1
|
Wang H, Zhao B, Huang L, Zhu X, Li N, Huang C, Han Z, Ouyang K. Conditional deletion of IP 3R1 by Islet1-Cre in mice reveals a critical role of IP 3R1 in interstitial cells of Cajal in regulating GI motility. J Gastroenterol 2025; 60:152-165. [PMID: 39476178 DOI: 10.1007/s00535-024-02164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND AND AIMS Inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) has been proposed to play a physiological role in regulating gastrointestinal (GI) motility, but the underlying cell-dependent mechanism remains unclear. Here, we utilized cell-specific IP3R1 deletion strategies to address this question in mice. METHODS Conditional IP3R1 knockout mice using Wnt1-Cre, Islet1-Cre mice, and smMHC-CreEGFP were generated. Cell lineage tracing was performed to determine where gene deletion occurred in the GI tract. Whole-gut transit assay and isometric tension recording were used to assess GI function in vivo and in vitro. RESULTS In the mouse GI tract, Islet1-Cre targeted smooth muscle cells (SMCs) and interstitial cells of Cajal (ICCs), but not enteric neurons. IP3R1 deletion by Islet1-Cre (isR1KO) caused a phenotype of intestinal pseudo-obstruction (IPO), evidenced by prolonged whole-gut transit time, enlarged GI tract, abdominal distention, and early lethality. IP3R1 deletion by Islet1-Cre not only reduced the frequency of spontaneous contractions but also decreased the contractile responses to the muscarinic agonist carbachol (CCh) and electrical field stimulation (EFS) in colonic circular muscles. By contrast, smMHC-CreEGFP only targeted SMCs in the mouse GI tract. Although IP3R1 deletion by smMHC-CreEGFP (smR1KO) also reduced the contractile responses to CCh and EFS in colonic circular muscles, the frequency of spontaneous contractions was less affected, and neither global GI abnormalities nor early lethality was found in smR1KO mice. CONCLUSIONS IP3R1 deletion in both ICCs and SMCs but not in SMCs alone causes an IPO phenotype, suggesting that IP3R1 in ICCs plays an essential role in regulating GI motility in vivo.
Collapse
Affiliation(s)
- Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China
| | - Beili Zhao
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China.
| | - Kunfu Ouyang
- Central Laboratory, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518036, China.
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Peking University, Shenzhen, 518036, China.
| |
Collapse
|
2
|
Young M, Booth DM, Smith D, Tigano M, Hajnόczky G, Joseph SK. Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling. Front Cell Dev Biol 2024; 12:1473210. [PMID: 39712573 PMCID: PMC11659226 DOI: 10.3389/fcell.2024.1473210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The activation of IP3 receptor (IP3R) Ca2+ channels generates agonist-mediated Ca2+ signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IP3R isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca2+ dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies. In addition, the diacylglycerol arm of the signaling pathway was investigated with protein kinase C (PKC) inhibitors and siRNA knockdown. The data showed that agonist-mediated NFAT activation was lost but CREB activation was maintained in IP3R TKO cells. Under base-line conditions transcriptome analysis indicated the differential expression of 828 and 311 genes in IP3R TKO HEK293 or HeLa cells, respectively, with only 18 genes being in common. Three main adaptations in TKO cells were identified in this study: 1) increased basal activity of NFAT, CREB and AP-1; 2) an increased reliance on Ca2+- insensitive PKC isoforms; and 3) increased production of reactive oxygen species and upregulation of antioxidant defense enzymes. We suggest that whereas wild-type cells rely on a Ca2+ and DAG signal to respond to stimuli, the TKO cells utilize the adaptations to allow key signaling pathways (e.g., PKC, Ras/MAPK, CREB) to transition to the activated state using a DAG signal alone.
Collapse
Affiliation(s)
- Michael Young
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - David M. Booth
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - David Smith
- Center for Single Cell Biology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marco Tigano
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gyӧrgy Hajnόczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Molitor A, Lederle A, Radosavljevic M, Sapuru V, Zavorka Thomas ME, Yang J, Shirin M, Collin-Bund V, Jerabkova-Roda K, Miao Z, Bernard A, Rolli V, Grenot P, Castro CN, Rosenzwajg M, Lewis EG, Person R, Esperón-Moldes US, Kaare M, Nokelainen PT, Batzir NA, Hoffer GZ, Paul N, Stemmelen T, Naegely L, Hanauer A, Bibi-Triki S, Grün S, Jung S, Busnelli I, Tripolszki K, Al-Ali R, Ordonez N, Bauer P, Song E, Zajo K, Partida-Sanchez S, Robledo-Avila F, Kumanovics A, Louzoun Y, Hirschler A, Pichot A, Toker O, Mejía CAM, Parvaneh N, Knapp E, Hersh JH, Kenney H, Delmonte OM, Notarangelo LD, Goetz JG, Kahwash SB, Carapito C, Bajwa RPS, Thomas C, Ehl S, Isidor B, Carapito R, Abraham RS, Hite RK, Marcus N, Bertoli-Avella A, Bahram S. A pleiotropic recurrent dominant ITPR3 variant causes a complex multisystemic disease. SCIENCE ADVANCES 2024; 10:eado5545. [PMID: 39270020 PMCID: PMC11397499 DOI: 10.1126/sciadv.ado5545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (ITPR1), 2 (ITPR2), and 3 (ITPR3) encode the IP3 receptor (IP3R), a key player in intracellular calcium release. In four unrelated patients, we report that an identical ITPR3 de novo variant-NM_002224.3:c.7570C>T, p.Arg2524Cys-causes, through a dominant-negative effect, a complex multisystemic disorder with immunodeficiency. This leads to defective calcium homeostasis, mitochondrial malfunction, CD4+ lymphopenia, a quasi-absence of naïve CD4+ and CD8+ cells, an increase in memory cells, and a distinct TCR repertoire. The calcium defect was recapitulated in Jurkat knock-in. Site-directed mutagenesis displayed the exquisite sensitivity of Arg2524 to any amino acid change. Despite the fact that all patients had severe immunodeficiency, they also displayed variable multisystemic involvements, including ectodermal dysplasia, Charcot-Marie-Tooth disease, short stature, and bone marrow failure. In conclusion, unlike previously reported ITPR1-3 deficiencies leading to narrow, mainly neurological phenotypes, a recurrent dominant ITPR3 variant leads to a multisystemic disease, defining a unique role for IP3R3 in the tetrameric IP3R complex.
