1
|
Gustifante BN, Khairani S, Fauziah N, Riswari SF, Berbudi A. Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review. Pathogens 2025; 14:71. [PMID: 39861032 PMCID: PMC11768281 DOI: 10.3390/pathogens14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of Plasmodium proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells. Immunotherapy, which enhances the immune response and promotes durable T cell activity, offers a promising avenue for more effective and lasting malaria treatments. This review systematically analyzed 63 studies published in the last decade, focusing on the role of T cells in malaria. Among the studies, 87.2% targeted T cells as immunotherapy candidates, with CD4+ and CD8+ T cells each accounting for 47.6% of the studies. γδ T cells were the focus in 7.9% of cases, while 12.7% explored non-T cell contributions to enhancing T cell-mediated responses. The findings underscore the potential of T cells, particularly CD8+ T cells, in liver-stage defense and advocate for the exploration of advanced vaccine platforms and novel therapies, such as mRNA-based vectors and monoclonal antibodies.
Collapse
Affiliation(s)
- Balsa Nobility Gustifante
- Medical Undergraduate Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Shafia Khairani
- Veterinary Medicine Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia;
- Department of Biomedical Sciences, Cell Biology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nisa Fauziah
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| | - Silvita Fitri Riswari
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| | - Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| |
Collapse
|
2
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Diawara H, Healy SA, Mwakingwe-Omari A, Issiaka D, Diallo A, Traore S, Soumbounou IH, Gaoussou S, Zaidi I, Mahamar A, Attaher O, Fried M, Wylie BJ, Mohan R, Doan V, Doritchamou JYA, Dolo A, Morrison RD, Wang J, Hu Z, Rausch KM, Zeguime A, Murshedkar T, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Dicko A, Duffy PE. Safety and efficacy of PfSPZ Vaccine against malaria in healthy adults and women anticipating pregnancy in Mali: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. THE LANCET. INFECTIOUS DISEASES 2024; 24:1366-1382. [PMID: 39153490 DOI: 10.1016/s1473-3099(24)00360-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Plasmodium falciparum parasitaemia during pregnancy causes maternal, fetal, and infant mortality. Poor pregnancy outcomes are related to blood-stage parasite sequestration and the ensuing inflammatory response in the placenta, which decreases over successive pregnancies. A radiation-attenuated, non-replicating, whole-organism vaccine based on P falciparum sporozoites (PfSPZ Vaccine) has shown efficacy at preventing infection in African adults. Here, we aimed to examine vaccine safety and efficacy of the PfSPZ Vaccine in adults and women who anticipated conception. METHODS Two randomised, double-blind, placebo-controlled trials (phase 1 MLSPZV3 and phase 2 MLSPZV4) were conducted at a clinical research centre in Mali. MLSPZV3 included adults aged 18-35 years and MLSPZV4 included non-pregnant women aged 18-38 years who anticipated conception within a year of enrolment. In MLSPZV3, participants were stratified by village and randomly assigned (2:1) using block randomisation to receive three doses of 9 × 105 PfSPZ Vaccine or saline placebo at weeks 0, 1, and 4 (4-week schedule) or at weeks 0, 8, and 16 (16-week schedule) and a booster dose around 1 year later. In MLSPZV4, women received presumptive artemether-lumefantrine twice per day for 3 days 2 weeks before dose one and were randomly assigned (1:1:1) using block randomisation to receive three doses of 9 × 105 or 1·8 × 106 PfSPZ Vaccine or saline placebo all administered at weeks 0, 1, and 4 (4-week schedule). Participants in both studies received artemether-lumefantrine 2 weeks before dose three and additionally 2 weeks before dose four (booster dose) in MLSPZV3. Investigators and participants were masked to group assignment. The primary outcome, assessed in the as-treated population, was PfSPZ Vaccine safety and tolerability within 7 days after each dose. The secondary outcome, assessed in the modified intention-to-treat population, was vaccine efficacy against P falciparum parasitaemia (defined as the time-to-first positive blood smear) from dose three until the end of transmission season. In exploratory analyses, MLSPZV4 evaluated incidence of maternal obstetric and neonatal outcomes as safety outcomes, and vaccine efficacy against P falciparum parasitaemia during pregnancy (defined as time-to-first positive blood smear post-conception). In MLSPZV4, women were followed at least once a month with human chorionic gonadotropin testing, and those who became pregnant received standard of care (including intermittent presumptive sulfadoxine-pyrimethamine antimalarial drugs after the first trimester) during routine antenatal visits. These studies are registered with ClinicalTrials.gov, NCT03510481 and NCT03989102. FINDINGS Participants were enrolled for vaccination during the onset of malaria seasons for two sequential studies conducted from 2018 to 2019 for MLSPZV3 and from 2019 to 2021 for MLSPZV4, with follow-up during malaria seasons across 2 years. In MLSPZV3, 478 adults were assessed for eligibility, of whom 220 were enrolled between May 30 and June 12, 2018, and then between Aug 13 and Aug 18, 2018, and 210 received dose one. 66 (96%) of 69 participants who received the 16-week schedule and 68 (97%) of 70 who received the 4-week schedule of the 9 × 105 PfSPZ Vaccine and 70 (99%) of 71 who received saline completed all three doses in year 1. In MLSPZV4, 407 women were assessed for eligibility, of whom 324 were enrolled from July 3 to July 27, 2019, and 320 received dose one of presumptive artemether-lumefantrine. 300 women were randomly assigned with 100 per group (PfSPZ Vaccine 9 × 105, 1·8 × 106, or saline) receiving dose one. First trimester miscarriages were the most commonly reported serious adverse event but occurred at a similar rate across study groups (eight [15%] of 54 with 9 × 105 PfSPZ Vaccine, 12 [21%] of 58 with 1·8 × 106 PfSPZ Vaccine, and five [12%] of 43 with saline). One unrelated maternal death occurred 425 days after the last vaccine dose in the 1·8 × 106 PfSPZ Vaccine group due to peritonitis shortly after childbirth. Most related adverse events reported in MLSPZV3 and MLSPZV4 were mild (grade 1) and frequency of adverse events in the PfSPZ Vaccine groups did not differ from that in the saline group. Two unrelated serious adverse events occurred in MLSPZV3 (one participant had appendicitis in the 9 × 105 PfSPZ Vaccine group and the other in the saline group died due to a road traffic accident). In MLSPZV3, the 9 × 105 PfSPZ Vaccine did not show vaccine efficacy against parasitaemia with the 4-week (27% [95% CI -18 to 55] in year 1 and 42% [-5 to 68] in year 2) and 16-week schedules (16% [-34 to 48] in year 1 and -14% [-95 to 33] in year 2); efficacies were similar or worse against clinical malaria compared with saline. In MLSPZV4, the PfSPZ Vaccine showed significant efficacy against parasitaemia at doses 9 × 105 (41% [15 to 59]; p=0·0069 in year 1 and 61% [36 to 77]; p=0·0011 in year 2) and 1·8 × 106 (54% [34 to 69]; p<0·0001 in year 1 and 45% [13 to 65]; p=0·029 in year 2); and against clinical malaria at doses 9 × 105 (47% [20 to 65]; p=0·0045 in year 1 and 56% [22 to 75]; p=0·0081 in year 2) and 1·8 × 106 (48% [22 to 65]; p=0·0013 in year 1 and 40% [2 to 64]; p=0·069 in year 2). Vaccine efficacy against post-conception P falciparum parasitaemia during first pregnancies that arose in the 2-year follow-up was 57% (14 to 78; p=0·017) in the 9 × 105 PfSPZ Vaccine group versus 49% (3 to 73; p=0·042) in the 1·8 × 106 PfSPZ Vaccine group. Among 55 women who became pregnant within 24 weeks after dose three, vaccine efficacy against parasitaemia was 65% (23 to 84; p=0·0088) with the 9 × 105 PfSPZ Vaccine and 86% (64 to 94; p<0·0001) with the 1·8 × 106 PfSPZ Vaccine. When combined in a post-hoc analysis, women in the PfSPZ Vaccine groups had a non-significantly reduced time-to-first pregnancy after dose one compared with those in the saline group (log-rank test p=0·056). Exploratory maternal obstetric and neonatal outcomes did not differ significantly between vaccine groups and saline. INTERPRETATION PfSPZ Vaccine was safe and well tolerated in adults in Mali. The 9 × 105 and 1·8 × 106 doses of PfSPZ Vaccine administered as per the 4-week schedule, which incorporated presumptive antimalarial treatment before the first vaccine dose, showed significant efficacy against P falciparum parasitaemia and clinical malaria for two malaria transmission seasons in women of childbearing age and against pregnancy malaria. PfSPZ Vaccine without presumptive antimalarial treatment before the first vaccine dose did not show efficacy. FUNDING National Institute of Allergy and Infectious Diseases, National Institutes of Health, and Sanaria.
