1
|
Song Y, Chen H, An H, Wang Y, Shao J, Yan M, Ao J, Chen X, Zhang W. Dietary Astragalus polysaccharides enhance potency of inactivated Pseudomonas plecoglossicida vaccine in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110107. [PMID: 39753156 DOI: 10.1016/j.fsi.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Dietary Astragalus polysaccharides (APS) get wide application in aquaculture due to their excellent immunoregulatory effects. However, little is known about the effects of dietary APS on vaccine potency in fish. In the present study, large yellow croakers (Larimichthys crocea) were injected with formalin-inactivated Pseudomonas plecoglossicida after APS feeding for 14 d and then challenged by live P. plecoglossicida on 28 d post-vaccination. The results showed that dietary APS combined with inactivated vaccine could improve the survival rate, and alleviate splenic lesions and bacteria load post-challenge, thus exhibiting a better protection in large yellow croaker against P. plecoglossicida infection than inactivated vaccine treatment alone. Fish in APS + P. plecoglossicida vaccine group expressed a better antioxidant status by possessing a relatively higher serum total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity and a significantly lower malondialdehyde (MDA) content than those in vaccine alone group. Serum lysozyme (LZM) and alkaline phosphatase (AKP) activities, and immunoglobulin M (IgM) titers were all improved in fish of APS + P. plecoglossicida vaccine group compared to fish in vaccine group. Furthermore, fish in APS + P. plecoglossicida vaccine group showed a lower down-regulation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-6, and a higher up-regulation of anti-inflammatory cytokine IL-10, immunoglobulin (IgM) and T cell immunity-related cytokines, interferon-γ (IFN-γ), IL-4/13A, and IL-4/13B, when compared with those in fish of vaccine group. These results suggested that dietary APS could assist inactivated vaccine to trigger stronger innate and adaptive immune responses against P. plecoglossicida infection. These findings further uncover the immunoregulatory mechanism of dietary APS, and provide valuable information for prevention and control of bacteriosis in fish.
Collapse
Affiliation(s)
- Yueyang Song
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hui Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Huimin An
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yongyang Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jianchun Shao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Meijiao Yan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
2
|
Ma J, Trushenski JT, Jones EM, Bruce TJ, McKenney DG, Kurath G, Cain KD. Characterization of maternal immunity following vaccination of broodstock against IHNV or Flavobacterium psychrophilum in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108749. [PMID: 37062435 DOI: 10.1016/j.fsi.2023.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/22/2023]
Abstract
Infectious hematopoietic necrosis (IHN) is a significant viral disease affecting salmonids, whereas Flavobacterium psychrophilum (Fp), the causative agent of bacterial coldwater disease (BCWD), remains one of the most significant bacterial pathogens of salmonids. We explored maternal immunity in the context of IHN and BCWD management in rainbow trout (Oncorhynchus mykiss) aquaculture. Two experimental trials were conducted where different groups of female broodstock were immunized prior to spawning with an IHNV DNA vaccine or a live attenuated F. psychrophilum (Fp B.17-ILM) vaccine alone, or in combination. Progeny were challenged with either a low or high dose of IHNV at 13 days post hatch (dph) and 32 dph or challenged with F. psychrophilum at 13 dph. Mortality following a low-dose IHNV challenge at 13 dph was significantly lower in progeny from vaccinated broodstock vs. unvaccinated broodstock, but no significant differences were observed at 32 dph. Mortality due to BCWD was also significantly reduced in 13 dph fry that originated from broodstock immunized with the Fp B.17-ILM vaccine. After vaccination broodstock developed specific or neutralizing antibodies respectively to F. psychrophilum and IHNV; however, antibody titers in eggs and fry were undetectable. In the eggs and fry mRNA transcripts of the complement components C3 and C5 were detected at much higher levels in progeny from vaccinated broodstock and showed a significantly increased and rapid response post-challenge compared with unvaccinated broodstock. After challenges pro-inflammatory