Collapse
Affiliation(s)
- Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Alexandre Lederle
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mirjana Radosavljevic
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Megan E. Zavorka Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jianying Yang
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mahsa Shirin
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Virginie Collin-Bund
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Katerina Jerabkova-Roda
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Equipe labellisée, Ligue nationale Contre le Cancer, Strasbourg, France
| | - Zhichao Miao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Alice Bernard
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Grenot
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Rosenzwajg
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
- Sorbonne Université, INSERM UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Elyssa G. Lewis
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Milja Kaare
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Gal Zaks Hoffer
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Nicodème Paul
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lydie Naegely
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Antoine Hanauer
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Sabrina Bibi-Triki
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Sarah Grün
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sophie Jung
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Centre de Référence des maladies rares orales et dentaires (O-Rares), Pôle de Médecine et de Chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ignacio Busnelli
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | | | | | | | | | - Eunkyung Song
- Division of Infectious Diseases and Host Defense, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kristin Zajo
- Institute of Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Ori Toker
- Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine Hebrew university, Jerusalem, Israel
| | | | - Nima Parvaneh
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Esther Knapp
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph H. Hersh
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jacky G. Goetz
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Equipe labellisée, Ligue nationale Contre le Cancer, Strasbourg, France
| | - Samir B. Kahwash
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Rajinder P. S. Bajwa
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Hôpital Enfant-Adolescent, CHU Nantes, Nantes, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Roshini S. Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nufar Marcus
- Allergy and Immunology Unit, Kipper Institute of Immunology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, USA
| | | | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Huang F, Zhang F, Huang L, Zhu X, Huang C, Li N, Da Q, Huang Y, Yang H, Wang H, Zhao L, Lin Q, Chen Z, Xu J, Liu J, Ren M, Wang Y, Han Z, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors Regulate Vascular Smooth Muscle Cell Proliferation and Neointima Formation in Mice. J Am Heart Assoc 2024; 13:e034203. [PMID: 39023067 PMCID: PMC11964046 DOI: 10.1161/jaha.124.034203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is involved in many types of arterial diseases, including neointima hyperplasia, in which Ca2+ has been recognized as a key player. However, the physiological role of Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3Rs) from endoplasmic reticulum in regulating VSMC proliferation has not been well determined. METHODS AND RESULTS Both in vitro cell culture models and in vivo mouse models were generated to investigate the role of IP3Rs in regulating VSMC proliferation. Expression of all 3 IP3R subtypes was increased in cultured VSMCs upon platelet-derived growth factor-BB and FBS stimulation as well as in the left carotid artery undergoing intimal thickening after vascular occlusion. Genetic ablation of all 3 IP3R subtypes abolished endoplasmic reticulum Ca2+ release in cultured VSMCs, significantly reduced cell proliferation induced by platelet-derived growth factor-BB and FBS stimulation, and also decreased cell migration of VSMCs. Furthermore, smooth muscle-specific deletion of all IP3R subtypes in adult mice dramatically attenuated neointima formation induced by left carotid artery ligation, accompanied by significant decreases in cell proliferation and matrix metalloproteinase-9 expression in injured vessels. Mechanistically, IP3R-mediated Ca2+ release may activate cAMP response element-binding protein, a key player in controlling VSMC proliferation, via Ca2+/calmodulin-dependent protein kinase II and Akt. Loss of IP3Rs suppressed cAMP response element-binding protein phosphorylation at Ser133 in both cultured VSMCs and injured vessels, whereas application of Ca2+ permeable ionophore, ionomycin, can reverse cAMP response element-binding protein phosphorylation in IP3R triple knockout VSMCs. CONCLUSIONS Our results demonstrated an essential role of IP3R-mediated Ca2+ release from endoplasmic reticulum in regulating cAMP response element-binding protein activation, VSMC proliferation, and neointima formation in mouse arteries.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Calcium/metabolism
- Calcium Signaling
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/genetics
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic AMP Response Element-Binding Protein/genetics
- Disease Models, Animal
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/pathology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Fang Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Fei Zhang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Huihua Yang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Hong Wang
- Central LaboratoryPeking University Shenzhen HospitalShenzhenChina
| | - Lingyun Zhao
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Qingsong Lin
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Zee Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Junjie Xu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Jie Liu
- Department of Pathophysiology, School of MedicineShenzhen UniversityShenzhenChina
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Yan Wang
- Department of CardiologyQingdao Municipal HospitalQingdaoChina
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolPeking UniversityShenzhenChina
| |
Collapse
|
5
|
Shen T, Wang S, Huang C, Zhu S, Zhu X, Li N, Wang H, Huang L, Ren M, Han Z, Ge J, Chen Z, Ouyang K. Cardiac-specific deletion of heat shock protein 60 induces mitochondrial stress and disrupts heart development in mice. Biochem Biophys Res Commun 2024; 710:149883. [PMID: 38588611 DOI: 10.1016/j.bbrc.2024.149883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.
Collapse
Affiliation(s)
- Tao Shen
- Department of Cardiovascular Surgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui province, China; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Shuting Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong province, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Siting Zhu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong province, China; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China
| | - Jianjun Ge
- Department of Cardiovascular Surgery, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui province, China.
| | - Ze'e Chen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China.