Collapse
Affiliation(s)
- Halimatou Diawara
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Djibrilla Issiaka
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Aye Diallo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seydou Traore
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Ibrahim H Soumbounou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Santara Gaoussou
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Almahamoudou Mahamar
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Blair J Wylie
- Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Viyada Doan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Y A Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amagana Dolo
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Robert D Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Zonghui Hu
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amatigue Zeguime
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | | | | | | | | | | | | | - Alassane Dicko
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Goswami D, Arredondo SA, Betz W, Armstrong J, Kumar S, Zanghi G, Patel H, Camargo N, Oualim KMZ, Seilie AM, Schneider S, Murphy SC, Kappe SHI, Vaughan AM. A conserved Plasmodium nuclear protein is critical for late liver stage development. Commun Biol 2024; 7:1387. [PMID: 39455824 PMCID: PMC11511937 DOI: 10.1038/s42003-024-07063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Malaria, caused by Plasmodium parasites, imposes a significant health burden and live-attenuated parasites are being pursued as vaccines. Here, we report on the creation of a genetically attenuated parasite by the deletion of Plasmodium LINUP, encoding a liver stage nuclear protein. In the rodent parasite Plasmodium yoelii, LINUP expression was restricted to liver stage nuclei after the onset of liver stage schizogony. Compared to wildtype P. yoelii, P. yoelii LINUP gene deletion parasites (linup-) exhibited no phenotype in blood stages and mosquito stages but suffered developmental arrest late in liver stage schizogony with a pronounced defect in exo-erythrocytic merozoite formation. This defect caused severe attenuation of the liver stage-to-blood stage transition and immunization of mice with linup - parasites conferred robust protection against infectious sporozoite challenge. LINUP gene deletion in the human parasite Plasmodium falciparum also caused a severe defect in late liver stage differentiation. Importantly, P. falciparum linup - liver stages completely failed to transition from the liver stage to a viable blood stage infection in a humanized mouse model. These results suggest that P. falciparum LINUP is an ideal target for late liver stage attenuation that can be incorporated into a late liver stage-arresting replication competent whole parasite vaccine.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kenza M Z Oualim
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Annette M Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sophia Schneider
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Boyle MJ, Engwerda CR, Jagannathan P. The impact of Plasmodium-driven immunoregulatory networks on immunity to malaria. Nat Rev Immunol 2024; 24:637-653. [PMID: 38862638 PMCID: PMC11688169 DOI: 10.1038/s41577-024-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.
Collapse
Affiliation(s)
- Michelle J Boyle
- Life Sciences Division, Burnet Institute, Melbourne, Victoria, Australia.
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Oboh MA, Morenikeji OB, Ojurongbe O, Thomas BN. Transcriptomic analyses of differentially expressed human genes, micro RNAs and long-non-coding RNAs in severe, symptomatic and asymptomatic malaria infection. Sci Rep 2024; 14:16901. [PMID: 39043812 PMCID: PMC11266512 DOI: 10.1038/s41598-024-67663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Malaria transmission and endemicity in Africa remains hugely disproportionate compared to the rest of the world. The complex life cycle of P. falciparum (Pf) between the vertebrate human host and the anopheline vector results in differential expression of genes within and between hosts. An in-depth understanding of Pf interaction with various human genes through regulatory elements will pave way for identification of newer tools in the arsenal for malaria control. Therefore, the regulatory elements (REs) involved in the over- or under-expression of various host immune genes hold the key to elucidating alternative control measures that can be applied for disease surveillance, prompt diagnosis and treatment. We carried out an RNAseq analysis to identify differentially expressed genes and network elucidation of non-coding RNAs and target genes associated with immune response in individuals with different clinical outcomes. Raw RNAseq datasets, retrieved for analyses include individuals with severe (Gambia-20), symptomatic (Burkina Faso-15), asymptomatic (Mali-16) malaria as well as uninfected controls (Tanzania-20; Mali-36). Of the total 107 datasets retrieved, we identified 5534 differentially expressed genes (DEGs) among disease and control groups. A peculiar pattern of DEGs was observed, with individuals presenting with severe/symptomatic malaria having the highest and most diverse upregulated genes, while a reverse phenomenon was recorded among asymptomatic and uninfected individuals. In addition, we identified 141 differentially expressed micro RNA (miRNA), of which 78 and 63 were upregulated and downregulated respectively. Interactome analysis revealed a moderate interaction between DEGs and miRNAs. Of all identified miRNA, five were unique (hsa-mir-32, hsa-mir-25, hsa-mir-221, hsa-mir-29 and hsa-mir-148) because of their connectivity to several genes, including hsa-mir-221 connected to 16 genes. Six-hundred and eight differentially expressed long non coding RNA (lncRNA) were also identified, including SLC7A11, LINC01524 among the upregulated ones. Our study provides important insight into host immune genes undergoing differential expression under different malaria conditions. It also identified unique miRNAs and lncRNAs that modify and/or regulate the expression of various immune genes. These regulatory elements we surmise, have the potential to serve a diagnostic purpose in discriminating between individuals with severe/symptomatic malaria and those with asymptomatic infection or uninfected, following further clinical validation from field isolates.
Collapse
Affiliation(s)
- Mary A Oboh
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh Bradford, Bradford, PA, USA
| | - Olusola Ojurongbe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, 153 Lomb Memorial Drive, Rochester, NY, 14623, USA.
| |
Collapse
|
7
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Senkpeil L, Bhardwaj J, Little MR, Holla P, Upadhye A, Fusco EM, Swanson PA, Wiegand RE, Macklin MD, Bi K, Flynn BJ, Yamamoto A, Gaskin EL, Sather DN, Oblak AL, Simpson E, Gao H, Haining WN, Yates KB, Liu X, Murshedkar T, Richie TL, Sim BKL, Otieno K, Kariuki S, Xuei X, Liu Y, Polidoro RB, Hoffman SL, Oneko M, Steinhardt LC, Schmidt NW, Seder RA, Tran TM. Innate immune activation restricts priming and protective efficacy of the radiation-attenuated PfSPZ malaria vaccine. JCI Insight 2024; 9:e167408. [PMID: 38687615 PMCID: PMC11382880 DOI: 10.1172/jci.insight.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
A systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls. These same signatures were associated with susceptibility to parasitemia among infants who received the highest and most protective PfSPZ vaccine dose. Machine learning identified spliceosome, proteosome, and resting DC signatures as prevaccination features predictive of protection after highest-dose PfSPZ vaccination, whereas baseline circumsporozoite protein-specific (CSP-specific) IgG predicted nonprotection. Prevaccination innate inflammatory and myeloid signatures were associated with higher sporozoite-specific IgG Ab response but undetectable PfSPZ-specific CD8+ T cell responses after vaccination. Consistent with these human data, innate stimulation in vivo conferred protection against infection by sporozoite injection in malaria-naive mice while diminishing the CD8+ T cell response to radiation-attenuated sporozoites. These data suggest a dichotomous role of innate stimulation for malaria protection and induction of protective immunity by whole-sporozoite malaria vaccines. The uncoupling of vaccine-induced protective immunity achieved by Abs from more protective CD8+ T cell responses suggests that PfSPZ vaccine efficacy in malaria-endemic settings may be constrained by opposing antigen presentation pathways.
Collapse
Affiliation(s)
- Leetah Senkpeil
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
| | | | - Morgan R Little
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Prasida Holla
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine
| | | | - Phillip A Swanson
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ryan E Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Kevin Bi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Barbara J Flynn
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Ayako Yamamoto
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Erik L Gaskin
- Division of Infectious Diseases, Department of Medicine
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Edward Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathleen B Yates
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | - Kephas Otieno
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunlong Liu
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rafael B Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Laura C Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine
- Department of Microbiology and Immunology, and
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Yongvanitchit K, Kum-Arb U, Limsalakpetch A, Im-Erbsin R, Ubalee R, Spring MD, Vesely BA, Waters N, Pichyangkul S. Superior protection in a relapsing Plasmodium cynomolgi rhesus macaque model by a chemoprophylaxis with sporozoite immunization regimen with atovaquone-proguanil followed by primaquine. Malar J 2024; 23:106. [PMID: 38632607 PMCID: PMC11022453 DOI: 10.1186/s12936-024-04933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.
Collapse
Affiliation(s)
- Kosol Yongvanitchit
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Utaiwan Kum-Arb
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Rawiwan Im-Erbsin
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Ratawan Ubalee
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Michele D Spring
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman Waters
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sathit Pichyangkul
- Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
10
|
Goswami D, Patel H, Betz W, Armstrong J, Camargo N, Patil A, Chakravarty S, Murphy SC, Sim BKL, Vaughan AM, Hoffman SL, Kappe SH. A replication competent Plasmodium falciparum parasite completely attenuated by dual gene deletion. EMBO Mol Med 2024; 16:723-754. [PMID: 38514791 PMCID: PMC11018819 DOI: 10.1038/s44321-024-00057-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Janna Armstrong
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
| | - Asha Patil
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | | | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Locke E, Flores-Garcia Y, Mayer BT, MacGill RS, Borate B, Salgado-Jimenez B, Gerber MW, Mathis-Torres S, Shapiro S, King CR, Zavala F. Establishing RTS,S/AS01 as a benchmark for comparison to next-generation malaria vaccines in a mouse model. NPJ Vaccines 2024; 9:29. [PMID: 38341502 DOI: 10.1038/s41541-024-00819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
New strategies are needed to reduce the incidence of malaria, and promising approaches include vaccines targeting the circumsporozoite protein (CSP). To improve upon the malaria vaccine, RTS,S/AS01, it is essential to standardize preclinical assays to measure the potency of next-generation vaccines against this benchmark. We focus on RTS,S/AS01-induced antibody responses and functional activity in conjunction with robust statistical analyses. Transgenic Plasmodium berghei sporozoites containing full-length P. falciparum CSP (tgPb-PfCSP) allow two assessments of efficacy: quantitative reduction in liver infection following intravenous challenge, and sterile protection from mosquito bite challenge. Two or three doses of RTS,S/AS01 were given intramuscularly at 3-week intervals, with challenge 2-weeks after the last vaccination. Minimal inter- and intra-assay variability indicates the reproducibility of the methods. Importantly, the range of this model is suitable for screening more potent vaccines. Levels of induced anti-CSP antibody 2A10 equivalency were also associated with activity: 105 μg/mL (95% CI: 68.8, 141) reduced liver infection by 50%, whereas 285 μg/mL (95% CI: 166, 404) is required for 50% sterile protection from mosquito bite challenge. Additionally, the liver burden model was able to differentiate between protected and non-protected human plasma samples from a controlled human malaria infection study, supporting these models' relevance and predictive capability. Comparison in animal models of CSP-based vaccine candidates to RTS,S/AS01 is now possible under well controlled conditions. Assessment of the quality of induced antibodies, likely a determinant of durability of protection in humans, should be possible using these methods.
