotide-releasing protein 1 (RasGRP1) in mice results in a systemic lupus erythematosus (SLE)-like disorder. We therefore looked for defective isoforms and/or diminished levels of human RasGRP1 in a cohort of SLE patients. PBMCs were collected from twenty healthy individuals and thirty-two patients with SLE. mRNA was isolated and five RasGRP1 cDNAs from each subject were sequenced. T cell lysates from healthy controls and SLE patients also were evaluated for their levels of RasGRP1 protein. The accumulated data led to the identification of 13 new splice variants of the human RasGRP1 gene. Not only did our SLE patients have increased levels and types of these defective transcripts relative to normal individuals, two SLE patients were identified whose PBMCs and T cells contained very little, if any, functional RasGRP1 mRNA and protein. The presence of aberrantly spliced RasGRP1 transcripts also was correlated with lower levels of RasGRP1 protein in the patients' T cells. The lack of the normal isoform of RasGRP1 in some SLE patients and the increased prevalence of defective isoforms of RasGRP1 in others raise the possibility that dysregulation of this signaling protein contributes to the development of autoimmunity in a subset of SLE patients.
Collapse
Affiliation(s)
- Shinsuke Yasuda
- Department of Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mor A, Philips MR, Pillinger MH. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis. Clin Immunol 2007; 125:215-23. [PMID: 17913587 DOI: 10.1016/j.clim.2007.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/11/2007] [Accepted: 08/13/2007] [Indexed: 12/17/2022]
Abstract
Ras is a GTP-binding protein that plays multiple important roles in cell activation, including proliferative and inflammatory responses. Ras regulation is complex and depends upon post-translational processing, organelle-specific localization and the activation/deactivation of Ras by a number of regulatory molecules. Ras activation in T lymphocytes demonstrates unique features, including its dependence on the T cell receptor and the ability of Ras to signal from both the plasma membrane and the Golgi. Abnormalities of Ras expression, activation and signaling pathways in T lymphocytes appear to play important roles in the development of autoimmunity in general, and systemic lupus erythematosus in particular. In this manuscript, we review the basic biology of Ras in T lymphocytes, and the ways in which T lymphocyte Ras abnormalities may contribute to the development of a lupus phenotype.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, the NYU Hospital for Joint Diseases, NY 10003, USA.
| | | | | |
Collapse
|
18
|
Beaulieu N, Zahedi B, Goulding RE, Tazmini G, Anthony KV, Omeis SL, de Jong DR, Kay RJ. Regulation of RasGRP1 by B cell antigen receptor requires cooperativity between three domains controlling translocation to the plasma membrane. Mol Biol Cell 2007; 18:3156-68. [PMID: 17567957 PMCID: PMC1949348 DOI: 10.1091/mbc.e06-10-0932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
RasGRP1 is a Ras-activating exchange factor that is positively regulated by translocation to membranes. RasGRP1 contains a diacylglycerol-binding C1 domain, and it has been assumed that this domain is entirely responsible for RasGRP1 translocation. We found that the C1 domain can contribute to plasma membrane-targeted translocation of RasGRP1 induced by ligation of the B cell antigen receptor (BCR). However, this reflects cooperativity of the C1 domain with the previously unrecognized Plasma membrane Targeter (PT) domain, which is sufficient and essential for plasma membrane targeting of RasGRP1. The adjacent suppressor of PT (SuPT) domain attenuates the plasma membrane-targeting activity of the PT domain, thus preventing constitutive plasma membrane localization of RasGRP1. By binding to diacylglycerol generated by BCR-coupled phospholipase Cgamma2, the C1 domain counteracts the SuPT domain and enables efficient RasGRP1 translocation to the plasma membrane. In fibroblasts, the PT domain is inactive as a plasma membrane targeter, and the C1 domain specifies constitutive targeting of RasGRP1 to internal membranes where it can be activated and trigger oncogenic transformation. Selective use of the C1, PT, and SuPT domains may contribute to the differential targeting of RasGRP1 to the plasma membrane versus internal membranes, which has been observed in lymphocytes and other cell types.
Collapse
Affiliation(s)
- Nadine Beaulieu
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, Canada V5Z 1L3
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Almost three decades after the discovery of protein kinase C (PKC), we still have only a partial understanding of how this family of serine/threonine kinases is involved in tumour promotion. PKC isozymes - effectors of diacylglycerol (DAG) and the main targets of phorbol-ester tumour promoters - have important roles in cell-cycle regulation, cellular survival, malignant transformation and apoptosis. How do PKC isozymes regulate these diverse cellular processes and what are their contributions to carcinogenesis? Moreover, what is the contribution of all phorbol-ester effectors, which include PKCs and small G-protein regulators? We now face the challenge of dissecting the relative contribution of each DAG signal to cancer progression.