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong province, China.
| |
Collapse
|
6
|
Mahtani T, Sheth H, Smith LK, Benedict L, Brecier A, Ghasemlou N, Treanor B. The ion channel TRPV5 regulates B-cell signaling and activation. Front Immunol 2024; 15:1386719. [PMID: 38694510 PMCID: PMC11061418 DOI: 10.3389/fimmu.2024.1386719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hena Sheth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - L. K. Smith
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Leshawn Benedict
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aurelie Brecier
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Katja F, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP. Regulation of BCR-mediated Ca 2+ mobilization by MIZ1-TMBIM4 safeguards IgG1 + GC B cell-positive selection. Sci Immunol 2024; 9:eadk0092. [PMID: 38579014 PMCID: PMC7615907 DOI: 10.1126/sciimmunol.adk0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG+ B cells over IgM+ B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1+ GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1+ GC B cell survival during positive selection, whereas IgM+ GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca2+) mobilization downstream of B cell receptor (BCR) signaling in IgG1+ B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1+ GC cell death caused by excessive Ca2+ accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.
Collapse
Affiliation(s)
- Lingling Zhang
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | | | | | | | - Rebecca Newman
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
| | - Yang Zhang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
8
|
Rönkkö J, Rodriguez Y, Rasila T, Torregrosa-Muñumer R, Pennonen J, Kvist J, Kuuluvainen E, Bosch LVD, Hietakangas V, Bultynck G, Tyynismaa H, Ylikallio E. Human IP 3 receptor triple knockout stem cells remain pluripotent despite altered mitochondrial metabolism. Cell Calcium 2023; 114:102782. [PMID: 37481871 DOI: 10.1016/j.ceca.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER Ca2+-release channels that control a broad set of cellular processes. Animal models lacking IP3Rs in different combinations display severe developmental phenotypes. Given the importance of IP3Rs in human diseases, we investigated their role in human induced pluripotent stem cells (hiPSC) by developing single IP3R and triple IP3R knockouts (TKO). Genome edited TKO-hiPSC lacking all three IP3R isoforms, IP3R1, IP3R2, IP3R3, failed to generate Ca2+ signals in response to agonists activating GPCRs, but retained stemness and pluripotency. Steady state metabolite profiling and flux analysis of TKO-hiPSC indicated distinct alterations in tricarboxylic acid cycle metabolites consistent with a deficiency in their pyruvate utilization via pyruvate dehydrogenase, shifting towards pyruvate carboxylase pathway. These results demonstrate that IP3Rs are not essential for hiPSC identity and pluripotency but regulate mitochondrial metabolism. This set of knockout hiPSC is a valuable resource for investigating IP3Rs in human cell types of interest.
Collapse
Affiliation(s)
- Julius Rönkkö
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Yago Rodriguez
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emilia Kuuluvainen
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU Leuven - University of Leuven, 3000, Leuven, Belgium; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Ville Hietakangas
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00790, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Leuven, 3000, Belgium
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland.
| |
Collapse
|
9
|
Du X, Liu Y, He X, Tao L, Fang M, Chu M. Uterus proliferative period ceRNA network of Yunshang black goat reveals candidate genes on different kidding number trait. Front Endocrinol (Lausanne) 2023; 14:1165409. [PMID: 37251683 PMCID: PMC10213787 DOI: 10.3389/fendo.2023.1165409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Pregnancy loss that occurs in the uterus is an important and widespread problem in humans and farm animals and is also a key factor affecting the fecundity of livestock. Understanding the differences in the fecundity of goats may be helpful in guiding the breeding of goats with high fecundity. In this study, we performed RNA sequencing and bioinformatics analysis to study the uterus of Yunshang black goats with high and low fecundity in the proliferative period. We identified mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) by analyzing the uterine transcriptomes. The target genes of the identified miRNAs and lncRNAs were predicted, and miRNA-mRNA interaction and competitive endogenous RNA (ceRNA) networks were constructed. By comparisons between low- and high-fecundity groups, we identified 1,674 differentially expressed mRNAs (914 were upregulated, and 760 were downregulated), 288 differentially expressed lncRNAs (149 were upregulated, and 139 were downregulated), and 17 differentially expressed miRNAs (4 were upregulated, and 13 were downregulated). In addition, 49 miRNA-mRNA pairs and 45 miRNA-lncRNA pairs were predicted in the interaction networks. We successfully constructed a ceRNA interaction network with 108 edges that contained 19 miRNAs, 11 mRNAs, and 73 lncRNAs. Five candidate genes (PLEKHA7, FAT2, FN1, SYK, and ITPR2) that were annotated as cell adhesion or calcium membrane channel protein were identified. Our results provide the overall expression profiles of mRNAs, lncRNAs, and miRNAs in the goat uterus during the proliferative period and are a valuable reference for studies into the mechanisms associated with the high fecundity, which may be helpful to guide goat to reduce pregnancy loss.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, Ministry of Agriculture and Rural Affairs (MARA) PRC Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, Ministry of Agriculture and Rural Affairs (MARA) PRC Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Emrich SM, Yoast RE, Zhang X, Fike AJ, Wang YH, Bricker KN, Tao AY, Xin P, Walter V, Johnson MT, Pathak T, Straub AC, Feske S, Rahman ZSM, Trebak M. Orai3 and Orai1 mediate CRAC channel function and metabolic reprogramming in B cells. eLife 2023; 12:e84708. [PMID: 36803766 PMCID: PMC9998091 DOI: 10.7554/elife.84708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
The essential role of store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels in T cells is well established. In contrast, the contribution of individual Orai isoforms to SOCE and their downstream signaling functions in B cells are poorly understood. Here, we demonstrate changes in the expression of Orai isoforms in response to B cell activation. We show that both Orai3 and Orai1 mediate native CRAC channels in B cells. The combined loss of Orai1 and Orai3, but not Orai3 alone, impairs SOCE, proliferation and survival, nuclear factor of activated T cells (NFAT) activation, mitochondrial respiration, glycolysis, and the metabolic reprogramming of primary B cells in response to antigenic stimulation. Nevertheless, the combined deletion of Orai1 and Orai3 in B cells did not compromise humoral immunity to influenza A virus infection in mice, suggesting that other in vivo co-stimulatory signals can overcome the requirement of BCR-mediated CRAC channel function in B cells. Our results shed important new light on the physiological roles of Orai1 and Orai3 proteins in SOCE and the effector functions of B lymphocytes.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Yin-Hu Wang
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Kristen N Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Anthony Y Tao
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Vonn Walter
- Department of Public Health Sciences, Pennsylvania State University College of MedicineHersheyUnited States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Stefan Feske
- Department of Pathology, New York University School of MedicineNew YorkUnited States
| | - Ziaur SM Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of MedicineHersheyUnited States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of MedicineHersheyUnited States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
- Vascular Medicine Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
11
|
Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A. Disrupted Ca 2+ homeostasis and immunodeficiency in patients with functional IP 3 receptor subtype 3 defects. Cell Mol Immunol 2023; 20:11-25. [PMID: 36302985 PMCID: PMC9794825 DOI: 10.1038/s41423-022-00928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Frederik Staels
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Taylor R Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaux Gerbaux
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - John S Barber
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Susan Schlenner
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- UZ Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- UZ Leuven, Leuven, Belgium.