Collapse
Affiliation(s)
- Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Randall S MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Monica W Gerber
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sarah Shapiro
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C Richter King
- Center for Vaccine Innovation and Access, PATH, Washington, DC, 20001, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
12
|
Zhu C, Jiao S, Xu W. CD8 + Trms against malaria liver-stage: prospects and challenges. Front Immunol 2024; 15:1344941. [PMID: 38318178 PMCID: PMC10839007 DOI: 10.3389/fimmu.2024.1344941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Attenuated sporozoites provide a valuable model for exploring protective immunity against the malarial liver stage, guiding the design of highly efficient vaccines to prevent malaria infection. Liver tissue-resident CD8+ T cells (CD8+ Trm cells) are considered the host front-line defense against malaria and are crucial to developing prime-trap/target strategies for pre-erythrocytic stage vaccine immunization. However, the spatiotemporal regulatory mechanism of the generation of liver CD8+ Trm cells and their responses to sporozoite challenge, as well as the protective antigens they recognize remain largely unknown. Here, we discuss the knowledge gap regarding liver CD8+ Trm cell formation and the potential strategies to identify predominant protective antigens expressed in the exoerythrocytic stage, which is essential for high-efficacy malaria subunit pre-erythrocytic vaccine designation.
Collapse
Affiliation(s)
- Chengyu Zhu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiming Jiao
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenyue Xu
- The School of Medicine, Chongqing University, Chongqing, China
- Department of Pathogenic Biology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
13
|
Jongo S, Church LP, Milando F, Qassim M, Schindler T, Rashid M, Tumbo A, Nyaulingo G, Bakari BM, Athuman Mbaga T, Mohamed L, Kassimu K, Simon BS, Mpina M, Zaidi I, Duffy PE, Swanson PA, Seder R, Herman JD, Mendu M, Zur Y, Alter G, KC N, Riyahi P, Abebe Y, Murshedkar T, James ER, Billingsley PF, Sim BKL, Richie TL, Daubenberger C, Abdulla S, Hoffman SL. Safety and protective efficacy of PfSPZ Vaccine administered to HIV-negative and -positive Tanzanian adults. J Clin Invest 2024; 134:e169060. [PMID: 38194272 PMCID: PMC10940097 DOI: 10.1172/jci169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/μL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.
Collapse
Affiliation(s)
- Said Jongo
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
| | | | | | | | - Tobias Schindler
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Anneth Tumbo
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Maxmillian Mpina
- Ifakara Health Institute (IHI), Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology and
| | | | | | - Robert Seder
- Vaccine Research Center, NIH, Bethesda, Maryland, USA
| | - Jonathan D. Herman
- Division of Infectious Disease, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maanasa Mendu
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yonatan Zur
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natasha KC
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | | | | | | | | | | | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA
- Protein Potential LLC, Rockville, Maryland, USA
| | | | - Claudia Daubenberger
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
14
|
Yadav N, Parthiban C, Billman ZP, Stone BC, Watson FN, Zhou K, Olsen TM, Cruz Talavera I, Seilie AM, Kalata AC, Matsubara J, Shears MJ, Reynolds RA, Murphy SC. More time to kill: A longer liver stage increases T cell-mediated protection against pre-erythrocytic malaria. iScience 2023; 26:108489. [PMID: 38162031 PMCID: PMC10755051 DOI: 10.1016/j.isci.2023.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Liver stage (LS) Plasmodia mature in 2-2.5 days in rodents compared to 5-6 days in humans. Plasmodium-specific CD8+ T cell expansion differs across these varied timespans. To mimic the kinetics of CD8+ T cells of human Plasmodium infection, a two-dose challenge mouse model that achieved 4-5 days of LS antigen exposure was developed. In this model, mice were inoculated with a non-protective, low dose of late-arresting, genetically attenuated sporozoites to initiate T cell activation and then re-inoculated 2-3 days later with wild-type sporozoites. Vaccines that partially protected against traditional challenge completely protected against two-dose challenge. During the challenge period, CD8+ T cell frequencies increased in the livers of two-dose challenged mice but not in traditionally challenged mice, further suggesting that this model better recapitulates kinetics of CD8+ T cell expansion in humans during the P. falciparum LS. Vaccine development and antigen discovery efforts may be aided by using the two-dose challenge strategy.
Collapse
Affiliation(s)
- Naveen Yadav
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Chaitra Parthiban
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Zachary P. Billman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Brad C. Stone
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Felicia N. Watson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Kevin Zhou
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Tayla M. Olsen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Irene Cruz Talavera
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Annette Mariko Seilie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Anya C. Kalata
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Jokichi Matsubara
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Melanie J. Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Rebekah A. Reynolds
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Vigário AM, Pamplona A. γδ T cells as immunotherapy for malaria: balancing challenges and opportunities. Front Immunol 2023; 14:1242306. [PMID: 38124746 PMCID: PMC10731019 DOI: 10.3389/fimmu.2023.1242306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ana M. Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Ana Pamplona
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Nyandele JP, Kibondo UA, Issa F, Van Geertruyden JP, Warimwe G, Jongo S, Abdulla S, Olotu A. Pre-vaccination monocyte-to-lymphocyte ratio as a biomarker for the efficacy of malaria candidate vaccines: A subgroup analysis of pooled clinical trial data. PLoS One 2023; 18:e0291244. [PMID: 37708143 PMCID: PMC10501550 DOI: 10.1371/journal.pone.0291244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Pre-vaccination monocyte-to-lymphocyte ratio was previously suggested as a marker for malaria vaccine effectiveness. We investigated the potential of this cell ratio as a marker for malaria vaccine efficacy and effectiveness. Effectiveness was investigated by using clinical malaria endpoint, and efficacy was investigated by using surrogate endpoints of Plasmodium falciparum prepatent period, parasite density, and multiplication rates in a controlled human malaria infection trial (CHMI). METHODS We evaluated the correlation between monocyte-to-lymphocyte ratio and RTS,S vaccine effectiveness using Cox regression modeling with clinical malaria as the primary endpoint. Of the 1704 participants in the RTS,S field trial, data on monocyte-to-lymphocyte ratio was available for 842 participants, of whom our analyses were restricted. We further used Spearman Correlations and Cox regression modeling to evaluate the correlation between monocyte-to-lymphocyte ratio and Whole Sporozoite malaria vaccine efficacy using the surrogate endpoints. Of the 97 participants in the controlled human malaria infection vaccine trials, hematology and parasitology information were available for 82 participants, of whom our analyses were restricted. RESULTS The unadjusted efficacy of RTS,S malaria vaccine was 54% (95% CI: 37%-66%, p <0.001). No correlation was observed between monocyte-to-lymphocyte ratio and RTS,S vaccine efficacy (Hazard Rate (HR):0.90, 95%CI:0.45-1.80; p = 0.77). The unadjusted efficacy of Whole Sporozoite malaria vaccine in the appended dataset was 17.6% (95%CI:10%-28.5%, p<0.001). No association between monocyte-to-lymphocyte ratio and the Whole Sporozoite malaria vaccine was found against either the prepatent period (HR = 1.16; 95%CI:0.51-2.62, p = 0.72), parasite density (rho = 0.004, p = 0.97) or multiplication rates (rho = 0.031, p = 0.80). CONCLUSION Monocyte-to-lymphocyte ratio alone may not be an adequate marker for malaria vaccine efficacy. Further investigations on immune correlates and underlying mechanisms of immune protection against malaria could provide a clearer explanation of the differences between those protected in comparison with those not protected against malaria by vaccination.
Collapse
Affiliation(s)
- Jane Paula Nyandele
- Global Health Institute, University of Antwerp, Antwerp, Belgium
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Ummi Abdul Kibondo
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Fatuma Issa
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | | | | | - Said Jongo
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Ally Olotu
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| |
Collapse
|
17
|
Darrah PA, Zeppa JJ, Wang C, Irvine EB, Bucsan AN, Rodgers MA, Pokkali S, Hackney JA, Kamath M, White AG, Borish HJ, Frye LJ, Tomko J, Kracinovsky K, Lin PL, Klein E, Scanga CA, Alter G, Fortune SM, Lauffenburger DA, Flynn JL, Seder RA, Maiello P, Roederer M. Airway T cells are a correlate of i.v. Bacille Calmette-Guerin-mediated protection against tuberculosis in rhesus macaques. Cell Host Microbe 2023; 31:962-977.e8. [PMID: 37267955 PMCID: PMC10355173 DOI: 10.1016/j.chom.2023.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023]
Abstract
Bacille Calmette-Guerin (BCG), the only approved Mycobacterium tuberculosis (Mtb) vaccine, provides limited durable protection when administered intradermally. However, recent work revealed that intravenous (i.v.) BCG administration yielded greater protection in macaques. Here, we perform a dose-ranging study of i.v. BCG vaccination in macaques to generate a range of immune responses and define correlates of protection. Seventeen of 34 macaques had no detectable infection after Mtb challenge. Multivariate analysis incorporating longitudinal cellular and humoral immune parameters uncovered an extensive and highly coordinated immune response from the bronchoalveolar lavage (BAL). A minimal signature predicting protection contained four BAL immune features, of which three remained significant after dose correction: frequency of CD4 T cells producing TNF with interferon γ (IFNγ), frequency of those producing TNF with IL-17, and the number of NK cells. Blood immune features were less predictive of protection. We conclude that CD4 T cell immunity and NK cells in the airway correlate with protection following i.v. BCG.