cytokine expression was immediately and considerably elevated in the fry from vaccinated broodstock vs. unvaccinated broodstock, whereas adaptive immune genes were elevated to a lesser degree. Results suggest that maternal transfer of innate and adaptive factors at the transcript level occurred because development of lymphomyeloid organs is not complete in such young fry. In addition to documenting maternally derived immunity in teleosts, this study demonstrates that broodstock vaccination can confer some degree of protection to progeny against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | | | - Evan M Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Timothy J Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA; School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Doug G McKenney
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
3
|
Mai TT, Kayansamruaj P, Soontara C, Kerddee P, Nguyen DH, Senapin S, Costa JZ, del-Pozo J, Thompson KD, Rodkhum C, Dong HT. Immunization of Nile Tilapia ( Oreochromis niloticus) Broodstock with Tilapia Lake Virus (TiLV) Inactivated Vaccines Elicits Protective Antibody and Passive Maternal Antibody Transfer. Vaccines (Basel) 2022; 10:167. [PMID: 35214626 PMCID: PMC8879158 DOI: 10.3390/vaccines10020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Tilapia lake virus (TiLV), a major pathogen of farmed tilapia, is known to be vertically transmitted. Here, we hypothesize that Nile tilapia (Oreochromis niloticus) broodstock immunized with a TiLV inactivated vaccine can mount a protective antibody response and passively transfer maternal antibodies to their fertilized eggs and larvae. To test this hypothesis, three groups of tilapia broodstock, each containing four males and eight females, were immunized with either a heat-killed TiLV vaccine (HKV), a formalin-killed TiLV vaccine (FKV) (both administered at 3.6 × 106 TCID50 per fish), or with L15 medium. Booster vaccination with the same vaccines was given 3 weeks later, and mating took place 1 week thereafter. Broodstock blood sera, fertilized eggs and larvae were collected from 6-14 weeks post-primary vaccination for measurement of TiLV-specific antibody (anti-TiLV IgM) levels. In parallel, passive immunization using sera from the immunized female broodstock was administered to naïve tilapia juveniles to assess if antibodies induced in immunized broodstock were protective. The results showed that anti-TiLV IgM was produced in the majority of both male and female broodstock vaccinated with either the HKV or FKV and that these antibodies could be detected in the fertilized eggs and larvae from vaccinated broodstock. Higher levels of maternal antibody were observed in fertilized eggs from broodstock vaccinated with HKV than those vaccinated with FKV. Low levels of TiLV-IgM were detected in some of the 1-3 day old larvae but were undetectable in 7-14 day old larvae from the vaccinated broodstock, indicating a short persistence of TiLV-IgM in larvae. Moreover, passive immunization proved that antibodies elicited by TiLV vaccination were able to confer 85% to 90% protection against TiLV challenge in naïve juvenile tilapia. In conclusion, immunization of tilapia broodstock with TiLV vaccines could be a potential strategy for the prevention of TiLV in tilapia fertilized eggs and larvae, with HKV appearing to be more promising than FKV for maternal vaccination.
Collapse
Affiliation(s)
- Thao Thu Mai
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Chayanit Soontara
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Pattarawit Kerddee
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (P.K.); (C.S.); (P.K.)
| | - Dinh-Hung Nguyen
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng 12120, Thailand
| | - Janina Z. Costa
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Jorge del-Pozo
- Infection and Immunity Division, Roslin Institute, Edinburgh EH25 9RG, UK;
| | - Kim D. Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh EH26 0PZ, UK; (J.Z.C.); (K.D.T.)
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.T.M.); (D.-H.N.)
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Program, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Khlong Nueng 12120, Thailand
| |
Collapse
|
4
|
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low CF, Goh HH, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. BIOLOGY 2021; 10:1086. [PMID: 34827079 PMCID: PMC8614662 DOI: 10.3390/biology10111086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (M.E.N.); (Y.M.); (F.M.J.); (W.M.A.); (C.-F.L.); (H.-H.G.); (K.A.A.); (H.B.)