- Laboratory for Allergy and Clinical Immunology and Immunogenetics Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
12
|
Silybin induces endothelium-dependent vasodilation via TRPV4 channels in mouse mesenteric arteries. Hypertens Res 2022; 45:1954-1963. [PMID: 36056206 DOI: 10.1038/s41440-022-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Silybin is a flavonolignan extracted from the seeds of Silybum marianum that has been used as a dietary supplement for treating hepatic diseases and components of metabolic syndrome such as diabetes, obesity and hypertension. Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels that regulate vascular endothelial function and blood flow. However, the relationship between silybin and TRPV4 channels in small mesenteric arteries remains unknown. In our study, we carried out a molecular docking experiment by using Discovery Studio v3.5 to predict the binding of silybin to TRPV4. Activation of TRPV4 with silybin was detected via intracellular Ca2+ concentration ([Ca2+]i) measurement and patch clamp experiments. The molecular docking results showed that silybin was likely to bind to the ankyrin repeat domain of TPRV4. [Ca2+]i measurements in mesenteric arterial endothelial cells (MAECs) and TRPV4-overexpressing HEK293 (TRPV4-HEK293) cells demonstrated that silybin induced Ca2+ influx by activating TRPV4 channels. The patch clamp experiments indicated that in TRPV4-HEK293 cells, silybin induced TRPV4-mediated cation currents. In addition, in high-salt-induced hypertensive mice, oral administration of silybin decreased systolic blood pressure (SBP) and significantly improved the arterial dilatory response to acetylcholine. Our findings provide the first evidence that silybin could induce mesenteric endothelium-dependent vasodilation and reduce blood pressure in high-salt-induced hypertensive mice via TRPV4 channels, thereby revealing the potential effect of silybin on preventing endothelial dysfunction-related cardiovascular diseases.
Collapse
|
13
|
Tang H, Li Y, Wang S, Ji J, Zhu X, Bao Y, Huang C, Luo Y, Huang L, Gao Y, Wei C, Liu J, Fang X, Sun L, Ouyang K. IPR-mediated Ca signaling controls B cell proliferation through metabolic reprogramming. iScience 2022; 25:104209. [PMID: 35494252 PMCID: PMC9046235 DOI: 10.1016/j.isci.2022.104209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Huayuan Tang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Corresponding author
| | - Yali Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shijia Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jing Ji
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yutong Bao
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ye Luo
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yan Gao
- Department of Cardiovascular Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen Shekou People’s Hospital, Shenzhen, China
| | - Chaoliang Wei
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Corresponding author
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Corresponding author
| |
Collapse
|
14
|
Wang J, Wu CS, Hu YZ, Yang L, Zhang XJ, Zhang YA. Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr Polym 2022; 281:119073. [DOI: 10.1016/j.carbpol.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
|
15
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Young MP, Schug ZT, Booth DM, Yule DI, Mikoshiba K, Hajnóczky G, Joseph SK. Metabolic adaptation to the chronic loss of Ca 2+ signaling induced by KO of IP 3 receptors or the mitochondrial Ca 2+ uniporter. J Biol Chem 2022; 298:101436. [PMID: 34801549 PMCID: PMC8672050 DOI: 10.1016/j.jbc.2021.101436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Calcium signaling is essential for regulating many biological processes. Endoplasmic reticulum inositol trisphosphate receptors (IP3Rs) and the mitochondrial Ca2+ uniporter (MCU) are key proteins that regulate intracellular Ca2+ concentration. Mitochondrial Ca2+ accumulation activates Ca2+-sensitive dehydrogenases of the tricarboxylic acid (TCA) cycle that maintain the biosynthetic and bioenergetic needs of both normal and cancer cells. However, the interplay between calcium signaling and metabolism is not well understood. In this study, we used human cancer cell lines (HEK293 and HeLa) with stable KOs of all three IP3R isoforms (triple KO [TKO]) or MCU to examine metabolic and bioenergetic responses to the chronic loss of cytosolic and/or mitochondrial Ca2+ signaling. Our results show that TKO cells (exhibiting total loss of Ca2+ signaling) are viable, displaying a lower proliferation and oxygen consumption rate, with no significant changes in ATP levels, even when made to rely solely on the TCA cycle for energy production. MCU KO cells also maintained normal ATP levels but showed increased proliferation, oxygen consumption, and metabolism of both glucose and glutamine. However, MCU KO cells were unable to maintain ATP levels and died when relying solely on the TCA cycle for energy. We conclude that constitutive Ca2+ signaling is dispensable for the bioenergetic needs of both IP3R TKO and MCU KO human cancer cells, likely because of adequate basal glycolytic and TCA cycle flux. However, in MCU KO cells, the higher energy expenditure associated with increased proliferation and oxygen consumption makes these cells more prone to bioenergetic failure under conditions of metabolic stress.