Collapse
Affiliation(s)
- Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph J Zeppa
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado, Anschuntz Medical Campus, Aurora, CO 80045, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edward B Irvine
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Supriya Pokkali
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua A Hackney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megha Kamath
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - L James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kara Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15620, USA
| | - Edwin Klein
- Division of Animal Laboratory Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sarah M Fortune
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Oyong DA, Duffy FJ, Neal ML, Du Y, Carnes J, Schwedhelm KV, Hertoghs N, Jun SH, Miller H, Aitchison JD, De Rosa SC, Newell EW, McElrath MJ, McDermott SM, Stuart KD. Distinct immune responses associated with vaccination status and protection outcomes after malaria challenge. PLoS Pathog 2023; 19:e1011051. [PMID: 37195999 PMCID: PMC10228810 DOI: 10.1371/journal.ppat.1011051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/30/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Damian A. Oyong
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Fergal J. Duffy
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ying Du
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nina Hertoghs
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Seong-Hwan Jun
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - John D. Aitchison
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Suzanne M. McDermott
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Center for Global Infectious Disease Research (CGIDR), Seattle Children’s Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Interplay between liver and blood stages of Plasmodium infection dictates malaria severity via γδ T cells and IL-17-promoted stress erythropoiesis. Immunity 2023; 56:592-605.e8. [PMID: 36804959 DOI: 10.1016/j.immuni.2023.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.
Collapse
|
20
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
21
|
Duffy FJ, Hertoghs N, Du Y, Neal ML, Oyong D, McDermott S, Minkah N, Carnes J, Schwedhelm KV, McElrath MJ, De Rosa SC, Newell E, Aitchison JD, Stuart K. Longitudinal immune profiling after radiation-attenuated sporozoite vaccination reveals coordinated immune processes correlated with malaria protection. Front Immunol 2022; 13:1042741. [PMID: 36591224 PMCID: PMC9798120 DOI: 10.3389/fimmu.2022.1042741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Identifying immune processes required for liver-stage sterilizing immunity to malaria remains an open problem. The IMRAS trial comprised 5x immunizations with radiation-attenuated sporozoites resulting in 55% protection from subsequent challenge. Methods To identify correlates of vaccination and protection, we performed detailed systems immunology longitudinal profiling of the entire trial time course including whole blood transcriptomics, detailed PBMC cell phenotyping and serum antigen array profiling of 11 IMRAS radiation-attenuated sporozoite (RAS) vaccinees at up to 21 timepoints each. Results RAS vaccination induced serum antibody responses to CSP, TRAP, and AMA1 in all vaccinees. We observed large numbers of differentially expressed genes associated with vaccination response and protection, with distinctly differing transcriptome responses elicited after each immunization. These included inflammatory and proliferative responses, as well as increased abundance of monocyte and DC subsets after each immunization. Increases in Vδ2 γδ; T cells and MAIT cells were observed in response to immunization over the course of study, and CD1c+ CD40+ DC abundance was significantly associated with protection. Interferon responses strongly differed between protected and non-protected individuals with high interferon responses after the 1st immunization, but not the 2nd-5th. Blood transcriptional interferon responses were correlated with abundances of different circulating classical and non-classical monocyte populations. Conclusions This study has revealed multiple coordinated immunological processes induced by vaccination and associated with protection. Our work represents the most detailed immunological profiling of a RAS vaccine trial performed to date and will guide the design and interpretation of future malaria vaccine trials.
Collapse
Affiliation(s)
- Fergal J. Duffy
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ying Du
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Damian Oyong
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Suzanne McDermott
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Katharine V. Schwedhelm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Evan Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States
| | - Ken Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Hospital, Seattle, WA, United States,*Correspondence: Fergal J. Duffy, ; Ken Stuart,
| |
Collapse
|
22
|
Duffy PE. Current approaches to malaria vaccines. Curr Opin Microbiol 2022; 70:102227. [PMID: 36343566 PMCID: PMC11127243 DOI: 10.1016/j.mib.2022.102227] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
The complex Plasmodium life cycle offers different vaccine approaches with distinct parasitological and clinical effects. The approaches and their rationales were established decades ago: vaccines targeting pre-erythrocytic (sporozoite and liver-stage) parasites prevent infection, those to blood-stage parasites reduce disease, and those to sexual-stage parasites or mosquito vector reduce transmission and eliminate malaria through herd immunity. The pre-erythrocytic RTS,S vaccine (Mosquirix, GlaskoSmithKline (GSK)), recommended by WHO in 2021, reduces clinical malaria in children. Knowledge of parasite biology, host-parasite interactions, and immune mechanisms is informing new concepts to improve on RTS,S and to target other parasite stages. This review emphasizes vaccine approaches and candidates currently in the clinic or likely to enter clinical testing soon.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
23
|
Britto C, Alter G. The next frontier in vaccine design: blending immune correlates of protection into rational vaccine design. Curr Opin Immunol 2022; 78:102234. [PMID: 35973352 PMCID: PMC9612370 DOI: 10.1016/j.coi.2022.102234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Despite the extraordinary speed and success in SARS-Cov-2 vaccine development, the emergence of variants of concern perplexed the vaccine development community. Neutralizing antibodies waned antibodies waned and were evaded by viral variants, despite the preservation of protection against severe disease and death across vaccinated populations. Similar to other vaccine design efforts, the lack of mechanistic correlates of immunity against Coronavirus Disease 2019, raised questions related to the need for vaccine redesign and boosting. Hence, our limited understanding of mechanistic correlates of immunity - across pathogens - remains a major obstacle in vaccine development. The identification and incorporation of mechanistic correlates of immunity are key to the accelerated design of highly impactful globally relevant vaccines. Systems-biology tools can be applied strategically to define a complete understanding of mechanistic correlates of immunity. Embedding immunological dissection and target immune profile identification, beyond canonical antibody binding and neutralization, may accelerate the design and success of durable protective vaccines.
Collapse
Affiliation(s)
- Carl Britto
- Department of Pediatrics, Boston Children's Hospital, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
25
|
Pohl K, Cockburn IA. Innate immunity to malaria: The good, the bad and the unknown. Front Immunol 2022; 13:914598. [PMID: 36059493 PMCID: PMC9437427 DOI: 10.3389/fimmu.2022.914598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Malaria is the cause of 600.000 deaths annually. However, these deaths represent only a tiny fraction of total malaria cases. Repeated natural infections with the causative agent, Plasmodium sp. parasites, induce protection from severe disease but not sterile immunity. Thus, immunity to Plasmodium is incomplete. Conversely, immunization with attenuated sporozoite stage parasites can induce sterile immunity albeit after multiple vaccinations. These different outcomes are likely to be influenced strongly by the innate immune response to different stages of the parasite lifecycle. Even small numbers of sporozoites can induce a robust proinflammatory type I interferon response, which is believed to be driven by the sensing of parasite RNA. Moreover, induction of innate like gamma-delta cells contributes to the development of adaptive immune responses. Conversely, while blood stage parasites can induce a strong proinflammatory response, regulatory mechanisms are also triggered. In agreement with this, intact parasites are relatively weakly sensed by innate immune cells, but isolated parasite molecules, notably DNA and RNA can induce strong responses. Thus, the innate response to Plasmodium parasite likely represents a trade-off between strong pro-inflammatory responses that may potentiate immunity and regulatory processes that protect the host from cytokine storms that can induce life threatening illness.
Collapse
Affiliation(s)
- Kai Pohl
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
| | - Ian A. Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
- *Correspondence: Ian A. Cockburn,
| |
Collapse
|
26
|
Manurung MD, de Jong SE, Kruize Y, Mouwenda YD, Ongwe MEB, Honkpehedji YJ, Zinsou JF, Dejon-Agobe JC, Hoffman SL, Kremsner PG, Adegnika AA, Fendel R, Mordmüller B, Roestenberg M, Lell B, Yazdanbakhsh M. Immunological profiles associated with distinct parasitemic states in volunteers undergoing malaria challenge in Gabon. Sci Rep 2022; 12:13303. [PMID: 35922467 PMCID: PMC9349185 DOI: 10.1038/s41598-022-17725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Controlled human malaria infection (CHMI) using cryopreserved non-attenuated Plasmodium falciparum sporozoites (PfSPZ) offers a unique opportunity to investigate naturally acquired immunity (NAI). By analyzing blood samples from 5 malaria-naïve European and 20 African adults with lifelong exposure to malaria, before, 5, and 11 days after direct venous inoculation (DVI) with SanariaR PfSPZ Challenge, we assessed the immunological patterns associated with control of microscopic and submicroscopic parasitemia. All (5/5) European individuals developed parasitemia as defined by thick blood smear (TBS), but 40% (8/20) of the African individuals controlled their parasitemia, and therefore remained thick blood smear-negative (TBS− Africans). In the TBS− Africans, we observed higher baseline frequencies of CD4+ T cells producing interferon-gamma (IFNγ) that significantly decreased 5 days after PfSPZ DVI. The TBS− Africans, which represent individuals with either very strong and rapid blood-stage immunity or with immunity to liver stages, were stratified into subjects with sub-microscopic parasitemia (TBS-PCR+) or those with possibly sterilizing immunity (TBS−PCR−). Higher frequencies of IFNγ+TNF+CD8+ γδ T cells at baseline, which later decreased within five days after PfSPZ DVI, were associated with those who remained TBS−PCR−. These findings suggest that naturally acquired immunity is characterized by different cell types that show varying strengths of malaria parasite control. While the high frequencies of antigen responsive IFNγ+CD4+ T cells in peripheral blood keep the blood-stage parasites to a sub-microscopic level, it is the IFNγ+TNF+CD8+ γδ T cells that are associated with either immunity to the liver-stage, or rapid elimination of blood-stage parasites.