Collapse
Affiliation(s)
- Erin M Griner
- Department of Pharmacology and Institute for Translational Medicine and Therapeutics (ITMAT), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160, USA
| | | |
Collapse
|
20
|
Yu X, Bauer K, Wernhoff P, Koczan D, Möller S, Thiesen HJ, Ibrahim SM. Fine mapping of collagen-induced arthritis quantitative trait loci in an advanced intercross line. THE JOURNAL OF IMMUNOLOGY 2007; 177:7042-9. [PMID: 17082620 DOI: 10.4049/jimmunol.177.10.7042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The generation of advanced intercross lines (AIL) is a powerful approach for high-resolution fine mapping of quantitative trait loci (QTLs), because they accumulate much more recombination events compared with conventional F2 intercross and N2 backcross. However, the application of this approach is severely hampered by the requirements of excessive resources to maintain such crosses, i.e., in terms of animal care, space, and time. Therefore, in this study, we produced an AIL to fine map collagen-induced arthritis (CIA) QTLs using comparatively limited resources. We used only 308 (DBA/1 x FVB/N)F11/12 AIL mice to refine QTLs controlling the severity and onset of arthritis as well as the Ab response and T cell subset in CIA, namely Cia2, Cia27, and Trmq3. These QTLs were originally identified in (DBA/1 x FVB/N)F2 progeny. The confidence intervals of the three QTLs were refined from 40, 43, and 48 Mb to 12, 4.1, and 12 Mb, respectively. The data were complemented by the use of another QTL fine-mapping approach, haplotype analysis, to further refine Cia2 into a 2-Mb genomic region. To aid in the search for candidate genes for the QTLs, genome-wide expression profiling was performed to identify strain-specific differentially expressed genes within the confidence intervals. Of the 1396 strain-specific differentially expressed genes, 3, 3, and 12 genes were within the support intervals of the Cia2, Cia27, and Trmq3, respectively. In addition, this study revealed that Cia27 and Trmq3 controlling anti-CII IgG2a Ab and CD4:CD8 T cell ratio, respectively, also regulated CIA clinical phenotypes.
Collapse
Affiliation(s)
- Xinhua Yu
- Immunogenetics Group, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Trampont P, Zhang L, Ravichandran KS. ShcA mediates the dominant pathway to extracellular signal-regulated kinase activation during early thymic development. Mol Cell Biol 2006; 26:9035-44. [PMID: 16982683 PMCID: PMC1636838 DOI: 10.1128/mcb.00988-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During thymic development, the beta selection checkpoint is regulated by pre-T-cell receptor-initiated signals. Progression through this checkpoint is influenced by phosphorylation and activation of the serine/threonine kinases extracellular signal-regulated kinase 1 (ERK1) and ERK2, but the in vivo relevance of specific upstream players leading to ERK activation is not known. Here, using mice with a conditional loss of the shc1 gene or expressing mutants of ShcA, we demonstrate that the adapter protein ShcA is responsible for up to 70% of ERK activation in double-negative (DN) thymocytes in vivo and ex vivo. We also identify two specific tyrosines on ShcA that promote ERK phosphorylation in vivo, and mice expressing ShcA with mutations of these tyrosines show impaired DN thymocyte development. This work provides the first in vivo demonstration of the relative requirement of upstream adapters in controlling ERK activation during beta selection and suggests a dominant role for ShcA.
Collapse
Affiliation(s)
- Paul Trampont
- Carter Immunology Center, MR4-4072D, Box 801386, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
22
|
Klinger MB, Guilbault B, Goulding RE, Kay RJ. Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene 2004; 24:2695-704. [PMID: 15829980 DOI: 10.1038/sj.onc.1208334] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RasGRP1 is a Ras-specific exchange factor, which is activated by T-cell receptor (TCR) and promotes TCR-dependent positive selection of thymocytes. RasGRP1 is highly expressed on most T lymphocytic leukemias and is a common site of proviral insertion in retrovirus-induced murine T-cell lymphomas. We used RasGRP1 transgenic mice to determine if deregulated expression of RasGRP1 has a causative role in the development of T-cell malignancies. Thymic lymphomas occurred in three different RasGRP1 transgenic mouse lines. Thymocyte transformation correlated with high transgene expression in early stage lymphomas, indicating that deregulated RasGRP1 expression contributed to the initiation of lymphomagenesis. Expression of the positively selectable H-Y TCR accelerated lymphomagenesis in RasGRP1 transgenic mice. However, the transformed thymocytes lacked markers of positive selection and lymphomas occurred when positive selection was precluded by negative selection of the H-Y TCR. Therefore, initiation of lymphomagenesis via RasGRP1 was not associated with TCR-dependent positive selection of thymocytes. Thymic lymphomas occurred in RasGRP1 transgenic/Rag2-/- mice, demonstrating that neither TCR nor pre-TCR were required for RasGRP1-driven lymphomagenesis. The RasGRP1 transgene conferred pre-TCR-independent survival and proliferation of immature thymocytes, suggesting that deregulated expression of RasGRP1 promotes lymphomagenesis by expanding the pool of thymocytes which are susceptible to transformation.