Collapse
Affiliation(s)
- Michael P Young
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David M Booth
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - David I Yule
- Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA
| | - Katsuhiko Mikoshiba
- Shanghai Institute of Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, China; Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | - György Hajnóczky
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Suresh K Joseph
- Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
17
|
SantaCruz-Calvo S, Bharath L, Pugh G, SantaCruz-Calvo L, Lenin RR, Lutshumba J, Liu R, Bachstetter AD, Zhu B, Nikolajczyk BS. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 2022; 18:23-42. [PMID: 34703027 PMCID: PMC11005058 DOI: 10.1038/s41574-021-00575-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health. In obesity, chronic low-grade inflammation can occur in adipose tissue that can progress to systemic inflammation; this inflammation contributes to the development of insulin resistance, T2DM and other comorbidities. An improved understanding of adaptive immune cell dysregulation that occurs during obesity and its associated metabolic comorbidities, with an appreciation of sex differences, will be critical for repurposing or developing immunomodulatory therapies to treat obesity and/or T2DM-associated inflammation. This Review critically discusses how activation and metabolic reprogramming of lymphocytes, that is, T cells and B cells, triggers the onset, development and progression of obesity and T2DM. We also consider the role of immunity in under-appreciated comorbidities of obesity and/or T2DM, such as oral cavity inflammation, neuroinflammation in Alzheimer disease and gut microbiome dysbiosis. Finally, we discuss previous clinical trials of anti-inflammatory medications in T2DM and consider the path forward.
Collapse
Affiliation(s)
- Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| | - Leena Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Gabriella Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Lucia SantaCruz-Calvo
- Department of Chemistry and Food Technology, Technical University of Madrid, Madrid, Spain
| | - Raji Rajesh Lenin
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Beibei Zhu
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Li X, Zeng Q, Wang S, Li M, Chen X, Huang Y, Chen B, Zhou M, Lai Y, Guo C, Zhao S, Zhang H, Yang N. CRAC Channel Controls the Differentiation of Pathogenic B Cells in Lupus Nephritis. Front Immunol 2021; 12:779560. [PMID: 34745151 PMCID: PMC8569388 DOI: 10.3389/fimmu.2021.779560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Xue Li
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Zeng
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyi Wang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengyuan Li
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xionghui Chen
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefang Huang
- Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Binfeng Chen
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimei Lai
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Siyuan Zhao
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Li Y, Tang H, Chen F, Chen J, Wang H, Chen Z, Duan Y, Wang X, Li L, Ouyang K. SETD2 is essential for terminal differentiation of erythroblasts during fetal erythropoiesis. Biochem Biophys Res Commun 2021; 552:98-105. [PMID: 33743353 DOI: 10.1016/j.bbrc.2021.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/23/2022]
Abstract
SET domain-containing 2 (SETD2), the primary methyltransferase for histone 3 lysine-36 trimethylation (H3K36me3) in mammals, is associated with many hematopoietic diseases when mutated. Previous works have emphasized its role in maintaining adult hematopoietic stem cells or tumorigenesis, however, whether and how SETD2 regulates erythropoiesis during embryonic development is relatively unexplored. In this study, using a conditional SETD2 knockout (KO) mouse model, we reveal that SETD2 plays an essential role in fetal erythropoiesis. Loss of Setd2 in hematopoietic cells ablates H3K36me3, and leads to anemia with a significant decrease in erythroid cells in the peripheral blood at E18.5. This is due to impaired erythroblast differentiation in both spleen and liver. We also find increased proportions of nucleated erythrocytes in the blood of Setd2 KO embryos. Lastly, we ascribe embryonic erythropoiesis-related genes Vegfc, Vegfr3, and Prox1, as likely downstream targets of SETD2 regulation. Our study reveals a critical role of SETD2 in fetal erythropoiesis that precedes adult hematopoiesis, and provide unique insights into the defects in erythroid lineages, such as anemia.
Collapse
Affiliation(s)
- Yali Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| | - Fengling Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jiewen Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hong Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zee Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yaoyun Duan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xinru Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
20
|
Nair-Gill E, Bonora M, Zhong X, Liu A, Miranda A, Stewart N, Ludwig S, Russell J, Gallagher T, Pinton P, Beutler B. Calcium flux control by Pacs1-Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases. EMBO J 2021; 40:e104888. [PMID: 33630350 DOI: 10.15252/embj.2020104888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.
Collapse
Affiliation(s)
- Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Miranda
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan Stewart
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Xiang W, Xie C, Guan Y. The identification, development and therapeutic potential of IL-10-producing regulatory B cells in multiple sclerosis. J Neuroimmunol 2021; 354:577520. [PMID: 33684831 DOI: 10.1016/j.jneuroim.2021.577520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.
Collapse
Affiliation(s)
- Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Rd, Shanghai 200127, China.
| |
Collapse
|
22
|
Wang YH, Tao AY, Feske S. To B, or not to B: Is calcium the answer? Cell Calcium 2020; 90:102227. [PMID: 32563861 PMCID: PMC7483609 DOI: 10.1016/j.ceca.2020.102227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
B lymphocytes are an important component of the adaptive and innate immune system because of their ability to secrete antibodies and to present antigens to T cells, which is critical for immune responses to many pathogens. Abnormal B cell function is the cause of diseases including autoimmune, paraneoplastic, and immunodeficiency disorders. The development, survival, and function of B cells depend on signaling through the B cell receptor (BCR) and costimulatory receptors. One of the signaling pathways induced by antigen binding to the BCR is store-operated Ca2+ entry (SOCE), which depends on the Ca2+ channel ORAI1 and its activators stromal interaction molecule (STIM) 1 and 2. A recent study by Berry et al. [1] reports that B cells lacking STIM1 and STIM2 fail to survive and proliferate because abolished SOCE results in impaired expression of two key anti-apoptotic genes and blunted activation of mTORC1 and c-Myc signaling. The associated Ca2+ regulated checkpoints of B cell survival and proliferation can be bypassed, at least partially, by costimulation through CD40 or TLR9. This study provides important new insights on how SOCE controls B cell function.
Collapse
Affiliation(s)
- Yin-Hu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Toboso-Navasa A, Gunawan A, Morlino G, Nakagawa R, Taddei A, Damry D, Patel Y, Chakravarty P, Janz M, Kassiotis G, Brink R, Eilers M, Calado DP. Restriction of memory B cell differentiation at the germinal center B cell positive selection stage. J Exp Med 2020; 217:e20191933. [PMID: 32407433 PMCID: PMC7336312 DOI: 10.1084/jem.20191933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC-MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC-MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC-MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.