Collapse
Affiliation(s)
- Mikhael D Manurung
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Sanne E de Jong
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yvonne Kruize
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Yoanne D Mouwenda
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Madeleine Eunice Betouke Ongwe
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut de Recherches en Ecologie Tropicale, CENAREST, Libreville, Gabon
| | - Yabo Josiane Honkpehedji
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Jeannot Frézus Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Fondation Pour La Recherche Scientifique, 72 BP45, Cotonou, Bénin
| | - Jean Claude Dejon-Agobe
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Fondation Pour La Recherche Scientifique, 72 BP45, Cotonou, Bénin.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute of Tropical Medicine, University of Tübingen, Tubingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
27
|
Gay L, Mezouar S, Cano C, Frohna P, Madakamutil L, Mège JL, Olive D. Role of Vγ9vδ2 T lymphocytes in infectious diseases. Front Immunol 2022; 13:928441. [PMID: 35924233 PMCID: PMC9340263 DOI: 10.3389/fimmu.2022.928441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
The T cell receptor Vγ9Vδ2 T cells bridge innate and adaptive antimicrobial immunity in primates. These Vγ9Vδ2 T cells respond to phosphoantigens (pAgs) present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid expansion of circulating Vγ9Vδ2 T lymphocytes during several infections as well as their localization at the site of active disease demonstrates their important role in the immune response to infection. However, Vγ9Vδ2 T cell deficiencies have been observed in some infectious diseases such as active tuberculosis and chronic viral infections. In this review, we are providing an overview of the mechanisms of Vγ9Vδ2 T cell-mediated antimicrobial immunity. These cells kill infected cells mainly by releasing lytic mediators and pro-inflammatory cytokines and inducing target cell apoptosis. In addition, the release of chemokines and cytokines allows the recruitment and activation of immune cells, promoting the initiation of the adaptive immune response. Finaly, we also describe potential new therapeutic tools of Vγ9Vδ2 T cell-based immunotherapy that could be applied to emerging infections.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
| | | | | | | | - Jean-Louis Mège
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre pour la Recherche sur le Cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
| |
Collapse
|
28
|
McNamara HA, Lahoud MH, Cai Y, Durrant-Whyte J, O'Connor JH, Caminschi I, Cockburn IA. Splenic Dendritic Cells and Macrophages Drive B Cells to Adopt a Plasmablast Cell Fate. Front Immunol 2022; 13:825207. [PMID: 35493521 PMCID: PMC9039241 DOI: 10.3389/fimmu.2022.825207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Upon encountering cognate antigen, B cells can differentiate into short-lived plasmablasts, early memory B cells or germinal center B cells. The factors that determine this fate decision are unclear. Past studies have addressed the role of B cell receptor affinity in this process, but the interplay with other cellular compartments for fate determination is less well understood. Moreover, B cell fate decisions have primarily been studied using model antigens rather than complex pathogen systems, which potentially ignore multifaceted interactions from other cells subsets during infection. Here we address this question using a Plasmodium infection model, examining the response of B cells specific for the immunodominant circumsporozoite protein (CSP). We show that B cell fate is determined in part by the organ environment in which priming occurs, with the majority of the CSP-specific B cell response being derived from splenic plasmablasts. This plasmablast response could occur independent of T cell help, though gamma-delta T cells were required to help with the early isotype switching from IgM to IgG. Interestingly, selective ablation of CD11c+ dendritic cells and macrophages significantly reduced the splenic plasmablast response in a manner independent of the presence of CD4 T cell help. Conversely, immunization approaches that targeted CSP-antigen to dendritic cells enhanced the magnitude of the plasmablast response. Altogether, these data indicate that the early CSP-specific response is predominately primed within the spleen and the plasmablast fate of CSP-specific B cells is driven by macrophages and CD11c+ dendritic cells.
Collapse
Affiliation(s)
- Hayley A McNamara
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yeping Cai
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Jessica Durrant-Whyte
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - James H O'Connor
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Irina Caminschi
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Sissoko MS, Healy SA, Katile A, Zaidi I, Hu Z, Kamate B, Samake Y, Sissoko K, Mwakingwe-Omari A, Lane J, Imeru A, Mohan R, Thera I, Guindo CO, Dolo A, Niare K, Koïta F, Niangaly A, Rausch KM, Zeguime A, Guindo MA, Bah A, Abebe Y, James ER, Manoj A, Murshedkar T, Kc N, Sim BKL, Billingsley PF, Richie TL, Hoffman SL, Doumbo O, Duffy PE. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:377-389. [PMID: 34801112 PMCID: PMC8981424 DOI: 10.1016/s1473-3099(21)00332-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND WHO recently approved a partially effective vaccine that reduces clinical malaria in children, but increased vaccine activity is required to pursue malaria elimination. A phase 1 clinical trial was done in Mali, west Africa, to assess the safety, immunogenicity, and protective efficacy of a three-dose regimen of Plasmodium falciparum sporozoite (PfSPZ) Vaccine (a metabolically active, non-replicating, whole malaria sporozoite vaccine) against homologous controlled human malaria infection (CHMI) and natural P falciparum infection. METHODS We recruited healthy non-pregnant adults aged 18-50 years in Donéguébougou, Mali, and surrounding villages (Banambani, Toubana, Torodo, Sirababougou, Zorokoro) for an open-label, dose-escalation pilot study and, thereafter, a randomised, double-blind, placebo-controlled main trial. Pilot study participants were enrolled on an as-available basis to one group of CHMI infectivity controls and three staggered vaccine groups receiving: one dose of 4·5 × 105, one dose of 9 × 105, or three doses of 1·8 × 106 PfSPZ via direct venous inoculation at approximately 8 week intervals, followed by homologous CHMI 5 weeks later with infectious PfSPZ by direct venous inoculation (PfSPZ Challenge). Main cohort participants were stratified by village and randomly assigned (1:1) to receive three doses of 1·8 × 106 PfSPZ or normal saline at 1, 13, and 19 week intervals using permuted block design by the study statistician. The primary outcome was safety and tolerability of at least one vaccine dose; the secondary outcome was vaccine efficacy against homologous PfSPZ CHMI (pilot study) or against naturally transmitted P falciparum infection (main study) measured by thick blood smear. Combined artesunate and amodiaquine was administered to eliminate pre-existing parasitaemia. Outcomes were analysed by modified intention to treat (mITT; including all participants who received at least one dose of investigational product; safety and vaccine efficacy) and per protocol (vaccine efficacy). This trial is registered with ClinicalTrials.gov, number NCT02627456. FINDINGS Between Dec 20, 2015, and April 30, 2016, we enrolled 56 participants into the pilot study (five received the 4·5 × 105 dose, five received 9 × 105, 30 received 1·8 × 106, 15 were CHMI controls, and one withdrew before vaccination) and 120 participants into the main study cohort with 60 participants assigned PfSPZ Vaccine and 60 placebo in the main study. Adverse events and laboratory abnormalities post-vaccination in all dosing groups were few, mainly mild, and did not differ significantly between vaccine groups (all p>0·05). Unexpected severe transaminitis occured in four participants: one participant in pilot phase that received 1·8 × 106 PfSPZ Vaccine, one participant in main phase that received 1·8 × 106 PfSPZ Vaccine, and two participants in the main phase placebo group. During PfSPZ CHMI, approximately 5 weeks after the third dose of 1·8 × 106 PfSPZ, none of 29 vaccinees and one of 15 controls became positive on thick blood smear; subsequent post-hoc PCR analysis for submicroscopic blood stage infections detected P falciparum parasites in none of the 29 vaccine recipients and eight of 15 controls during CHMI. In the main trial, 32 (58%) of 55 vaccine recipients and 42 (78%) of 54 controls became positive on thick blood smear during 24-week surveillance after vaccination. Vaccine efficacy (1-hazard ratio) was 0·51 per protocol (95% CI 0·20-0·70; log-rank p=0·0042) and 0·39 by mITT (0·04-0·62; p=0·033); vaccine efficacy (1-risk ratio) was 0·24 per-protocol (0·02-0·41; p=0·031) and 0·22 mITT (0·01-0·39; p=0·041). INTERPRETATION A three-dose regimen of PfSPZ Vaccine was safe, well tolerated, and conferred 51% vaccine efficacy against intense natural P falciparum transmission, similar to 52% vaccine efficacy reported for a five-dose regimen in a previous trial. FUNDING US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Sanaria. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Mahamadou S Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abdoulaye Katile
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zonghui Hu
- Biostatistical Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bourama Kamate
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Yacouba Samake
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Kourane Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Center for Vaccine Research, GlaxoSmithKline, Rockville, MD, USA
| | - Jacquelyn Lane
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alemush Imeru
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rathy Mohan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ismaila Thera
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Cheick Oumar Guindo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amagana Dolo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Karamoko Niare
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Fanta Koïta
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Kelly M Rausch
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Amatigue Zeguime
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Merepen A Guindo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Aissatou Bah
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Natasha Kc
- Sanaria, Rockville, MD, USA; Protein Potential, Rockville, MD, USA
| | - B Kim Lee Sim
- Sanaria, Rockville, MD, USA; Protein Potential, Rockville, MD, USA
| | | | | | | | - Ogobara Doumbo
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Mali
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Kumar A, Singh B, Tiwari R, Singh VK, Singh SS, Sundar S, Kumar R. Emerging role of γδ T cells in protozoan infection and their potential clinical application. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105210. [PMID: 35031509 DOI: 10.1016/j.meegid.2022.105210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
γδ T cells are thymus derived heterogeneous and unconventional T- lymphocyte expressing TCR γ (V γ9) and TCRδ (Vδ2) chain and play an important role in connecting innate and adaptive armaments of immune response. These cells can recognize wide ranges of antigens even without involvement of major histocompatibility complex and exert their biological functions by cytotoxicity or activating various types of immune cells. In recent past, γδ T cells have emerged as an important player during protozoa infection and rapidly expand after exposure with them. They have also been widely studied in vaccine induced immune response against many bacterial and protozoan infections with improved clinical outcome. In this review, we will discuss the various roles of γδ T cells in immunity against malaria and leishmaniasis, the two important protozoan diseases causing significant mortality and morbidity throughout the world.