| |
Collapse
|
5
|
Zhang F, Li M, Lv C, Wei G, Wang C, Wang Y, An L, Yang G. Molecular characterization of a new IgZ3 subclass in common carp (Cyprinus carpio) and comparative expression analysis of IgH transcripts during larvae development. BMC Vet Res 2021; 17:159. [PMID: 33853603 PMCID: PMC8045280 DOI: 10.1186/s12917-021-02844-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Immunoglobulins (Igs) distributed among systemic immune tissues and mucosal immune tissues play important roles in protecting teleosts from infections in the pathogen-rich aquatic environment. Teleost IgZ/IgT subclasses with different tissue expression patterns may have different immune functions. Results In the present study, a novel secreted IgZ heavy chain gene was cloned and characterized in common carp (Cyprinus carpio). This gene exhibited a different tissue-specific expression profile than the reported genes IgZ1 and IgZ2. The obtained IgZ-like subclass gene designated CcIgZ3, had a complete open reading frame contained 1650 bp encoding a protein of 549 amino acid residues. Phylogenetic analysis revealed that CcIgZ3 was grouped with carp IgZ2 and was in the same branch as IgZ/IgT genes of other teleosts. Basal expression detection of the immunoglobulin heavy chain (IgH) in healthy adult common carp showed that CcIgZ3 transcripts were widely expressed in systemic immune tissues and mucosal-associated lymphoid tissues. CcIgZ3 was expressed at the highest levels in the head kidneys, gills, and gonads, followed by the spleen, hindgut, oral epithelium, liver, brain, muscle, foregut, and blood; it was expressed at a very low level in the skin. The transcript expression of CcIgZ3 in leukocytes isolated from peripheral blood cells was significantly higher than that in leukocytes isolated from the spleen. Different groups of common carp were infected with Aeromonas hydrophila via intraperitoneal injection or immersion. RT-qPCR analysis demonstrated that significant differences in CcIgZ3 mRNA levels existed between the immersion and injection groups in all the examined tissues, including the head kidney, spleen, liver, and hindgut; in particular, the CcIgZ3 mRNA level in the hindgut was higher in the immersion group than in the injection group. The different routes of A. hydrophila exposure in common carp had milder effects on the IgM response than on the CcIgZ3 response. Further study of the relative expression of the IgH gene during the development of common carp showed that the tissue-specific expression profile of CcIgZ3 was very different from those of other genes. RT-qPCR analysis demonstrated that the CcIgZ3 mRNA level increased gradually in common carp during the early larval development stage from 1 day post fertilization (dpf) to 31 dpf with a dynamic tendency similar to those of IgZ1 and IgZ2, and IgM was the dominant Ig with obviously elevated abundance. Analyses of the tissue-specific expression of IgHs in common carp at 65 dpf showed that CcIgZ3 was expressed at mucosal sites, including both the hindgut and gill; in contrast, IgZ1 was preferentially expressed in the hindgut, and IgZ2 was preferentially expressed in the gill. In addition to RT-qPCR analysis, in situ hybridization was performed to detect CcIgZ3-expressing cells and IgM-expressing cells. The results showed that CcIgZ3 and IgM transcripts were detectable in the spleens, gills, and hindguts of common carp at 65 dpf. Conclusions These results reveal that CcIgZ3 gene transcripts are expressed in common carp during developmental stage not only in systemic tissues but also in mucosal tissues. CcIgZ3 expression can be induced in immune tissues by A. hydrophila challenge via immersion and intraperitoneal injection with significantly different expression profiles, which indicates that CcIgZ3 is involved in the antimicrobial immune response and might play an important role in gut mucosal immunity.