Collapse
Affiliation(s)
| | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Giulia Morlino
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Andrea Taddei
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Djamil Damry
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Yash Patel
- Retroviral Immunology, Francis Crick Institute, London, UK
| | | | - Martin Janz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dinis Pedro Calado
- Immunity and Cancer, Francis Crick Institute, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
24
|
Koh J, Jang I, Choi S, Kim S, Jang I, Ahn HK, Lee C, Paik JH, Kim CW, Lim MS, Kim K, Jeon YK. Discovery of Novel Recurrent Mutations and Clinically Meaningful Subgroups in Nodal Marginal Zone Lymphoma. Cancers (Basel) 2020; 12:cancers12061669. [PMID: 32585984 PMCID: PMC7352856 DOI: 10.3390/cancers12061669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Nodal marginal zone lymphoma (NMZL) is a rare B-cell neoplasm, the genetic and transcriptomic landscape of which are unclear. Using high-throughput sequencing for whole-exome and transcriptome, we investigated the genetic characteristics of NMZL in a discovery cohort (n = 8) and validated their features in an extended cohort (n = 30). Novel mutations in NFKBIE and ITPR2 were found in 7.9% (3/38) and 13.9% (5/36), respectively, suggesting roles for the NF-κB pathway and B-cell-receptor-mediated calcium signaling pathway in the pathogenesis of NMZL. RNA-seq showed that NMZLs were characterized by an aberrant marginal zone differentiation, associated with an altered IRF4-NOTCH2 axis and the enrichment of various oncogenic pathways. Based on gene expression profile, two subgroups were identified. Compared with subgroup 1, subgroup 2 showed the following: the significant enrichment of cell cycle-associated and MYC-signaling pathways, a more diverse repertoire of upstream regulators, and higher Ki-67 proliferation indices. We designated two subgroups according to Ki-67 labeling, and subgroup 2 was significantly associated with a shorter progression-free survival (p = 0.014), a greater proportion of large cells (p = 0.009), and higher MYC expression (p = 0.026). We suggest that NMZL has unique features and, in this study, we provide information as to the heterogeneity of this enigmatic entity.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Insoon Jang
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
| | - Seongmin Choi
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
- Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Ingeon Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Hyun Kyung Ahn
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
| | - Cheol Lee
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si 46371, Korea;
| | - Chul Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (I.J.); (S.C.)
- Correspondence: (K.K.); (Y.K.J.)
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea; (J.K.); (S.K.); (C.L.); (C.W.K.)
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea;
- Correspondence: (K.K.); (Y.K.J.)
| |
Collapse
|
25
|
Yang F, Huang L, Tso A, Wang H, Cui L, Lin L, Wang X, Ren M, Fang X, Liu J, Han Z, Chen J, Ouyang K. Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet 2020; 16:e1008739. [PMID: 32320395 PMCID: PMC7176088 DOI: 10.1371/journal.pgen.1008739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 01/28/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.
Collapse
Affiliation(s)
- Feili Yang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Alexandria Tso
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Hong Wang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Li Cui
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Lizhu Lin
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xi Fang
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- * E-mail: (ZH); (JC); (KO)
| | - Ju Chen
- University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America
- * E-mail: (ZH); (JC); (KO)
| | - Kunfu Ouyang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
- * E-mail: (ZH); (JC); (KO)
| |
Collapse
|
26
|
Berry CT, Liu X, Myles A, Nandi S, Chen YH, Hershberg U, Brodsky IE, Cancro MP, Lengner CJ, May MJ, Freedman BD. BCR-Induced Ca 2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep 2020; 31:107474. [PMID: 32294437 PMCID: PMC7301411 DOI: 10.1016/j.celrep.2020.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
B cell receptor (BCR) engagement induces naive B cells to differentiate and perform critical immune-regulatory functions. Acquisition of functional specificity requires that a cell survive, enter the cell cycle, and proliferate. We establish that quantitatively distinct Ca2+ signals triggered by variations in the extent of BCR engagement dynamically regulate these transitions by controlling nuclear factor κB (NF-κB), NFAT, and mTORC1 activity. Weak BCR engagement induces apoptosis by failing to activate NF-κB-driven anti-apoptotic gene expression. Stronger signals that trigger more robust Ca2+ signals promote NF-κB-dependent survival and NFAT-, mTORC1-, and c-Myc-dependent cell-cycle entry and proliferation. Finally, we establish that CD40 or TLR9 costimulation circumvents these Ca2+-regulated checkpoints of B cell activation and proliferation. As altered BCR signaling is linked to autoimmunity and B cell malignancies, these results have important implications for understanding the pathogenesis of aberrant B cell activation and differentiation and therapeutic approaches to target these responses.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA; Department of Human Biology, Faculty of Sciences, University of Haifa, Haifa 3498838, Israel
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University of Pennsylvania Institute for Regenerative Medicine, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 2019; 10:766. [PMID: 31601784 PMCID: PMC6786998 DOI: 10.1038/s41419-019-2014-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The yolk sac is the first site of blood-cell production during embryonic development in both murine and human. Heat shock proteins (HSPs), including HSP70 and HSP27, have been shown to play regulatory roles during erythropoiesis. However, it remains unknown whether HSP60, a molecular chaperone that resides mainly in mitochondria, could also regulate early erythropoiesis. In this study, we used Tie2-Cre to deactivate the Hspd1 gene in both hematopoietic and vascular endothelial cells, and found that Tie2-Cre+Hspd1f/f (HSP60CKO) mice were embryonic lethal between the embryonic day 10.5 (E10.5) and E11.5, exhibiting growth retardation, anemia, and vascular defects. Of these, anemia was observed first, independently of vascular and growth phenotypes. Reduced numbers of erythrocytes, as well as an increase in cell apoptosis, were found in the HSP60CKO yolk sac as early as E9.0, indicating that deletion of HSP60 led to abnormality in yolk sac erythropoiesis. Deletion of HSP60 was also able to reduce mitochondrial membrane potential and the expression of the voltage-dependent anion channel (VDAC) in yolk sac erythrocytes. Furthermore, cyclosporine A (CsA), which is a well-recognized modulator in regulating the opening of the mitochondrial permeability transition pore (mPTP) by interacting with Cyclophilin D (CypD), could significantly decrease cell apoptosis and partially restore VDAC expression in mutant yolk sac erythrocytes. Taken together, we demonstrated an essential role of HSP60 in regulating yolk sac cell survival partially via a mPTP-dependent mechanism.