Collapse
Affiliation(s)
- Awnish Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India
| | - Rahul Tiwari
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India
| | | | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, India
| | - Rajiv Kumar
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, India.
| |
Collapse
|
31
|
Xie H, Xie S, Wang M, Wei H, Huang H, Xie A, Li J, Fang C, Shi F, Yang Q, Qi Y, Yin Z, Wang X, Huang J. Properties and Roles of γδT Cells in Plasmodium yoelii nigeriensis NSM Infected C57BL/6 Mice. Front Cell Infect Microbiol 2022; 11:788546. [PMID: 35127555 PMCID: PMC8811364 DOI: 10.3389/fcimb.2021.788546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background Many kinds of immune cells are involved in malaria infection. γδT cells represent a special type of immune cell between natural and adaptive immune cells that play critical roles in anti-parasite infection. Methods In this study, malaria infection model was constructed. Distribution of γδT cells in various immune organs and dynamic changes of γδT cells in the spleens of C57BL/6 mice after infection were detected by flow cytometry. And activation status of γδT cells was detected by flow cytometry. Then γδT cells in naive and infected mice were sorted and performed single-cell RNA sequencing (scRNA-seq). Finally, γδTCR KO mice model was constructed and the effect of γδT cell depletion on mouse T and B cell immunity against Plasmodium infection was explored. Results Here, splenic γδT cells were found to increase significantly on day 14 after Plasmodium yoelii nigeriensis NSM infection in C57BL/6 mice. Higher level of CD69, ICOS and PD-1, lower level of CD62L, and decreased IFN-γ producing after stimulation by PMA and ionomycin were found in γδT cells from infected mice, compared with naive mice. Moreover, 11 clusters were identified in γδT cells by scRNA-seq based t-SNE analysis. Cluster 4, 5, and 7 in γδT cells from infected mice were found the expression of numerous genes involved in immune response. In the same time, the GO enrichment analysis revealed that the marker genes in the infection group were involved in innate and adaptive immunity, pathway enrichment analysis identified the marker genes in the infected group shared many key signalling molecules with other cells or against pathogen infection. Furthermore, increased parasitaemia, decreased numbers of RBC and PLT, and increased numbers of WBC were found in the peripheral blood from γδTCR KO mice. Finally, lower IFN-γ and CD69 expressing CD4+ and CD8+ T cells, lower B cell percentage and numbers, and less CD69 expressing B cells were found in the spleen from γδTCR KO infected mice, and lower levels of IgG and IgM antibodies in the serum were also observed than WT mice. Conclusions Overall, this study demonstrates the diversity of γδT cells in the spleen of Plasmodium yoelii nigeriensis NSM infected C57BL/6 mice at both the protein and RNA levels, and suggests that the expansion of γδT cells in cluster 4, 5 and 7 could promote both cellular and humoral immune responses.
Collapse
Affiliation(s)
- Hongyan Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - He Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiajie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feihu Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quan Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanwei Qi
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Xinhua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| | - Jun Huang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xinhua Wang, ; Jun Huang,
| |
Collapse
|
32
|
Zaidi I, Duffy PE. PfSPZ Vaccine learns a lesson. MED 2021; 2:1289-1291. [PMID: 35590146 PMCID: PMC11127246 DOI: 10.1016/j.medj.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Kenya, the first trial of the attenuated whole organism PfSPZ Vaccine in infants has shown little efficacy against malaria infection, whereas trials in African adults have repeatedly observed protection. Differences in immune responses offer clues to the possible reasons.
Collapse
Affiliation(s)
- Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA.
| |
Collapse
|
33
|
von Borstel A, Chevour P, Arsovski D, Krol JMM, Howson LJ, Berry AA, Day CL, Ogongo P, Ernst JD, Nomicos EYH, Boddey JA, Giles EM, Rossjohn J, Traore B, Lyke KE, Williamson KC, Crompton PD, Davey MS. Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire. Sci Transl Med 2021; 13:eabe7430. [PMID: 34851691 DOI: 10.1126/scitranslmed.abe7430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Priyanka Chevour
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Arsovski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jelte M M Krol
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L Day
- Department of Microbiology and Immunology, Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, P.O Box 24481-00502, Nairobi, Kenya
| | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA
| | - Effie Y H Nomicos
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Edward M Giles
- Department of Paediatrics, Monash University, and Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medicine, Clayton, Victoria 3168, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Boubacar Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
34
|
Safety, immunogenicity and efficacy of PfSPZ Vaccine against malaria in infants in western Kenya: a double-blind, randomized, placebo-controlled phase 2 trial. Nat Med 2021; 27:1636-1645. [PMID: 34518679 DOI: 10.1038/s41591-021-01470-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023]
Abstract
The radiation-attenuated Plasmodium falciparum sporozoite (PfSPZ) vaccine provides protection against P. falciparum infection in malaria-naïve adults. Preclinical studies show that T cell-mediated immunity is required for protection and is readily induced in humans after vaccination. However, previous malaria exposure can limit immune responses and vaccine efficacy (VE) in adults. We hypothesized that infants with less previous exposure to malaria would have improved immunity and protection. We conducted a multi-arm, randomized, double-blind, placebo-controlled trial in 336 infants aged 5-12 months to determine the safety, tolerability, immunogenicity and efficacy of the PfSPZ Vaccine in infants in a high-transmission malaria setting in western Kenya ( NCT02687373 ). Groups of 84 infants each received 4.5 × 105, 9.0 × 105 or 1.8 × 106 PfSPZ Vaccine or saline three times at 8-week intervals. The vaccine was well tolerated; 52 (20.6%) children in the vaccine groups and 20 (23.8%) in the placebo group experienced related solicited adverse events (AEs) within 28 d postvaccination and most were mild. There was 1 grade 3-related solicited AE in the vaccine group (0.4%) and 2 in the placebo group (2.4%). Seizures were more common in the highest-dose group (14.3%) compared to 6.0% of controls, with most being attributed to malaria. There was no significant protection against P. falciparum infection in any dose group at 6 months (VE in the 9.0 × 105 dose group = -6.5%, P = 0.598, the primary statistical end point of the study). VE against clinical malaria 3 months after the last dose in the highest-dose group was 45.8% (P = 0.027), an exploratory end point. There was a dose-dependent increase in antibody responses that correlated with VE at 6 months in the lowest- and highest-dose groups. T cell responses were undetectable across all dose groups. Detection of Vδ2+Vγ9+ T cells, which have been correlated with induction of PfSPZ Vaccine T cell immunity and protection in adults, were infrequent. These data suggest that PfSPZ Vaccine-induced T cell immunity is age-dependent and may be influenced by Vδ2+Vγ9+ T cell frequency. Since there was no significant VE at 6 months in these infants, these vaccine regimens will likely not be pursued further in this age group.
Collapse
|
35
|
Ma L, Papadopoulou M, Taton M, Genco F, Marchant A, Meroni V, Vermijlen D. Effector Vγ9Vδ2 T cell response to congenital Toxoplasma gondii infection. JCI Insight 2021; 6:e138066. [PMID: 34255746 PMCID: PMC8409983 DOI: 10.1172/jci.insight.138066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
A major γδ T cell population in human adult blood are the Vγ9Vδ2 T cells that are activated and expanded in a TCR-dependent manner by microbe-derived and endogenously derived phosphorylated prenyl metabolites (phosphoantigens). Vγ9Vδ2 T cells are also abundant in human fetal peripheral blood, but compared with their adult counterparts they have a distinct developmental origin, are hyporesponsive toward in vitro phosphoantigen exposure, and do not possess a cytotoxic effector phenotype. In order to obtain insight into the role of Vγ9Vδ2 T cells in the human fetus, we investigated their response to in utero infection with the phosphoantigen-producing parasite Toxoplasma gondii (T. gondii). Vγ9Vδ2 T cells expanded strongly when faced with congenital T. gondii infection, which was associated with differentiation toward potent cytotoxic effector cells. The Vγ9Vδ2 T cell expansion in utero resulted in a fetal footprint with public germline-encoded clonotypes in the Vγ9Vδ2 TCR repertoire 2 months after birth. Overall, our data indicate that the human fetus, from early gestation onward, possesses public Vγ9Vδ2 T cells that acquire effector functions following parasite infections.
Collapse
Affiliation(s)
- Ling Ma
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Taton
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Arnaud Marchant
- Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Valeria Meroni
- IRCCS San Matteo Polyclinic, Pavia, Italy.,Molecular Medicine Department, University of Pavia, Italy
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics.,Institute for Medical Immunology, and.,ULB Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
36
|
Experience counts in the malaria response. Nat Immunol 2021; 22:537-539. [PMID: 33888897 DOI: 10.1038/s41590-021-00917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I, Feeney ME. Association of Inhibitory Killer Cell Immunoglobulin-like Receptor Ligands With Higher Plasmodium falciparum Parasite Prevalence. J Infect Dis 2021; 224:175-183. [PMID: 33165540 PMCID: PMC8491837 DOI: 10.1093/infdis/jiaa698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Collapse
Affiliation(s)
- Jean C Digitale
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University
of California, San Francisco, San Francisco, California, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Infectious Disease and Immunity Graduate Group, University
of California, Berkeley, Berkeley, California, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - George Nelson
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland,
USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - John Rek
- Infectious Diseases Research Collaboration,
Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- London School of Hygiene and Tropical
Medicine, London, United
Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- Department of Medicine, Makerere University,
Kampala, Uganda
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH MIT and Harvard,
Cambridge, Massachusetts, USA
| | | | - Margaret E Feeney
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San
Francisco, San Francisco, California, USA
| |
Collapse
|
38
|
Mwakingwe-Omari A, Healy SA, Lane J, Cook DM, Kalhori S, Wyatt C, Kolluri A, Marte-Salcedo O, Imeru A, Nason M, Ding LK, Decederfelt H, Duan J, Neal J, Raiten J, Lee G, Hume JCC, Jeon JE, Ikpeama I, Kc N, Chakravarty S, Murshedkar T, Church LWP, Manoj A, Gunasekera A, Anderson C, Murphy SC, March S, Bhatia SN, James ER, Billingsley PF, Sim BKL, Richie TL, Zaidi I, Hoffman SL, Duffy PE. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature 2021; 595:289-294. [PMID: 34194041 PMCID: PMC11127244 DOI: 10.1038/s41586-021-03684-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
The global decline in malaria has stalled1, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))-which kill liver-stage and blood-stage parasites, respectively-and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization ( https://clinicaltrials.gov/ , NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 104 to 2 × 105 PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of P. falciparum, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African P. falciparum strains.