Collapse
Affiliation(s)
- Mark B Klinger
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
23
|
Brose N, Betz A, Wegmeyer H. Divergent and convergent signaling by the diacylglycerol second messenger pathway in mammals. Curr Opin Neurobiol 2004; 14:328-40. [PMID: 15194113 DOI: 10.1016/j.conb.2004.05.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diacylglycerol is an essential second messenger in mammalian cells. The most prominent intracellular targets of diacylglycerol and the functionally analogous phorbol esters belong to the protein kinase C family, but at least five alternative types of high affinity diacylglycerol/phorbol ester receptors are known: protein kinase D, diacylglycerol kinases alpha, beta, and gamma, RasGRPs, chimaerins, and Munc13s. These function independently of protein kinase C isozymes, and form a network of signaling pathways in the diacylglycerol second messenger system that regulates processes as diverse as gene transcription, lipid signaling, cytoskeletal dynamics, intracellular membrane trafficking, or neurotransmitter release.
Collapse
Affiliation(s)
- Nils Brose
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine and Deutsche Forschungsgemeinschaft Center for Molecular Physiology of the Brain, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
24
|
|
25
|
Guilbault B, Kay RJ. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem 2004; 279:19523-30. [PMID: 14970203 DOI: 10.1074/jbc.m314273200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RasGRP1 is a guanine nucleotide exchange factor that activates Ras GTPases and is activated downstream of antigen receptors on both T and B lymphocytes. Ras-GRP1 provides signals to immature T cells that confer survival and proliferation, but RasGRP1 also promotes T cell receptor-mediated deletion of mature T cells. We used the WEHI-231 cell line as an experimental system to determine whether RasGRP1 can serve as a quantitative modifier of B cell receptor-induced deletion of immature B cells. A 2-fold elevation in RasGRP1 expression markedly increased apoptosis of WEHI-231 cells following B cell receptor ligation, whereas a dominant negative mutant of RasGRP1 suppressed B cell receptor-induced apoptosis. Activation of ERK1 or ERK2 kinases was not required for RasGRP1-mediated apoptosis. Instead, elevated RasGRP1 expression caused down-regulation of NF-kappaB and Bcl-x(L), which provide survival signals counter-acting apoptosis induction by B cell receptor. Inhibition of NF-kappaB was sufficient to enhance B cell receptor-induced apoptosis of WEHI-231 cells, and ligation of co-stimulatory receptors that activate NF-kappaB suppressed the ability of RasGRP1 to promote B cell receptor-induced apoptosis. These experiments define a novel apoptosis-promoting pathway leading from B cell receptor to the inhibition of NF-kappaB and demonstrate that differential expression of RasGRP1 has the potential to modulate the sensitivities of B cells to negative selection following antigen encounter.
Collapse
Affiliation(s)
- Benoit Guilbault
- Terry Fox Laboratory, British Columbia Cancer Agency, 600 West 10th Avenue, Vancouver, BC, V5Z 4E6, Canada
| | | |
Collapse
|
26
|
Marklund U, Lightfoot K, Cantrell D. Intracellular Location and Cell Context-Dependent Function of Protein Kinase D. Immunity 2003; 19:491-501. [PMID: 14563314 DOI: 10.1016/s1074-7613(03)00260-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein kinase D (PKD) is an antigen receptor-activated serine kinase localized at either the plasma membrane or the cytosol of lymphocytes. To probe PKD function at these different locations, transgenesis was used to target active PKD either to the membrane or cytosol of pre-T cells. In recombinase gene null pre-T cells, membrane and cytosolic active PKD both induced differentiation reminiscent of beta selection: downregulation of CD25 and upregulation of CD2 and CD5. Active PKDs also induced pre-T cell proliferation, although this response was not universal to all thymocyte subsets. There were two striking differences between the actions of the differentially localized PKDs. Membrane but not cytosolic PKD could induce expression of CD8 and CD4 in recombinase null mice; cytosolic but not membrane PKD suppressed Vbeta to DJbeta rearrangements of the TCRbeta chain locus in wild-type T cells. PKD function is thus determined by its intracellular location and cell context.
Collapse
Affiliation(s)
- Ulrica Marklund
- Lymphocyte Activation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|