Collapse
|
29
|
Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, Li Y, Tang H, Wang G, Fang X, Liu J, Jia N, Chen J, Ouyang K. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ 2019; 27:587-600. [PMID: 31209364 PMCID: PMC7205885 DOI: 10.1038/s41418-019-0374-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
To maintain healthy mitochondrial enzyme content and function, mitochondria possess a complex protein quality control system, which is composed of different endogenous sets of chaperones and proteases. Heat shock protein 60 (HSP60) is one of these mitochondrial molecular chaperones and has been proposed to play a pivotal role in the regulation of protein folding and the prevention of protein aggregation. However, the physiological function of HSP60 in mammalian tissues is not fully understood. Here we generated an inducible cardiac-specific HSP60 knockout mouse model, and demonstrated that HSP60 deletion in adult mouse hearts altered mitochondrial complex activity, mitochondrial membrane potential, and ROS production, and eventually led to dilated cardiomyopathy, heart failure, and lethality. Proteomic analysis was performed in purified control and mutant mitochondria before mutant hearts developed obvious cardiac abnormalities, and revealed a list of mitochondrial-localized proteins that rely on HSP60 (HSP60-dependent) for correctly folding in mitochondria. We also utilized an in vitro system to assess the effects of HSP60 deletion on mitochondrial protein import and protein stability after import, and found that both HSP60-dependent and HSP60-independent mitochondrial proteins could be normally imported in mutant mitochondria. However, the former underwent degradation in mutant mitochondria after import, suggesting that the protein exhibited low stability in mutant mitochondria. Interestingly, the degradation could be almost fully rescued by a non-specific LONP1 and proteasome inhibitor, MG132, in mutant mitochondria. Therefore, our results demonstrated that HSP60 plays an essential role in maintaining normal cardiac morphology and function by regulating mitochondrial protein homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- Feifei Fan
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yaoyun Duan
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feili Yang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Christa Trexler
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hong Wang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Lei Huang
- Shenzhen Peking University Hospital, 518055, Shenzhen, China
| | - Yali Li
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Huayuan Tang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Gang Wang
- Department of Pathophysiology, School of Medicine, Shenzhen University, 518055, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, 518055, Shenzhen, China
| | - Nan Jia
- Shenzhen People's Hospital, 518055, Shenzhen, China
| | - Ju Chen
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Kunfu Ouyang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
30
|
Wang H, Jing R, Trexler C, Li Y, Tang H, Pan Z, Zhu S, Zhao B, Fang X, Liu J, Chen J, Ouyang K. Deletion of IP 3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. J Gastroenterol 2019; 54:407-418. [PMID: 30382364 PMCID: PMC8109192 DOI: 10.1007/s00535-018-1522-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the membrane of endoplasmic reticulum, which have been shown to play critical roles in various cellular and physiological functions. However, their function in regulating gastrointestinal (GI) tract motility in vivo remains unknown. Here, we investigated the physiological function of IP3R1 in the GI tract using genetically engineered mouse models. METHODS Pdgfrb-Cre mice were bred with homozygous Itpr1 floxed (Itpr1f/f) mice to generate conditional IP3R1 knockout (pcR1KO) mice. Cell lineage tracing was used to determine where Pdgfrb-Cre-mediated gene deletion occurred in the GI tract. Isometric tension recording was used to measure the effects of IP3R1 deletion on muscle contraction. RESULTS In the mouse GI tract, Itpr1 gene deletion by Pdgfrb-Cre occurred in smooth muscle cells, enteric neurons, and interstitial cells of Cajal. pcR1KO mice developed impaired GI motility, with prolonged whole-gut transit time and abdominal distention. pcR1KO mice also exhibited lethality as early as 8 weeks of age and 50% of pcR1KO mice were dead by 40 weeks after birth. The frequency of spontaneous contractions in colonic circular muscles was dramatically decreased and the amplitude of spontaneous contractions was increased in pcR1KO mice. Deletion of IP3R1 in the GI tract also reduced the contractile response to the muscarinic agonist, carbachol, as well as to electrical field stimulation. However, KCl-induced contraction and expression of smooth muscle-specific contractile genes were not significantly altered in pcR1KO mice. CONCLUSIONS Here, we provided a novel mouse model for impaired GI motility and demonstrated that IP3R1 plays a critical role in regulating physiological function of GI tract in vivo.