Collapse
Affiliation(s)
- Agnes Mwakingwe-Omari
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Center for Vaccine Research, GlaxoSmithKline, Rockville, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Lane
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David M Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sahand Kalhori
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles Wyatt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aarti Kolluri
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Omely Marte-Salcedo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alemush Imeru
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha Nason
- Biostatistical Research Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lei K Ding
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hope Decederfelt
- Clinical Center Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Junhui Duan
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Raiten
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grace Lee
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jihyun E Jeon
- Clinical Center Pharmacy Department, National Institutes of Health, Bethesda, MD, USA
| | - Ijeoma Ikpeama
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Natasha Kc
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | | | | | | | | | | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - B Kim Lee Sim
- Sanaria, Rockville, MD, USA
- Protein Potential, Rockville, MD, USA
| | | | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Vijayan K, Wei L, Glennon EKK, Mattocks C, Bourgeois N, Staker B, Kaushansky A. Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chem Rev 2021; 121:10452-10468. [PMID: 34197083 DOI: 10.1021/acs.chemrev.1c00062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal and benign diseases alike in adults, children, pregnant women, and others are successfully treated by pharmacological inhibitors that target human enzymes. Despite extensive global efforts to fight malaria, the disease continues to be a massive worldwide health burden, and new interventional strategies are needed. Current drugs and vector control strategies have contributed to the reduction in malaria deaths over the past 10 years, but progress toward eradication has waned in recent years. Resistance to antimalarial drugs is a substantial and growing problem. Moreover, targeting dormant forms of the malaria parasite Plasmodium vivax is only possible with two approved drugs, which are both contraindicated for individuals with glucose-6-phosphate dehydrogenase deficiency and in pregnant women. Plasmodium parasites are obligate intracellular parasites and thus have specific and absolute requirements of their hosts. Growing evidence has described these host necessities, paving the way for opportunities to pharmacologically target host factors to eliminate Plasmodium infection. Here, we describe progress in malaria research and adjacent fields and discuss key challenges that remain in implementing host-directed therapy against malaria.
Collapse
Affiliation(s)
| | - Ling Wei
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | | | - Christa Mattocks
- Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Natasha Bourgeois
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States
| | - Bart Staker
- Seattle Children's Research Institute, Seattle, Washington 98109, United States
| | - Alexis Kaushansky
- Seattle Children's Research Institute, Seattle, Washington 98109, United States.,Department of Global Health, University of Washington, Seattle, Washington 98195, United States.,Department of Pediatrics, University of Washington, Seattle, Washington 98105, United States.,Brotman Baty Institute for Precision Medicine, Seattle, Washington 98195, United States
| |
Collapse
|
40
|
Reuling IJ, Mendes AM, de Jong GM, Fabra-García A, Nunes-Cabaço H, van Gemert GJ, Graumans W, Coffeng LE, de Vlas SJ, Yang ASP, Lee C, Wu Y, Birkett AJ, Ockenhouse CF, Koelewijn R, van Hellemond JJ, van Genderen PJJ, Sauerwein RW, Prudêncio M. An open-label phase 1/2a trial of a genetically modified rodent malaria parasite for immunization against Plasmodium falciparum malaria. Sci Transl Med 2021; 12:12/544/eaay2578. [PMID: 32434846 DOI: 10.1126/scitranslmed.aay2578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
For some diseases, successful vaccines have been developed using a nonpathogenic counterpart of the causative microorganism of choice. The nonpathogenicity of the rodent Plasmodium berghei (Pb) parasite in humans prompted us to evaluate its potential as a platform for vaccination against human infection by Plasmodium falciparum (Pf), a causative agent of malaria. We hypothesized that the genetic insertion of a leading protein target for clinical development of a malaria vaccine, Pf circumsporozoite protein (CSP), in its natural pre-erythrocytic environment, would enhance Pb's capacity to induce protective immunity against Pf infection. Hence, we recently generated a transgenic Pb sporozoite immunization platform expressing PfCSP (PbVac), and we now report the clinical evaluation of its biological activity against controlled human malaria infection (CHMI). This first-in-human trial shows that PbVac is safe and well tolerated, when administered by a total of ~300 PbVac-infected mosquitoes per volunteer. Although protective efficacy evaluated by CHMI showed no sterile protection at the tested dose, significant delays in patency (2.2 days, P = 0.03) and decreased parasite density were observed after immunization, corresponding to an estimated 95% reduction in Pf liver parasite burden (confidence interval, 56 to 99%; P = 0.010). PbVac elicits dose-dependent cross-species cellular immune responses and functional PfCSP-dependent antibody responses that efficiently block Pf sporozoite invasion of liver cells in vitro. This study demonstrates that PbVac immunization elicits a marked biological effect, inhibiting a subsequent infection by the human Pf parasite, and establishes the clinical validation of a new paradigm in malaria vaccination.
Collapse
Affiliation(s)
- Isaie J Reuling
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gerdie M de Jong
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands
| | - Amanda Fabra-García
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Geert-Jan van Gemert
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Wouter Graumans
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Luc E Coffeng
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, Netherlands
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Cynthia Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Yimin Wu
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | | | - Rob Koelewijn
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands
| | - Perry J J van Genderen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015 GD Rotterdam, Netherlands. .,Corporate Travel Clinic Erasmus MC, 3015 CP Rotterdam, Netherlands
| | - Robert W Sauerwein
- Radboud Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
41
|
Murphy SC, Deye GA, Sim BKL, Galbiati S, Kennedy JK, Cohen KW, Chakravarty S, KC N, Abebe Y, James ER, Kublin JG, Hoffman SL, Richie TL, Jackson LA. PfSPZ-CVac efficacy against malaria increases from 0% to 75% when administered in the absence of erythrocyte stage parasitemia: A randomized, placebo-controlled trial with controlled human malaria infection. PLoS Pathog 2021; 17:e1009594. [PMID: 34048504 PMCID: PMC8191919 DOI: 10.1371/journal.ppat.1009594] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/10/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
PfSPZ-CVac combines 'PfSPZ Challenge', which consists of infectious Plasmodium falciparum sporozoites (PfSPZ), with concurrent antimalarial chemoprophylaxis. In a previously-published PfSPZ-CVac study, three doses of 5.12x104 PfSPZ-CVac given 28 days apart had 100% vaccine efficacy (VE) against controlled human malaria infection (CHMI) 10 weeks after the last immunization, while the same dose given as three injections five days apart had 63% VE. Here, we conducted a dose escalation trial of similarly condensed schedules. Of the groups proceeding to CHMI, the first study group received three direct venous inoculations (DVIs) of a dose of 5.12x104 PfSPZ-CVac seven days apart and the next full dose group received three DVIs of a higher dose of 1.024x105 PfSPZ-CVac five days apart. CHMI (3.2x103 PfSPZ Challenge) was performed by DVI 10 weeks after the last vaccination. In both CHMI groups, transient parasitemia occurred starting seven days after each vaccination. For the seven-day interval group, the second and third vaccinations were therefore administered coincident with parasitemia from the prior vaccination. Parasitemia was associated with systemic symptoms which were severe in 25% of subjects. VE in the seven-day group was 0% (7/7 infected) and in the higher-dose, five-day group was 75% (2/8 infected). Thus, the same dose of PfSPZ-CVac previously associated with 63% VE when given on a five-day schedule in the prior study had zero VE here when given on a seven-day schedule, while a double dose given on a five-day schedule here achieved 75% VE. The relative contributions of the five-day schedule and/or the higher dose to improved VE warrant further investigation. It is notable that administration of PfSPZ-CVac on a schedule where vaccine administration coincided with blood-stage parasitemia was associated with an absence of sterile protective immunity. Clinical trials registration: NCT02773979.
Collapse
Affiliation(s)
- Sean C. Murphy
- Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Center for Emerging and Re-emerging Infectious Diseases, Seattle, Washington, United States of America
| | - Gregory A. Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Shirley Galbiati
- The Emmes Company, Rockville, Maryland, United States of America
| | | | - Kristen W. Cohen
- Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Natasha KC
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Yonas Abebe
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Eric R. James
- Sanaria Inc., Rockville, Maryland, United States of America
| | - James G. Kublin
- Seattle Malaria Clinical Trials Center, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | | | | | - Lisa A. Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
42
|
Systems analysis and controlled malaria infection in Europeans and Africans elucidate naturally acquired immunity. Nat Immunol 2021; 22:654-665. [PMID: 33888898 DOI: 10.1038/s41590-021-00911-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023]
Abstract
Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.
Collapse
|
43
|
Jongo SA, Church LWP, Mtoro AT, Schindler T, Chakravarty S, Ruben AJ, Swanson PA, Kassim KR, Mpina M, Tumbo AM, Milando FA, Qassim M, Juma OA, Bakari BM, Simon B, James ER, Abebe Y, Kc N, Saverino E, Fink M, Cosi G, Gondwe L, Studer F, Styers D, Seder RA, Schindler T, Billingsley PF, Daubenberger C, Sim BKL, Tanner M, Richie TL, Abdulla S, Hoffman SL. Increase of Dose Associated With Decrease in Protection Against Controlled Human Malaria Infection by PfSPZ Vaccine in Tanzanian Adults. Clin Infect Dis 2021; 71:2849-2857. [PMID: 31782768 DOI: 10.1093/cid/ciz1152] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A vaccine would be an ideal tool for reducing malaria's impact. PfSPZ Vaccine (radiation attenuated, aseptic, purified, cryopreserved Plasmodium falciparum [Pf] sporozoites [SPZ]) has been well tolerated and safe in >1526 malaria-naive and experienced 6-month to 65-year-olds in the United States, Europe, and Africa. When vaccine efficacy (VE) of 5 doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine was assessed in adults against controlled human malaria infection (CHMI) in the United States and Tanzania and intense field transmission of heterogeneous Pf in Mali, Tanzanians had the lowest VE (20%). METHODS To increase VE in Tanzania, we increased PfSPZ/dose (9 × 105 or 1.8 × 106) and decreased numbers of doses to 3 at 8-week intervals in a double blind, placebo-controlled trial. RESULTS All 22 CHMIs in controls resulted in parasitemia by quantitative polymerase chain reaction. For the 9 × 105 PfSPZ group, VE was 100% (5/5) at 3 or 11 weeks (P < .000l, Barnard test, 2-tailed). For 1.8 × 106 PfSPZ, VE was 33% (2/6) at 7.5 weeks (P = .028). VE of dosage groups (100% vs 33%) was significantly different (P = .022). Volunteers underwent repeat CHMI at 37-40 weeks after last dose. 6/6 and 5/6 volunteers developed parasitemia, but time to first parasitemia was significantly longer than controls in the 9 × 105 PfSPZ group (10.89 vs 7.80 days) (P = .039), indicating a significant reduction in parasites in the liver. Antibody and T-cell responses were higher in the 1.8 × 106 PfSPZ group. CONCLUSIONS In Tanzania, increasing the dose from 2.7 × 105 to 9 × 105 PfSPZ increased VE from 20% to 100%, but increasing to 1.8 × 106 PfSPZ significantly reduced VE. CLINICAL TRIALS REGISTRATION NCT02613520.