Collapse
Affiliation(s)
- Fumiao Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China.
| | - Mojin Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 250014, Jinan, China
| | - Guangcai Wei
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Chang Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Yimeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Liguo An
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China.
| | - Guiwen Yang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China.
| |
Collapse
|
6
|
Picard-Sánchez A, Estensoro I, Perdiguero P, Del Pozo R, Tafalla C, Piazzon MC, Sitjà-Bobadilla A. Passive Immunization Delays Disease Outcome in Gilthead Sea Bream Infected With Enteromyxum leei (Myxozoa), Despite the Moderate Changes in IgM and IgT Repertoire. Front Immunol 2020; 11:581361. [PMID: 33013935 PMCID: PMC7516018 DOI: 10.3389/fimmu.2020.581361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Passive immunization constitutes an emerging field of interest in aquaculture, particularly with the restrictions for antibiotic use. Enteromyxum leei is a myxozoan intestinal parasite that invades the paracellular space of the intestinal epithelium, producing a slow-progressing disease, leading to anorexia, cachexia and mortalities. We have previously demonstrated that gilthead sea bream (GSB, Sparus aurata) that survive E. leei infection become resistant upon re-exposure, and this resistance is directly related to the presence of high levels of specific IgM in serum. Thus, the current work was aimed to determine if passive immunization could help to prevent enteromyxosis in GSB and to study in detail the nature of these protective antibodies. Serum from a pool of resistant (SUR) or naïve (NAI) animals was intracoelomically injected 24 h prior to the E. leei-effluent challenge and at 9 days post-challenge (dpc). Effluent challenge lasted for 23 days, and then the injected groups were allocated in separate tanks with clean water. A non-lethal parasite diagnosis was performed at 56 dpc. At the final sampling (100 dpc), blood, serum and tissues were collected for histology, molecular diagnosis and the detection of circulating antibodies. In parallel, we performed an immunoglobulin repertoire analysis of the fish generating SUR and NAI sera. The results showed that, fish injected with parasite-specific antibodies (spAbs) became infected with the parasite, but showed lower disease signs and intensity of infection than the other groups, indicating a later establishment of the parasite. Repertoire analysis revealed that E. leei induced a polyclonal expansion of diverse IgM and IgT subsets that could be in part an evasion strategy of the parasite. Nonetheless, GSB was able to produce sufficient levels of parasite-spAbs to avoid re-infection of surviving animals and confer certain degree of protection upon passive transfer of antibodies. These results highlight the crucial role of spAb responses against E. leei and set the basis for the development of effective treatment or prophylactic methods for aquaculture.
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Raquel Del Pozo
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
7
|
Lu XJ, Zhu K, Shen HX, Nie L, Chen J. CXCR4s in Teleosts: Two Paralogous Chemokine Receptors and Their Roles in Hematopoietic Stem/Progenitor Cell Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 204:1225-1241. [DOI: 10.4049/jimmunol.1901100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
|
8
|
Zhu W, Zhang Y, Zhang J, Yuan G, Liu X, Ai T, Su J. Astragalus polysaccharides, chitosan and poly(I:C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2019; 87:379-385. [PMID: 30690155 DOI: 10.1016/j.fsi.2019.01.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is an economically important fish in China, but Edwardsiella ictaluri, an intracellular pathogenic bacterium, causes great losses to the culture industry. Currently, vaccination is the most promising strategy to combat the infectious diseases, while adjuvant can provide effective assistant for vaccines to enhance immune responses. In the present study, inactivated E. ictaluri vaccine was prepared, then Astragalus polysaccharides (APS), chitosan and poly(I:C) were employed as adjuvants to evaluate the effect on boosting immune responses and protecting yellow catfish against E. ictaluri. The survival rate was obviously improved after vaccination with APS, chitosan or poly(I:C) respectively, in addition, these three adjuvants could clearly protect the target tissue (intestine) by pathological sections in infectious experiments. In sera, total protein levels increased throughout the immunization stages, total superoxide dismutase levels continued to raise after vaccination, and lysozyme activity levels improved at different periods, examining by the commercial kits. Moreover, checking by real time quantitative RT-PCR assays, in both spleen and head kidney tissues which were the major immune organs, mRNA expressions of inflammatory cytokine IL-1β increased in the early stage of immunity, typical Th1 immune response cytokines IL-2 and IFN-γ2 rose up in the whole immune period, and IgM significantly enhanced in the adjuvant supplementation groups. The results demonstrated the good efficiency of APS, chitosan or poly(I:C) as adjuvant, and provided more options for the fish adjuvants.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacheng Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co.,Ltd, Wuhan Academy of Agricultural Science, Wuhan, 430207, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|