Collapse
Affiliation(s)
- Hong Wang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ran Jing
- Xiangya Hospital, Central South University, Changsha 410011, China
| | - Christa Trexler
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yali Li
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huayuan Tang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhixiang Pan
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Siting Zhu
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Beili Zhao
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xi Fang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ju Chen
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
31
|
Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, Tang H, Huang F, Zhang F, Fang X, Liu J, Jia N, Chen J, Ouyang K. Inositol 1,4,5-Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. J Am Heart Assoc 2019; 8:e011704. [PMID: 30755057 PMCID: PMC6405661 DOI: 10.1161/jaha.118.011704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 01/06/2023]
Abstract
Background Endothelial NO synthase plays a central role in regulating vasodilation and blood pressure. Intracellular Ca2+ mobilization is a critical modulator of endothelial NO synthase function, and increased cytosolic Ca2+ concentration in endothelial cells is able to induce endothelial NO synthase phosphorylation. Ca2+ release mediated by 3 subtypes of inositol 1,4,5-trisphosphate receptors ( IP 3Rs) from the endoplasmic reticulum and subsequent Ca2+ entry after endoplasmic reticulum Ca2+ store depletion has been proposed to be the major pathway to mobilize Ca2+ in endothelial cells. However, the physiological role of IP 3Rs in regulating blood pressure remains largely unclear. Methods and Results To investigate the role of endothelial IP 3Rs in blood pressure regulation, we first generated an inducible endothelial cell-specific IP 3R1 knockout mouse model and found that deletion of IP 3R1 in adult endothelial cells did not affect vasodilation and blood pressure. Considering all 3 subtypes of IP 3Rs are expressed in mouse endothelial cells, we further generated inducible endothelial cell-specific IP 3R triple knockout mice and found that deletion of all 3 IP 3R subtypes decreased plasma NO concentration and increased basal blood pressure. Furthermore, IP 3R deficiency reduced acetylcholine-induced vasodilation and endothelial NO synthase phosphorylation at Ser1177. Conclusions Our results reveal that IP 3R-mediated Ca2+ release in vascular endothelial cells plays an important role in regulating vasodilation and physiological blood pressure.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Blood Pressure/physiology
- Calcium/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- Immunoblotting
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myography
- Vasodilation/physiology
Collapse
Affiliation(s)
- Qingsong Lin
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Lingyun Zhao
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ran Jing
- Department of CardiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Christa Trexler
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Hong Wang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Yali Li
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Huayuan Tang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fang Huang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Fei Zhang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Xi Fang
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Jie Liu
- Department of PathophysiologySchool of MedicineShenzhen UniversityShenzhenChina
| | - Nan Jia
- Department of CardiologyThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Ju Chen
- Department of MedicineSchool of MedicineUniversity of California San DiegoLa JollaCA
| | - Kunfu Ouyang
- Drug Discovery CenterState Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
32
|
Sud A, Thomsen H, Orlando G, Försti A, Law PJ, Broderick P, Cooke R, Hariri F, Pastinen T, Easton DF, Pharoah PDP, Dunning AM, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Campa D, Hoffmann P, Nöthen MM, Jöckel KH, von Strandmann EP, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 2018; 132:2040-2052. [PMID: 30194254 PMCID: PMC6236462 DOI: 10.1182/blood-2018-06-855296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10-10), 6q23.3 (rs1002658; P = 2.97 × 10-8), 11q23.1 (rs7111520; P = 1.44 × 10-11), 16p11.2 (rs6565176; P = 4.00 × 10-8), and 20q13.12 (rs2425752; P = 2.01 × 10-8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Fadi Hariri
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Health Research, University College London, London, United Kingdom
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Per Hoffmann
- Human Genomic Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nick Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
33
|
Ramirez GA, Coletto LA, Sciorati C, Bozzolo EP, Manunta P, Rovere-Querini P, Manfredi AA. Ion Channels and Transporters in Inflammation: Special Focus on TRP Channels and TRPC6. Cells 2018; 7:E70. [PMID: 29973568 PMCID: PMC6070975 DOI: 10.3390/cells7070070] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Allergy and autoimmune diseases are characterised by a multifactorial pathogenic background. Several genes involved in the control of innate and adaptive immunity have been associated with diseases and variably combine with each other as well as with environmental factors and epigenetic processes to shape the characteristics of individual manifestations. Systemic or local perturbations in salt/water balance and in ion exchanges between the intra- and extracellular spaces or among tissues play a role. In this field, usually referred to as elementary immunology, novel evidence has been recently acquired on the role of members of the transient potential receptor (TRP) channel family in several cellular mechanisms of potential significance for the pathophysiology of the immune response. TRP canonical channel 6 (TRPC6) is emerging as a functional element for the control of calcium currents in immune-committed cells and target tissues. In fact, TRPC6 influences leukocytes’ tasks such as transendothelial migration, chemotaxis, phagocytosis and cytokine release. TRPC6 also modulates the sensitivity of immune cells to apoptosis and influences tissue susceptibility to ischemia-reperfusion injury and excitotoxicity. Here, we provide a view of the interactions between ion exchanges and inflammation with a focus on the pathogenesis of immune-mediated diseases and potential future therapeutic implications.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Lavinia A Coletto
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Clara Sciorati
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Enrica P Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Paolo Manunta
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Nephrology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Patrizia Rovere-Querini
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| | - Angelo A Manfredi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
- Division of Immunology, Transplantation and Infectious Immunity, IRCCS Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
34
|
Vaeth M, Feske S. Ion channelopathies of the immune system. Curr Opin Immunol 2018; 52:39-50. [PMID: 29635109 PMCID: PMC6004246 DOI: 10.1016/j.coi.2018.03.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/25/2023]
Abstract
Ion channels and transporters move ions across membrane barriers and are essential for a host of cell functions in many organs. They conduct K+, Na+ and Cl-, which are essential for regulating the membrane potential, H+ to control intracellular and extracellular pH and divalent cations such as Ca2+, Mg2+ and Zn2+, which function as second messengers and cofactors for many proteins. Inherited channelopathies due to mutations in ion channels or their accessory proteins cause a variety of diseases in the nervous, cardiovascular and other tissues, but channelopathies that affect immune function are not as well studied. Mutations in ORAI1 and STIM1 genes that encode the Ca2+ release-activated Ca2+ (CRAC) channel in immune cells, the Mg2+ transporter MAGT1 and the Cl- channel LRRC8A all cause immunodeficiency with increased susceptibility to infection. Mutations in the Zn2+ transporters SLC39A4 (ZIP4) and SLC30A2 (ZnT2) result in nutritional Zn2+ deficiency and immune dysfunction. These channels, however, only represent a fraction of ion channels that regulate immunity as demonstrated by immune dysregulation in channel knockout mice. The immune system itself can cause acquired channelopathies that are associated with a variety of diseases of nervous, cardiovascular and endocrine systems resulting from autoantibodies binding to ion channels. These autoantibodies highlight the therapeutic potential of functional anti-ion channel antibodies that are being developed for the treatment of autoimmune, inflammatory and other diseases.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|