Collapse
Affiliation(s)
- Said A Jongo
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | - Ali T Mtoro
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | | | - Phillip A Swanson
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kamaka R Kassim
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Maximillian Mpina
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Anneth-Mwasi Tumbo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Munira Qassim
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Omar A Juma
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Bakari M Bakari
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Beatus Simon
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | | | | | - Martina Fink
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Glenda Cosi
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Linda Gondwe
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Fabian Studer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Robert A Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA.,Protein Potential LLC, Rockville, Maryland, USA
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | |
Collapse
|
44
|
Vekemans J, Schellenberg D, Benns S, O'Brien K, Alonso P. Meeting report: WHO consultation on malaria vaccine development, Geneva, 15-16 July 2019. Vaccine 2021; 39:2907-2916. [PMID: 33931251 DOI: 10.1016/j.vaccine.2021.03.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/25/2023]
Abstract
Considerable progress has been made in malaria control in the last two decades, but progress has stalled in the last few years. New tools are needed to achieve public health goals in malaria control and elimination. A first generation vaccine, RTS,S/AS01, is currently being evaluated as it undergoes pilot implementation through routine health systems in parts of three African countries. The development of this vaccine took over 30 years and has been full of uncertainties. Even now, important unknowns remain as to its future role in public health. Lessons need to be learnt for second generation and future vaccines, including how to facilitate early planning of investments, streamlining of development, regulatory and policy pathways. A number of candidate vaccines populate the current development pipeline, some of which have the potential to contribute to burden reduction if efficacy is confirmed in conditions of natural exposure, and if they are amenable to affordable supply and programmatic implementation. New, innovative technologies will be needed if future malaria vaccines are to overcome important scientific hurdles and induce durable, high level protection. WHO convened a stakeholder consultation on the status of malaria vaccine research and development to inform the recently reconstituted Malaria Vaccine Advisory Committee (MALVAC) which will assist WHO in updating its current guidance and recommendations about priorities and product preferences for malaria vaccines.
Collapse
Affiliation(s)
- Johan Vekemans
- World Health Organization, 20 Av Appia, 1211 Geneva 27, Switzerland
| | | | | | - Kate O'Brien
- World Health Organization, 20 Av Appia, 1211 Geneva 27, Switzerland
| | - Pedro Alonso
- World Health Organization, 20 Av Appia, 1211 Geneva 27, Switzerland
| |
Collapse
|
45
|
Affiliation(s)
- Mitchell N Lefebvre
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
46
|
Deslyper G, Murphy DM, Sowemimo OA, Holland CV, Doherty DG. Distinct hepatic myeloid and lymphoid cell repertoires are associated with susceptibility and resistance to Ascaris infection. Parasitology 2021; 148:539-549. [PMID: 33431071 PMCID: PMC10090783 DOI: 10.1017/s0031182021000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023]
Abstract
The soil-transmitted helminth Ascaris lumbricoides infects ~800 million people worldwide. Some people are heavily infected, harbouring many worms, whereas others are only lightly infected. The mechanisms behind this difference are unknown. We used a mouse model of hepatic resistance to Ascaris, with C57BL/6J mice as a model for heavy infection and CBA/Ca mice as a model for light infection. The mice were infected with the porcine ascarid, Ascaris suum or the human ascarid, A. lumbricoides and immune cells in their livers and spleens were enumerated using flow cytometry. Compared to uninfected C57BL/6J mice, uninfected CBA/Ca mice had higher splenic CD4+ and γδ T cell counts and lower hepatic eosinophil, Kupffer cell and B cell counts. Infection with A. suum led to expansions of eosinophils, Kupffer cells, monocytes and dendritic cells in the livers of both mouse strains and depletions of hepatic natural killer (NK) cells in CBA/Ca mice only. Infection with A. lumbricoides led to expansions of hepatic eosinophils, monocytes and dendritic cells and depletions of CD8+, αβ, NK and NK T cells in CBA/Ca mice, but not in C57BL/6J mice where only monocytes expanded. Thus, susceptibility and resistance to Ascaris infection are governed, in part, by the hepatic immune system.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Dearbhla M. Murphy
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Celia V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
47
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
48
|
γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis. Nat Immunol 2021; 22:347-357. [PMID: 33432229 PMCID: PMC7906917 DOI: 10.1038/s41590-020-00847-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
Activated Vγ9Vδ2 (γδ2) T lymphocytes that sense parasite-produced phosphoantigens are expanded in Plasmodium falciparum-infected patients. Although previous studies suggested that γδ2 T cells help control erythrocytic malaria, whether γδ2 T cells recognize infected red blood cells (iRBCs) was uncertain. Here we show that iRBCs stained for the phosphoantigen sensor butyrophilin 3A1 (BTN3A1). γδ2 T cells formed immune synapses and lysed iRBCs in a contact, phosphoantigen, BTN3A1 and degranulation-dependent manner, killing intracellular parasites. Granulysin released into the synapse lysed iRBCs and delivered death-inducing granzymes to the parasite. All intra-erythrocytic parasites were susceptible, but schizonts were most sensitive. A second protective γδ2 T cell mechanism was identified. In the presence of patient serum, γδ2 T cells phagocytosed and degraded opsonized iRBCs in a CD16-dependent manner, decreasing parasite multiplication. Thus, γδ2 T cells have two ways to control blood-stage malaria-γδ T cell antigen receptor (TCR)-mediated degranulation and phagocytosis of antibody-coated iRBCs.
Collapse
|
49
|
Ferluga J, Singh I, Rout S, Al-Qahtani A, Yasmin H, Kishore U. Immune Responses in Malaria and Vaccine Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:273-291. [PMID: 34661899 DOI: 10.1007/978-3-030-67452-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria is a pandemic with nearly half of global population at risk, caused by parasite Plasmodium species, particularly P. falciparum with a high morbidity and mortality, especially among children. There is an urgent need for development of population protective vaccines, such as in sub-Saharan low-income countries, where P. falciparum malaria is endemic. After years of endeavour with children and adults for safety and efficacy clinical trials, the P. falciparum circumsporozoite protein antigen, is targeted by specific antibodies induced by recombinant vaccine, called TRS,S. TRS,S has been authorized by WHO and Malawi Government to be the first malaria vaccine for up to 2 years of aged children for protection against malaria. Other malaria vaccines in clinical trials are also very promising candidates, including the original live, X-ray attenuated P-sporozoite vaccine, inducing antigen-specific T cell immunity at liver stage. Malaria parasite at blood symptomatic stage is targeted by specific antibodies to parasite-infected erythrocytes, which are important against pathogenic placenta-infected erythrocyte sequestration. Here, the demographic distribution of Plasmodium species and their pathogenicity in infected people are discussed. The role of innate phagocytic cells and malaria antigen specific T cell immunity, as well as that of specific antibody production by B cells are highlighted. The paramount role of cytotoxic CD8+ T cellular immunity in malaria people protection is also included.
Collapse
Affiliation(s)
- Janez Ferluga
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Iesha Singh
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sashmita Rout
- Department of Physiology, All-India Institute of Medical Sciences, Bhubaneswar, India
| | - Ahmed Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
50
|
Mo AXY, Pesce J, Augustine AD, Bodmer JL, Breen J, Leitner W, Hall BF. Understanding vaccine-elicited protective immunity against pre-erythrocytic stage malaria in endemic regions. Vaccine 2020; 38:7569-7577. [PMID: 33071001 DOI: 10.1016/j.vaccine.2020.09.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
Recent malaria vaccine trials in endemic areas have yielded disparate results compared to studies conducted in non-endemic areas. A workshop was organized to discuss the differential pre-erythrocytic stage malaria vaccine (Pre-E-Vac) efficacies and underlying protective immunity under various conditions. It was concluded that many factors, including vaccine technology platforms, host genetics or physiologic conditions, and parasite and mosquito vector variations, may all contribute to Pre-E-Vac efficacy. Cross-disciplinary approaches are needed to decipher the multi-dimensional variables that contribute to the observed vaccine hypo-responsiveness. The malaria vaccine community has an opportunity to leverage recent advances in immunology, systems vaccinology, and high dimensionality data science methodologies to generate new clinical datasets with unprecedented levels of functional resolution as well as capitalize on existing datasets for comprehensive and aggregate analyses. These approaches would help to unlock our understanding of Pre-E-Vac immunology and to translate new candidates from the laboratory to the field more predictably.
Collapse
Affiliation(s)
- Annie X Y Mo
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA.
| | - John Pesce
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - Alison Deckhut Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | | | - Joseph Breen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - Wolfgang Leitner
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| | - B Fenton Hall
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Service, Rockville, MD 20892, MSC 9825, USA
| |
Collapse
|